Last modified by Xiaoling on 2025/04/27 13:54

From version 119.2
edited by Xiaoling
on 2022/06/10 15:29
Change comment: There is no comment for this version
To version 149.8
edited by Xiaoling
on 2022/06/10 18:10
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -12,38 +12,33 @@
12 12  
13 13  = 1.  Introduction =
14 14  
15 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16 16  
17 17  (((
18 18  
19 19  
20 20  (((
21 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
22 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
23 23  
24 -(((
25 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
26 -)))
27 27  
28 -(((
29 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
30 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
31 31  
32 -(((
33 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
34 -)))
35 35  
36 -(((
37 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
38 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 39  
40 -(((
41 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
42 42  )))
43 43  )))
44 44  
45 45  
46 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
47 47  
48 48  
49 49  
... ... @@ -50,41 +50,50 @@
50 50  == ​1.2  Features ==
51 51  
52 52  * LoRaWAN 1.0.3 Class A
53 -* Ultra-low power consumption
54 -* Laser technology for distance detection
55 -* Operating Range - 0.1m~~12m
56 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
57 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
58 58  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
59 59  * AT Commands to change parameters
60 60  * Uplink on periodically
61 61  * Downlink to change configure
62 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
63 63  
64 -== 1.3  Probe Specification ==
60 +== 1.3  Specification ==
65 65  
66 -* Storage temperature :-20℃~~75℃
67 -* Operating temperature - -20℃~~60℃
68 -* Operating Range - 0.1m~~12m①
69 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
70 -* Distance resolution - 5mm
71 -* Ambient light immunity - 70klux
72 -* Enclosure rating - IP65
73 -* Light source - LED
74 -* Central wavelength - 850nm
75 -* FOV - 3.6°
76 -* Material of enclosure - ABS+PC
77 -* Wire length - 25cm
62 +=== 1.3.1  Rated environmental conditions ===
78 78  
79 -== 1.4  Probe Dimension ==
64 +[[image:image-20220610154839-1.png]]
80 80  
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
81 81  
82 -[[image:1654827224480-952.png]]
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
83 83  
84 84  
71 +
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
73 +
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
75 +
76 +
77 +
78 +[[image:1654852253176-749.png]]
79 +
80 +
81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
82 +
83 +
84 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
85 +
86 +
87 +
85 85  == 1.5 ​ Applications ==
86 86  
87 87  * Horizontal distance measurement
91 +* Liquid level measurement
88 88  * Parking management system
89 89  * Object proximity and presence detection
90 90  * Intelligent trash can management system
... ... @@ -91,26 +91,29 @@
91 91  * Robot obstacle avoidance
92 92  * Automatic control
93 93  * Sewer
98 +* Bottom water level monitoring
94 94  
95 95  == 1.6  Pin mapping and power on ==
96 96  
97 97  
98 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
99 99  
100 100  
101 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
102 102  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
108 +
103 103  == 2.1  How it works ==
104 104  
105 105  (((
106 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
107 107  )))
108 108  
109 109  (((
110 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
111 111  )))
112 112  
113 113  
120 +
114 114  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
115 115  
116 116  (((
... ... @@ -118,7 +118,7 @@
118 118  )))
119 119  
120 120  (((
121 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
122 122  )))
123 123  
124 124  (((
... ... @@ -126,57 +126,57 @@
126 126  )))
127 127  
128 128  (((
129 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
130 130  )))
131 131  
132 132  (((
133 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
134 134  )))
135 135  
136 136  [[image:image-20220607170145-1.jpeg]]
137 137  
138 138  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
139 139  
140 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
141 141  
150 +**Add APP EUI in the application**
142 142  
143 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
144 144  
154 +[[image:image-20220610161353-5.png]]
145 145  
146 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
147 147  
148 148  
159 +[[image:image-20220610161353-7.png]]
149 149  
150 -**Add APP EUI and DEV EUI**
151 151  
152 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
153 153  
164 + [[image:image-20220610161538-8.png]]
154 154  
155 155  
156 -**Add APP EUI in the application**
157 157  
158 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
159 159  
170 +[[image:image-20220610161538-9.png]]
160 160  
161 161  
162 -**Add APP KEY**
163 163  
164 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
165 165  
166 166  
167 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
168 -
169 -
170 170  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
171 171  
172 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
173 173  
174 174  
175 175  (((
176 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 177  )))
178 178  
179 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
180 180  
181 181  
182 182  
... ... @@ -183,11 +183,10 @@
183 183  == 2.3  ​Uplink Payload ==
184 184  
185 185  (((
186 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
187 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
188 188  
189 -(((
190 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
191 191  )))
192 192  
193 193  (((
... ... @@ -197,23 +197,23 @@
197 197  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
198 198  |=(% style="width: 62.5px;" %)(((
199 199  **Size (bytes)**
200 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
201 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
202 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
203 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
204 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
205 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
206 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
207 -)))
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
208 208  
209 -[[image:1654833689380-972.png]]
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
210 210  
215 +[[image:1654850511545-399.png]]
211 211  
212 212  
218 +
213 213  === 2.3.1  Battery Info ===
214 214  
215 215  
216 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
217 217  
218 218  Ex1: 0x0B45 = 2885mV
219 219  
... ... @@ -221,49 +221,20 @@
221 221  
222 222  
223 223  
224 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
225 225  
226 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
227 227  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
228 228  
229 -**Example**:
230 230  
231 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
232 232  
233 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240 +=== 2.3.3  Interrupt Pin ===
234 234  
235 -
236 -
237 -=== 2.3.3  Distance ===
238 -
239 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
240 -
241 -
242 -**Example**:
243 -
244 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
245 -
246 -
247 -
248 -=== 2.3.4  Distance signal strength ===
249 -
250 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
251 -
252 -
253 -**Example**:
254 -
255 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
256 -
257 -Customers can judge whether they need to adjust the environment based on the signal strength.
258 -
259 -
260 -
261 -=== 2.3.5  Interrupt Pin ===
262 -
263 263  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
264 264  
265 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
266 -
267 267  **Example:**
268 268  
269 269  0x00: Normal uplink packet.
... ... @@ -272,52 +272,44 @@
272 272  
273 273  
274 274  
275 -=== 2.3.6  LiDAR temp ===
252 +=== 2.3.4  DS18B20 Temperature sensor ===
276 276  
277 -Characterize the internal temperature value of the sensor.
254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
278 278  
279 -**Example: **
280 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
281 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
256 +**Example**:
282 282  
258 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
283 283  
260 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
284 284  
285 -=== 2.3.7  Message Type ===
262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
286 286  
287 -(((
288 -For a normal uplink payload, the message type is always 0x01.
289 -)))
290 290  
291 -(((
292 -Valid Message Type:
293 -)))
294 294  
266 +=== 2.3.5  Sensor Flag ===
295 295  
296 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
297 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
298 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
299 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
268 +0x01: Detect Ultrasonic Sensor
300 300  
301 -=== 2.3.8  Decode payload in The Things Network ===
270 +0x00: No Ultrasonic Sensor
302 302  
272 +
273 +===
274 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
275 +
303 303  While using TTN network, you can add the payload format to decode the payload.
304 304  
305 305  
306 -[[image:1654592762713-715.png]]
279 +[[image:1654850829385-439.png]]
307 307  
308 -(((
309 -The payload decoder function for TTN is here:
310 -)))
281 +The payload decoder function for TTN V3 is here:
311 311  
312 -(((
313 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
314 -)))
283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
315 315  
316 316  
317 317  
318 318  == 2.4  Uplink Interval ==
319 319  
320 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
321 321  
322 322  
323 323  
... ... @@ -348,47 +348,25 @@
348 348  
349 349  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
350 350  
351 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
352 352  
353 -[[image:1654832691989-514.png]]
322 +[[image:1654851029373-510.png]]
354 354  
355 355  
356 -[[image:1654592833877-762.png]]
325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
357 357  
327 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
358 358  
359 -[[image:1654832740634-933.png]]
360 360  
361 361  
362 -
363 -(((
364 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
365 -)))
366 -
367 -(((
368 -
369 -)))
370 -
371 -[[image:1654833065139-942.png]]
372 -
373 -
374 -
375 -[[image:1654833092678-390.png]]
376 -
377 -
378 -
379 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
380 -
381 -[[image:1654833163048-332.png]]
382 -
383 -
384 -
385 385  == 2.6  Frequency Plans ==
386 386  
387 387  (((
388 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
389 389  )))
390 390  
391 391  
338 +
392 392  === 2.6.1  EU863-870 (EU868) ===
393 393  
394 394  (((
... ... @@ -452,20 +452,51 @@
452 452  === 2.6.2  US902-928(US915) ===
453 453  
454 454  (((
455 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
456 -)))
402 +Used in USA, Canada and South America. Default use CHE=2
457 457  
458 -(((
459 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
460 -)))
404 +(% style="color:blue" %)**Uplink:**
461 461  
462 -(((
463 -After Join success, the end node will switch to the correct sub band by:
464 -)))
406 +903.9 - SF7BW125 to SF10BW125
465 465  
466 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
467 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
408 +904.1 - SF7BW125 to SF10BW125
468 468  
410 +904.3 - SF7BW125 to SF10BW125
411 +
412 +904.5 - SF7BW125 to SF10BW125
413 +
414 +904.7 - SF7BW125 to SF10BW125
415 +
416 +904.9 - SF7BW125 to SF10BW125
417 +
418 +905.1 - SF7BW125 to SF10BW125
419 +
420 +905.3 - SF7BW125 to SF10BW125
421 +
422 +
423 +(% style="color:blue" %)**Downlink:**
424 +
425 +923.3 - SF7BW500 to SF12BW500
426 +
427 +923.9 - SF7BW500 to SF12BW500
428 +
429 +924.5 - SF7BW500 to SF12BW500
430 +
431 +925.1 - SF7BW500 to SF12BW500
432 +
433 +925.7 - SF7BW500 to SF12BW500
434 +
435 +926.3 - SF7BW500 to SF12BW500
436 +
437 +926.9 - SF7BW500 to SF12BW500
438 +
439 +927.5 - SF7BW500 to SF12BW500
440 +
441 +923.3 - SF12BW500(RX2 downlink only)
442 +
443 +
444 +
445 +)))
446 +
469 469  === 2.6.3  CN470-510 (CN470) ===
470 470  
471 471  (((
... ... @@ -554,28 +554,54 @@
554 554  
555 555  
556 556  
557 -
558 558  === 2.6.4  AU915-928(AU915) ===
559 559  
560 560  (((
561 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
562 -)))
538 +Default use CHE=2
563 563  
564 -(((
565 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
566 -)))
540 +(% style="color:blue" %)**Uplink:**
567 567  
568 -(((
569 -
570 -)))
542 +916.8 - SF7BW125 to SF12BW125
571 571  
572 -(((
573 -After Join success, the end node will switch to the correct sub band by:
574 -)))
544 +917.0 - SF7BW125 to SF12BW125
575 575  
576 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
577 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546 +917.2 - SF7BW125 to SF12BW125
578 578  
548 +917.4 - SF7BW125 to SF12BW125
549 +
550 +917.6 - SF7BW125 to SF12BW125
551 +
552 +917.8 - SF7BW125 to SF12BW125
553 +
554 +918.0 - SF7BW125 to SF12BW125
555 +
556 +918.2 - SF7BW125 to SF12BW125
557 +
558 +
559 +(% style="color:blue" %)**Downlink:**
560 +
561 +923.3 - SF7BW500 to SF12BW500
562 +
563 +923.9 - SF7BW500 to SF12BW500
564 +
565 +924.5 - SF7BW500 to SF12BW500
566 +
567 +925.1 - SF7BW500 to SF12BW500
568 +
569 +925.7 - SF7BW500 to SF12BW500
570 +
571 +926.3 - SF7BW500 to SF12BW500
572 +
573 +926.9 - SF7BW500 to SF12BW500
574 +
575 +927.5 - SF7BW500 to SF12BW500
576 +
577 +923.3 - SF12BW500(RX2 downlink only)
578 +
579 +
580 +
581 +)))
582 +
579 579  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
580 580  
581 581  (((
... ... @@ -684,7 +684,6 @@
684 684  
685 685  
686 686  
687 -
688 688  === 2.6.6  KR920-923 (KR920) ===
689 689  
690 690  (((
... ... @@ -757,7 +757,6 @@
757 757  
758 758  
759 759  
760 -
761 761  === 2.6.7  IN865-867 (IN865) ===
762 762  
763 763  (((
... ... @@ -794,19 +794,20 @@
794 794  
795 795  
796 796  
797 -
798 798  == 2.7  LED Indicator ==
799 799  
800 -The LLDS12 has an internal LED which is to show the status of different state.
801 +The LDDS75 has an internal LED which is to show the status of different state.
801 801  
802 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 +
804 +* Blink once when device power on.
805 +* The device detects the sensor and flashes 5 times.
806 +* Solid ON for 5 seconds once device successful Join the network.
803 803  * Blink once when device transmit a packet.
804 804  
805 -
806 806  == 2.8  ​Firmware Change Log ==
807 807  
808 808  
809 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
810 810  
811 811  
812 812  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -813,71 +813,58 @@
813 813  
814 814  
815 815  
816 -= 3LiDAR ToF Measurement =
819 +== 2.9  Mechanical ==
817 817  
818 -== 3.1 Principle of Distance Measurement ==
819 819  
820 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
822 +[[image:image-20220610172003-1.png]]
821 821  
822 -[[image:1654831757579-263.png]]
824 +[[image:image-20220610172003-2.png]]
823 823  
824 824  
827 +== 2.10  Battery Analysis ==
825 825  
826 -== 3.2 Distance Measurement Characteristics ==
829 +=== 2.10.1  Battery Type ===
827 827  
828 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
829 829  
830 -[[image:1654831774373-275.png]]
831 831  
834 +The battery related documents as below:
832 832  
833 -(((
834 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 +* (((
837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
835 835  )))
836 -
837 -(((
838 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
839 +* (((
840 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
839 839  )))
840 -
841 -(((
842 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
842 +* (((
843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
843 843  )))
844 844  
846 + [[image:image-20220610172400-3.png]]
845 845  
846 -(((
847 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
848 -)))
849 849  
850 850  
851 -[[image:1654831797521-720.png]]
850 +=== 2.10.2  Replace the battery ===
852 852  
852 +(((
853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
854 +)))
853 853  
854 854  (((
855 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
857 +
856 856  )))
857 857  
858 -[[image:1654831810009-716.png]]
859 -
860 -
861 861  (((
862 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
863 863  )))
864 864  
865 865  
866 866  
867 -== 3.3 Notice of usage: ==
866 += 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
868 868  
869 -Possible invalid /wrong reading for LiDAR ToF tech:
870 -
871 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
872 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
873 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
874 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
875 -
876 -= 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
877 -
878 878  (((
879 879  (((
880 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
881 881  )))
882 882  )))
883 883  
... ... @@ -898,7 +898,7 @@
898 898  )))
899 899  
900 900  (((
901 -There are two kinds of commands to configure LLDS12, they are:
891 +There are two kinds of commands to configure LDDS75, they are:
902 902  )))
903 903  )))
904 904  
... ... @@ -939,334 +939,127 @@
939 939  
940 940  * (((
941 941  (((
942 -(% style="color:#4f81bd" %)** Commands special design for LLDS12**
932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
943 943  )))
944 944  )))
945 945  
946 946  (((
947 947  (((
948 -These commands only valid for LLDS12, as below:
938 +These commands only valid for LDDS75, as below:
949 949  )))
950 950  )))
951 951  
952 952  
953 953  
954 -== 4.1  Set Transmit Interval Time ==
944 +== 3.1  Access AT Commands ==
955 955  
956 -Feature: Change LoRaWAN End Node Transmit Interval.
946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
957 957  
958 -(% style="color:#037691" %)**AT Command: AT+TDC**
948 +[[image:image-20220610172924-4.png||height="483" width="988"]]
959 959  
960 -[[image:image-20220607171554-8.png]]
961 961  
951 +Or if you have below board, use below connection:
962 962  
963 -(((
964 -(% style="color:#037691" %)**Downlink Command: 0x01**
965 -)))
966 966  
967 -(((
968 -Format: Command Code (0x01) followed by 3 bytes time value.
969 -)))
954 +[[image:image-20220610172924-5.png]]
970 970  
971 -(((
972 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
973 -)))
974 974  
975 -* (((
976 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
977 -)))
978 -* (((
979 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
980 -)))
957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
981 981  
982 -== 4.2  Set Interrupt Mode ==
983 983  
984 -Feature, Set Interrupt mode for GPIO_EXIT.
960 + [[image:image-20220610172924-6.png||height="601" width="860"]]
985 985  
986 -(% style="color:#037691" %)**AT Command: AT+INTMOD**
987 987  
988 -[[image:image-20220610105806-2.png]]
989 989  
964 +== 3.2  Set Transmit Interval Time ==
990 990  
991 -(((
992 -(% style="color:#037691" %)**Downlink Command: 0x06**
993 -)))
966 +Feature: Change LoRaWAN End Node Transmit Interval.
994 994  
995 -(((
996 -Format: Command Code (0x06) followed by 3 bytes.
997 -)))
968 +(% style="color:#037691" %)**AT Command: AT+TDC**
998 998  
999 -(((
1000 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1001 -)))
970 +[[image:image-20220610173409-7.png]]
1002 1002  
1003 -* (((
1004 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1005 -)))
1006 -* (((
1007 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1008 -)))
1009 1009  
1010 -== 4.3  Get Firmware Version Info ==
1011 -
1012 -Feature: use downlink to get firmware version.
1013 -
1014 -(% style="color:#037691" %)**Downlink Command: 0x26**
1015 -
1016 -[[image:image-20220607171917-10.png]]
1017 -
1018 -* Reply to the confirmation package: 26 01
1019 -* Reply to non-confirmed packet: 26 00
1020 -
1021 -Device will send an uplink after got this downlink command. With below payload:
1022 -
1023 -Configures info payload:
1024 -
1025 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1026 -|=(((
1027 -**Size(bytes)**
1028 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1029 -|**Value**|Software Type|(((
1030 -Frequency
1031 -
1032 -Band
1033 -)))|Sub-band|(((
1034 -Firmware
1035 -
1036 -Version
1037 -)))|Sensor Type|Reserve|(((
1038 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1039 -Always 0x02
1040 -)))
1041 -
1042 -**Software Type**: Always 0x03 for LLDS12
1043 -
1044 -
1045 -**Frequency Band**:
1046 -
1047 -*0x01: EU868
1048 -
1049 -*0x02: US915
1050 -
1051 -*0x03: IN865
1052 -
1053 -*0x04: AU915
1054 -
1055 -*0x05: KZ865
1056 -
1057 -*0x06: RU864
1058 -
1059 -*0x07: AS923
1060 -
1061 -*0x08: AS923-1
1062 -
1063 -*0x09: AS923-2
1064 -
1065 -*0xa0: AS923-3
1066 -
1067 -
1068 -**Sub-Band**: value 0x00 ~~ 0x08
1069 -
1070 -
1071 -**Firmware Version**: 0x0100, Means: v1.0.0 version
1072 -
1073 -
1074 -**Sensor Type**:
1075 -
1076 -0x01: LSE01
1077 -
1078 -0x02: LDDS75
1079 -
1080 -0x03: LDDS20
1081 -
1082 -0x04: LLMS01
1083 -
1084 -0x05: LSPH01
1085 -
1086 -0x06: LSNPK01
1087 -
1088 -0x07: LLDS12
1089 -
1090 -
1091 -
1092 -= 5.  Battery & How to replace =
1093 -
1094 -== 5.1  Battery Type ==
1095 -
1096 1096  (((
1097 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
974 +(% style="color:#037691" %)**Downlink Command: 0x01**
1098 1098  )))
1099 1099  
1100 1100  (((
1101 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1102 -)))
1103 -
1104 -[[image:1654593587246-335.png]]
1105 -
1106 -
1107 -Minimum Working Voltage for the LLDS12:
1108 -
1109 -LLDS12:  2.45v ~~ 3.6v
1110 -
1111 -
1112 -
1113 -== 5.2  Replace Battery ==
1114 -
1115 1115  (((
1116 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1117 -)))
979 +Format: Command Code (0x01) followed by 3 bytes time value.
1118 1118  
1119 -(((
1120 -And make sure the positive and negative pins match.
1121 -)))
981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1122 1122  
1123 -
1124 -
1125 -== 5.3  Power Consumption Analyze ==
1126 -
1127 -(((
1128 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1129 1129  )))
1130 1130  
1131 -(((
1132 -Instruction to use as below:
1133 -)))
1134 1134  
1135 -
1136 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1137 -
1138 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1139 -
1140 -
1141 -**Step 2**: Open it and choose
1142 -
1143 -* Product Model
1144 -* Uplink Interval
1145 -* Working Mode
1146 -
1147 -And the Life expectation in difference case will be shown on the right.
1148 -
1149 -[[image:1654593605679-189.png]]
1150 -
1151 -
1152 -The battery related documents as below:
1153 -
1154 -* (((
1155 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
988 +
1156 1156  )))
1157 -* (((
1158 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1159 -)))
1160 -* (((
1161 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1162 -)))
1163 1163  
1164 -[[image:image-20220607172042-11.png]]
991 +== 3.3  Set Interrupt Mode ==
1165 1165  
993 +Feature, Set Interrupt mode for GPIO_EXIT.
1166 1166  
995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1167 1167  
1168 -=== 5.3.1  ​Battery Note ===
997 +[[image:image-20220610174917-9.png]]
1169 1169  
1170 -(((
1171 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1172 -)))
1173 1173  
1000 +(% style="color:#037691" %)**Downlink Command: 0x06**
1174 1174  
1002 +Format: Command Code (0x06) followed by 3 bytes.
1175 1175  
1176 -=== ​5.3.2  Replace the battery ===
1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1177 1177  
1178 -(((
1179 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1180 -)))
1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1181 1181  
1182 -(((
1183 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1184 -)))
1185 1185  
1010 += 4.  FAQ =
1186 1186  
1012 +== 4.1  What is the frequency plan for LDDS75? ==
1187 1187  
1188 -= 6.  Use AT Command =
1014 +LDDS75 use the same frequency as other Dragino products. User can see the detail from this link: [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1189 1189  
1190 -== 6.1  Access AT Commands ==
1191 1191  
1192 -LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1193 1193  
1194 -[[image:1654593668970-604.png]]
1018 +== 4.2  How to change the LoRa Frequency Bands/Region ==
1195 1195  
1196 -**Connection:**
1020 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1021 +When downloading the images, choose the required image file for download. ​
1197 1197  
1198 -(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1199 1199  
1200 -(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1201 1201  
1202 -(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1025 +== 4.3  Can I use LDDS75 in condensation environment? ==
1203 1203  
1027 +LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1204 1204  
1205 -(((
1206 -(((
1207 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1208 -)))
1209 1209  
1210 -(((
1211 -LLDS12 will output system info once power on as below:
1212 -)))
1213 -)))
1214 1214  
1031 += 5.  Trouble Shooting =
1215 1215  
1216 - [[image:1654593712276-618.png]]
1033 +== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1217 1217  
1218 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1035 +It is due to channel mapping. Please see below link:  [[Frequency band>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
1219 1219  
1220 1220  
1221 -= 7FAQ =
1038 +== 5.2  AT Command input doesn't work ==
1222 1222  
1223 -== 7.1  How to change the LoRa Frequency Bands/Region ==
1224 -
1225 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1226 -When downloading the images, choose the required image file for download. ​
1227 -
1228 -
1229 -= 8.  Trouble Shooting =
1230 -
1231 -== 8.1  AT Commands input doesn’t work ==
1232 -
1233 -
1234 -(((
1235 1235  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1236 -)))
1237 1237  
1238 -
1239 -== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1240 -
1241 -
1242 1242  (((
1243 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1244 -)))
1245 -
1246 -(((
1247 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
1248 -)))
1249 -
1250 -(((
1251 1251  
1252 1252  )))
1253 1253  
1254 -(((
1255 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1256 -)))
1257 1257  
1258 -(((
1259 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1260 -)))
1047 += 6.  Order Info =
1261 1261  
1262 1262  
1050 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY**
1263 1263  
1264 -= 9.  Order Info =
1265 1265  
1266 -
1267 -Part Number: (% style="color:blue" %)**LLDS12-XX**
1268 -
1269 -
1270 1270  (% style="color:blue" %)**XX**(%%): The default frequency band
1271 1271  
1272 1272  * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
... ... @@ -1278,14 +1278,18 @@
1278 1278  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1279 1279  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1280 1280  
1064 +(% style="color:blue" %)**YY**(%%): Battery Option
1281 1281  
1066 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1067 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1282 1282  
1283 -= 10. ​ Packing Info =
1284 1284  
1070 += 7. ​ Packing Info =
1285 1285  
1072 +
1286 1286  **Package Includes**:
1287 1287  
1288 -* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1075 +* LDDS75 LoRaWAN Distance Detection Sensor x 1
1289 1289  
1290 1290  **Dimension and weight**:
1291 1291  
... ... @@ -1295,8 +1295,7 @@
1295 1295  * Weight / pcs : g
1296 1296  
1297 1297  
1085 += 8.  ​Support =
1298 1298  
1299 -= 11.  ​Support =
1300 -
1301 1301  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1302 1302  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content