Changes for page LDDS45 - LoRaWAN Distance Detection Sensor User Manual
Last modified by Mengting Qiu on 2025/02/26 15:04
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 14 added, 0 removed)
- 1654847051249-359.png
- 1654847583902-256.png
- 1654848616367-242.png
- 1654849068701-275.png
- image-20220610154839-1.png
- image-20220610155021-2.png
- image-20220610155021-3.png
- image-20220610161353-4.png
- image-20220610161353-5.png
- image-20220610161353-6.png
- image-20220610161353-7.png
- image-20220610161538-8.png
- image-20220610161538-9.png
- image-20220610161724-10.png
Details
- Page properties
-
- Content
-
... ... @@ -12,38 +12,33 @@ 12 12 13 13 = 1. Introduction = 14 14 15 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==15 +== 1.1 What is LoRaWAN Distance Detection Sensor == 16 16 17 17 ((( 18 18 19 19 20 20 ((( 21 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 22 -))) 21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 23 23 24 -((( 25 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 26 -))) 27 27 28 -((( 29 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 30 -))) 24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 31 31 32 -((( 33 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 34 -))) 35 35 36 -((( 37 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 38 -))) 27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 39 39 40 -((( 41 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 29 + 30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 31 + 32 + 33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 34 + 35 + 36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors 42 42 ))) 43 43 ))) 44 44 45 45 46 -[[image:16548 26306458-414.png]]41 +[[image:1654847051249-359.png]] 47 47 48 48 49 49 ... ... @@ -50,41 +50,45 @@ 50 50 == 1.2 Features == 51 51 52 52 * LoRaWAN 1.0.3 Class A 53 -* Ultra -low power consumption54 -* Lasertechnologyfor distancedetection55 -* OperatingRange - 0.1m~~12m①56 -* Accuracy -±5cm@(0.1-6m),±1%@(6m-12m)57 -* Monitor BatteryLevel48 +* Ultra low power consumption 49 +* Distance Detection by Ultrasonic technology 50 +* Flat object range 280mm - 7500mm 51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 52 +* Cable Length : 25cm 58 58 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 59 59 * AT Commands to change parameters 60 60 * Uplink on periodically 61 61 * Downlink to change configure 62 -* 8500mAh Battery for long term use 57 +* IP66 Waterproof Enclosure 58 +* 4000mAh or 8500mAh Battery for long term use 63 63 64 -== 1.3 ProbeSpecification ==60 +== 1.3 Specification == 65 65 66 -* Storage temperature :-20℃~~75℃ 67 -* Operating temperature - -20℃~~60℃ 68 -* Operating Range - 0.1m~~12m① 69 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m) 70 -* Distance resolution - 5mm 71 -* Ambient light immunity - 70klux 72 -* Enclosure rating - IP65 73 -* Light source - LED 74 -* Central wavelength - 850nm 75 -* FOV - 3.6° 76 -* Material of enclosure - ABS+PC 77 -* Wire length - 25cm 62 +=== 1.3.1 Rated environmental conditions === 78 78 79 - == 1.4 ProbeDimension ==64 +[[image:image-20220610154839-1.png]] 80 80 66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 81 81 82 - [[image:1654827224480-952.png]]68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 83 83 84 84 71 + 72 +=== 1.3.2 Effective measurement range Reference beam pattern === 73 + 74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]] 75 + 76 + 77 + 78 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]] 79 + 80 +(% style="display:none" %) (%%) 81 + 82 + 85 85 == 1.5 Applications == 86 86 87 87 * Horizontal distance measurement 86 +* Liquid level measurement 88 88 * Parking management system 89 89 * Object proximity and presence detection 90 90 * Intelligent trash can management system ... ... @@ -91,23 +91,25 @@ 91 91 * Robot obstacle avoidance 92 92 * Automatic control 93 93 * Sewer 93 +* Bottom water level monitoring 94 94 95 + 95 95 == 1.6 Pin mapping and power on == 96 96 97 97 98 -[[image:16548 27332142-133.png]]99 +[[image:1654847583902-256.png]] 99 99 100 100 101 -= 2. Configure L LDS12to connect to LoRaWAN network =102 += 2. Configure LDDS75 to connect to LoRaWAN network = 102 102 103 103 == 2.1 How it works == 104 104 105 105 ((( 106 -The L LDS12is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect alocalLoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.107 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 107 107 ))) 108 108 109 109 ((( 110 -In case you can ’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.111 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 111 111 ))) 112 112 113 113 ... ... @@ -118,7 +118,7 @@ 118 118 ))) 119 119 120 120 ((( 121 -[[image:16548 27857527-556.png]]122 +[[image:1654848616367-242.png]] 122 122 ))) 123 123 124 124 ((( ... ... @@ -126,57 +126,57 @@ 126 126 ))) 127 127 128 128 ((( 129 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LS PH01.130 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 130 130 ))) 131 131 132 132 ((( 133 -Each LS PH01is shipped with a sticker with the default deviceEUIas below:134 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 134 134 ))) 135 135 136 136 [[image:image-20220607170145-1.jpeg]] 137 137 138 138 140 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 139 139 140 - You canenter this key in the LoRaWAN Server portal. Below is TTN screen shot:142 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 141 141 144 +**Add APP EUI in the application** 142 142 143 - **Register the device**146 +[[image:image-20220610161353-4.png]] 144 144 148 +[[image:image-20220610161353-5.png]] 145 145 146 -[[image: 1654592600093-601.png]]150 +[[image:image-20220610161353-6.png]] 147 147 148 148 153 +[[image:image-20220610161353-7.png]] 149 149 150 -**Add APP EUI and DEV EUI** 151 151 152 - [[image:1654592619856-881.png]]156 +You can also choose to create the device manually. 153 153 158 + [[image:image-20220610161538-8.png]] 154 154 155 155 156 -**Add APP EUI in the application** 157 157 158 - [[image:1654592632656-512.png]]162 +**Add APP KEY and DEV EUI** 159 159 164 +[[image:image-20220610161538-9.png]] 160 160 161 161 162 -**Add APP KEY** 163 163 164 - [[image:1654592653453-934.png]]168 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 165 165 166 166 167 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12 168 - 169 - 170 170 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 171 171 172 -[[image:image-2022060 7170442-2.png]]173 +[[image:image-20220610161724-10.png]] 173 173 174 174 175 175 ((( 176 -(% style="color:blue" %)**Step 3**(%%)**:** The L LDS12will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.177 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 177 177 ))) 178 178 179 -[[image:16548 33501679-968.png]]180 +[[image:1654849068701-275.png]] 180 180 181 181 182 182 ... ... @@ -183,11 +183,10 @@ 183 183 == 2.3 Uplink Payload == 184 184 185 185 ((( 186 -LLDS12 will uplink payload via LoRaWAN with below payload format: 187 -))) 187 +LDDS75 will uplink payload via LoRaWAN with below payload format: 188 188 189 - (((190 - Uplink payload includesintotal11bytes.189 +Uplink payload includes in total 4 bytes. 190 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 191 191 ))) 192 192 193 193 ((( ... ... @@ -197,15 +197,15 @@ 197 197 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 198 198 |=(% style="width: 62.5px;" %)((( 199 199 **Size (bytes)** 200 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1** 201 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)((( 202 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]] 203 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 204 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]] 205 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|((( 206 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 207 -))) 200 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 201 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 202 +[[Distance>>||anchor="H2.3.3A0Distance"]] 208 208 204 +(unit: mm) 205 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 206 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 207 +)))|[[Sensor Flag>>path:#Sensor_Flag]] 208 + 209 209 [[image:1654833689380-972.png]] 210 210 211 211 ... ... @@ -213,7 +213,7 @@ 213 213 === 2.3.1 Battery Info === 214 214 215 215 216 -Check the battery voltage for L LDS12.216 +Check the battery voltage for LDDS75. 217 217 218 218 Ex1: 0x0B45 = 2885mV 219 219 ... ... @@ -221,49 +221,23 @@ 221 221 222 222 223 223 224 -=== 2.3.2 D S18B20 Temperaturesensor===224 +=== 2.3.2 Distance === 225 225 226 - Thisisoptional, usercanconnectexternalDS18B20sensor to the +3.3v, 1-wireand GND pin . and this field will report temperature.226 +Get the distance. Flat object range 280mm - 7500mm. 227 227 228 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is 228 228 229 -** Example**:230 +**0B05(H) = 2821 (D) = 2821 mm.** 230 230 231 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 232 232 233 -If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 233 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 234 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 234 234 235 235 237 +=== 2.3.3 Interrupt Pin === 236 236 237 -=== 2.3.3 Distance === 238 - 239 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 240 - 241 - 242 -**Example**: 243 - 244 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 245 - 246 - 247 - 248 -=== 2.3.4 Distance signal strength === 249 - 250 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 251 - 252 - 253 -**Example**: 254 - 255 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 256 - 257 -Customers can judge whether they need to adjust the environment based on the signal strength. 258 - 259 - 260 - 261 -=== 2.3.5 Interrupt Pin === 262 - 263 263 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 264 264 265 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 266 - 267 267 **Example:** 268 268 269 269 0x00: Normal uplink packet. ... ... @@ -271,35 +271,28 @@ 271 271 0x01: Interrupt Uplink Packet. 272 272 273 273 248 +=== 2.3.4 DS18B20 Temperature sensor === 274 274 275 - ===2.3.6LiDARtemp===250 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 276 276 277 - Characterize the internal temperature valueof the sensor.252 +**Example**: 278 278 279 -**Example: ** 280 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 281 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 254 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 282 282 256 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 283 283 258 +Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 284 284 285 -=== 2.3. 7MessageType===260 +=== 2.3.5 Sensor Flag === 286 286 287 -((( 288 -For a normal uplink payload, the message type is always 0x01. 289 -))) 262 +0x01: Detect Ultrasonic Sensor 290 290 291 -((( 292 -Valid Message Type: 293 -))) 264 +0x00: No Ultrasonic Sensor 294 294 295 295 296 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %) 297 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload** 298 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 299 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 267 +=== 268 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 300 300 301 -=== 2.3.8 Decode payload in The Things Network === 302 - 303 303 While using TTN network, you can add the payload format to decode the payload. 304 304 305 305 ... ... @@ -802,7 +802,6 @@ 802 802 * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected. 803 803 * Blink once when device transmit a packet. 804 804 805 - 806 806 == 2.8 Firmware Change Log == 807 807 808 808 ... ... @@ -1278,8 +1278,6 @@ 1278 1278 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1279 1279 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1280 1280 1281 - 1282 - 1283 1283 = 10. Packing Info = 1284 1284 1285 1285 ... ... @@ -1294,8 +1294,6 @@ 1294 1294 * Package Size / pcs : cm 1295 1295 * Weight / pcs : g 1296 1296 1297 - 1298 - 1299 1299 = 11. Support = 1300 1300 1301 1301 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
- 1654847051249-359.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654847583902-256.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1654848616367-242.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654849068701-275.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- image-20220610154839-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.3 KB - Content
- image-20220610155021-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +164.8 KB - Content
- image-20220610155021-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.8 KB - Content
- image-20220610161353-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +32.2 KB - Content
- image-20220610161353-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.7 KB - Content
- image-20220610161353-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20220610161353-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.1 KB - Content
- image-20220610161538-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.2 KB - Content
- image-20220610161538-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +28.7 KB - Content
- image-20220610161724-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +180.0 KB - Content