Last modified by Xiaoling on 2025/04/27 13:54

From version 128.1
edited by Xiaoling
on 2022/06/10 16:13
Change comment: Uploaded new attachment "image-20220610161353-6.png", version {1}
To version 111.29
edited by Xiaoling
on 2022/06/10 14:51
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LDDS75 - LoRaWAN Distance Detection Sensor User Manual
1 +LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
Content
... ... @@ -1,8 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:1654846127817-788.png]]
2 +[[image:image-20220610095606-1.png]]
3 3  
4 +
4 4  **Contents:**
5 5  
7 +{{toc/}}
6 6  
7 7  
8 8  
... ... @@ -12,33 +12,38 @@
12 12  
13 13  = 1.  Introduction =
14 14  
15 -== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
17 +== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
16 16  
17 17  (((
18 18  
19 19  
20 20  (((
21 -The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
23 +The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 +)))
22 22  
26 +(((
27 +The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 +)))
23 23  
24 -It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
30 +(((
31 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 +)))
25 25  
34 +(((
35 +The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +)))
26 26  
27 -The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
38 +(((
39 +LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 +)))
28 28  
29 -
30 -LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 -
32 -
33 -Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 -
35 -
36 -(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
42 +(((
43 +Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  )))
39 39  
40 40  
41 -[[image:1654847051249-359.png]]
48 +[[image:1654826306458-414.png]]
42 42  
43 43  
44 44  
... ... @@ -45,45 +45,41 @@
45 45  == ​1.2  Features ==
46 46  
47 47  * LoRaWAN 1.0.3 Class A
48 -* Ultra low power consumption
49 -* Distance Detection by Ultrasonic technology
50 -* Flat object range 280mm - 7500mm
51 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 -* Cable Length : 25cm
55 +* Ultra-low power consumption
56 +* Laser technology for distance detection
57 +* Operating Range - 0.1m~~12m
58 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 +* Monitor Battery Level
53 53  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 54  * AT Commands to change parameters
55 55  * Uplink on periodically
56 56  * Downlink to change configure
57 -* IP66 Waterproof Enclosure
58 -* 4000mAh or 8500mAh Battery for long term use
64 +* 8500mAh Battery for long term use
59 59  
60 -== 1.3  Specification ==
66 +== 1.3  Probe Specification ==
61 61  
62 -=== 1.3.1  Rated environmental conditions ===
68 +* Storage temperature :-20℃~~75℃
69 +* Operating temperature - -20℃~~60℃
70 +* Operating Range - 0.1m~~12m①
71 +* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
72 +* Distance resolution - 5mm
73 +* Ambient light immunity - 70klux
74 +* Enclosure rating - IP65
75 +* Light source - LED
76 +* Central wavelength - 850nm
77 +* FOV - 3.6°
78 +* Material of enclosure - ABS+PC
79 +* Wire length - 25cm
63 63  
64 -[[image:image-20220610154839-1.png]]
81 +== 1.4  Probe Dimension ==
65 65  
66 -**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
67 67  
68 -**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
84 +[[image:1654827224480-952.png]]
69 69  
70 70  
71 -
72 -=== 1.3.2  Effective measurement range Reference beam pattern ===
73 -
74 -**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75 -
76 -
77 -
78 -**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79 -
80 -(% style="display:none" %) (%%)
81 -
82 -
83 83  == 1.5 ​ Applications ==
84 84  
85 85  * Horizontal distance measurement
86 -* Liquid level measurement
87 87  * Parking management system
88 88  * Object proximity and presence detection
89 89  * Intelligent trash can management system
... ... @@ -90,25 +90,23 @@
90 90  * Robot obstacle avoidance
91 91  * Automatic control
92 92  * Sewer
93 -* Bottom water level monitoring
94 94  
95 -
96 96  == 1.6  Pin mapping and power on ==
97 97  
98 98  
99 -[[image:1654847583902-256.png]]
100 +[[image:1654827332142-133.png]]
100 100  
101 101  
102 -= 2.  Configure LDDS75 to connect to LoRaWAN network =
103 += 2.  Configure LLDS12 to connect to LoRaWAN network =
103 103  
104 104  == 2.1  How it works ==
105 105  
106 106  (((
107 -The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
108 +The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
108 108  )))
109 109  
110 110  (((
111 -In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
112 +In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
112 112  )))
113 113  
114 114  
... ... @@ -119,7 +119,7 @@
119 119  )))
120 120  
121 121  (((
122 -[[image:1654848616367-242.png]]
123 +[[image:1654827857527-556.png]]
123 123  )))
124 124  
125 125  (((
... ... @@ -127,19 +127,18 @@
127 127  )))
128 128  
129 129  (((
130 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
131 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
131 131  )))
132 132  
133 133  (((
134 -Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
135 +Each LSPH01 is shipped with a sticker with the default device EUI as below:
135 135  )))
136 136  
137 137  [[image:image-20220607170145-1.jpeg]]
138 138  
139 139  
140 -For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
141 141  
142 -Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
142 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
143 143  
144 144  
145 145  **Register the device**
... ... @@ -831,37 +831,25 @@
831 831  [[image:1654831774373-275.png]]
832 832  
833 833  
834 -(((
835 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 -)))
834 +**(% style="color:blue" %)① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
837 837  
838 -(((
839 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
840 -)))
836 +**(% style="color:blue" %)② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
841 841  
842 -(((
843 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
844 -)))
838 +**(% style="color:blue" %)③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
845 845  
846 846  
847 -(((
848 848  Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
849 -)))
850 850  
851 851  
852 852  [[image:1654831797521-720.png]]
853 853  
854 854  
855 -(((
856 856  In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
857 -)))
858 858  
859 859  [[image:1654831810009-716.png]]
860 860  
861 861  
862 -(((
863 863  If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
864 -)))
865 865  
866 866  
867 867  
... ... @@ -874,81 +874,58 @@
874 874  * The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
875 875  * The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
876 876  
865 +
866 +
867 +
877 877  = 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
878 878  
879 879  (((
880 -(((
881 881  Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
882 882  )))
883 -)))
884 884  
885 885  * (((
886 -(((
887 887  AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
888 888  )))
889 -)))
890 890  * (((
891 -(((
892 892  LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
893 893  )))
894 -)))
895 895  
896 896  (((
897 -(((
898 898  
899 -)))
900 900  
901 -(((
902 902  There are two kinds of commands to configure LLDS12, they are:
903 903  )))
904 -)))
905 905  
906 906  * (((
907 -(((
908 908  (% style="color:#4f81bd" %)** General Commands**.
909 909  )))
910 -)))
911 911  
912 912  (((
913 -(((
914 914  These commands are to configure:
915 915  )))
916 -)))
917 917  
918 918  * (((
919 -(((
920 920  General system settings like: uplink interval.
921 921  )))
922 -)))
923 923  * (((
924 -(((
925 925  LoRaWAN protocol & radio related command.
926 926  )))
927 -)))
928 928  
929 929  (((
930 -(((
931 931  They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
932 932  )))
933 -)))
934 934  
935 935  (((
936 -(((
937 937  
938 938  )))
939 -)))
940 940  
941 941  * (((
942 -(((
943 943  (% style="color:#4f81bd" %)** Commands special design for LLDS12**
944 944  )))
945 -)))
946 946  
947 947  (((
948 -(((
949 949  These commands only valid for LLDS12, as below:
950 950  )))
951 -)))
952 952  
953 953  
954 954  
... ... @@ -961,6 +961,7 @@
961 961  [[image:image-20220607171554-8.png]]
962 962  
963 963  
929 +
964 964  (((
965 965  (% style="color:#037691" %)**Downlink Command: 0x01**
966 966  )))
... ... @@ -978,6 +978,9 @@
978 978  )))
979 979  * (((
980 980  Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
947 +
948 +
949 +
981 981  )))
982 982  
983 983  == 4.2  Set Interrupt Mode ==
... ... @@ -1008,6 +1008,7 @@
1008 1008  Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1009 1009  )))
1010 1010  
980 +
1011 1011  == 4.3  Get Firmware Version Info ==
1012 1012  
1013 1013  Feature: use downlink to get firmware version.
... ... @@ -1204,14 +1204,10 @@
1204 1204  
1205 1205  
1206 1206  (((
1207 -(((
1208 1208  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1209 -)))
1210 1210  
1211 -(((
1212 1212  LLDS12 will output system info once power on as below:
1213 1213  )))
1214 -)))
1215 1215  
1216 1216  
1217 1217   [[image:1654593712276-618.png]]
... ... @@ -1232,9 +1232,7 @@
1232 1232  == 8.1  AT Commands input doesn’t work ==
1233 1233  
1234 1234  
1235 -(((
1236 1236  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1237 -)))
1238 1238  
1239 1239  
1240 1240  == 8.2  Significant error between the output distant value of LiDAR and actual distance ==
... ... @@ -1279,6 +1279,7 @@
1279 1279  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1280 1280  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1281 1281  
1246 +
1282 1282  = 10. ​ Packing Info =
1283 1283  
1284 1284  
... ... @@ -1293,6 +1293,7 @@
1293 1293  * Package Size / pcs : cm
1294 1294  * Weight / pcs : g
1295 1295  
1261 +
1296 1296  = 11.  ​Support =
1297 1297  
1298 1298  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1654846127817-788.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -76.8 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content