<
From version < 119.1 >
edited by Xiaoling
on 2022/06/10 15:28
To version < 133.5 >
edited by Xiaoling
on 2022/06/10 16:39
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,10 +1,8 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 -{{toc/}}
8 8  
9 9  
10 10  
... ... @@ -14,38 +14,33 @@
14 14  
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 25  
26 -(((
27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 -)))
29 29  
30 -(((
31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 33  
34 -(((
35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 -)))
37 37  
38 -(((
39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  
42 -(((
43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
44 44  )))
45 45  )))
46 46  
47 47  
48 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
49 49  
50 50  
51 51  
... ... @@ -52,41 +52,45 @@
52 52  == ​1.2  Features ==
53 53  
54 54  * LoRaWAN 1.0.3 Class A
55 -* Ultra-low power consumption
56 -* Laser technology for distance detection
57 -* Operating Range - 0.1m~~12m
58 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
60 60  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 61  * AT Commands to change parameters
62 62  * Uplink on periodically
63 63  * Downlink to change configure
64 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
65 65  
66 -== 1.3  Probe Specification ==
60 +== 1.3  Specification ==
67 67  
68 -* Storage temperature :-20℃~~75℃
69 -* Operating temperature - -20℃~~60℃
70 -* Operating Range - 0.1m~~12m①
71 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
72 -* Distance resolution - 5mm
73 -* Ambient light immunity - 70klux
74 -* Enclosure rating - IP65
75 -* Light source - LED
76 -* Central wavelength - 850nm
77 -* FOV - 3.6°
78 -* Material of enclosure - ABS+PC
79 -* Wire length - 25cm
62 +=== 1.3.1  Rated environmental conditions ===
80 80  
81 -== 1.4  Probe Dimension ==
64 +[[image:image-20220610154839-1.png]]
82 82  
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
83 83  
84 -[[image:1654827224480-952.png]]
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
85 85  
86 86  
71 +
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
73 +
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**[[image:image-20220610155021-2.png||height="440" width="1189"]]
75 +
76 +
77 +
78 +**(2)** The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.[[image:image-20220610155021-3.png||height="437" width="1192"]]
79 +
80 +(% style="display:none" %) (%%)
81 +
82 +
87 87  == 1.5 ​ Applications ==
88 88  
89 89  * Horizontal distance measurement
86 +* Liquid level measurement
90 90  * Parking management system
91 91  * Object proximity and presence detection
92 92  * Intelligent trash can management system
... ... @@ -93,23 +93,25 @@
93 93  * Robot obstacle avoidance
94 94  * Automatic control
95 95  * Sewer
93 +* Bottom water level monitoring
96 96  
95 +
97 97  == 1.6  Pin mapping and power on ==
98 98  
99 99  
100 -[[image:1654827332142-133.png]]
99 +[[image:1654847583902-256.png]]
101 101  
102 102  
103 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
102 += 2.  Configure LDDS75 to connect to LoRaWAN network =
104 104  
105 105  == 2.1  How it works ==
106 106  
107 107  (((
108 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
107 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
109 109  )))
110 110  
111 111  (((
112 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
111 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
113 113  )))
114 114  
115 115  
... ... @@ -120,7 +120,7 @@
120 120  )))
121 121  
122 122  (((
123 -[[image:1654827857527-556.png]]
122 +[[image:1654848616367-242.png]]
124 124  )))
125 125  
126 126  (((
... ... @@ -128,57 +128,57 @@
128 128  )))
129 129  
130 130  (((
131 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
130 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
132 132  )))
133 133  
134 134  (((
135 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
134 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
136 136  )))
137 137  
138 138  [[image:image-20220607170145-1.jpeg]]
139 139  
140 140  
140 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
141 141  
142 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
143 143  
144 +**Add APP EUI in the application**
144 144  
145 -**Register the device**
146 +[[image:image-20220610161353-4.png]]
146 146  
148 +[[image:image-20220610161353-5.png]]
147 147  
148 -[[image:1654592600093-601.png]]
150 +[[image:image-20220610161353-6.png]]
149 149  
150 150  
153 +[[image:image-20220610161353-7.png]]
151 151  
152 -**Add APP EUI and DEV EUI**
153 153  
154 -[[image:1654592619856-881.png]]
156 +You can also choose to create the device manually.
155 155  
158 + [[image:image-20220610161538-8.png]]
156 156  
157 157  
158 -**Add APP EUI in the application**
159 159  
160 -[[image:1654592632656-512.png]]
162 +**Add APP KEY and DEV EUI**
161 161  
164 +[[image:image-20220610161538-9.png]]
162 162  
163 163  
164 -**Add APP KEY**
165 165  
166 -[[image:1654592653453-934.png]]
168 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
167 167  
168 168  
169 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
170 -
171 -
172 172  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
173 173  
174 -[[image:image-20220607170442-2.png]]
173 +[[image:image-20220610161724-10.png]]
175 175  
176 176  
177 177  (((
178 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
177 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
179 179  )))
180 180  
181 -[[image:1654833501679-968.png]]
180 +[[image:1654849068701-275.png]]
182 182  
183 183  
184 184  
... ... @@ -185,11 +185,10 @@
185 185  == 2.3  ​Uplink Payload ==
186 186  
187 187  (((
188 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
189 -)))
187 +LDDS75 will uplink payload via LoRaWAN with below payload format:
190 190  
191 -(((
192 -Uplink payload includes in total 11 bytes.
189 +Uplink payload includes in total 4 bytes.
190 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
193 193  )))
194 194  
195 195  (((
... ... @@ -199,15 +199,15 @@
199 199  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
200 200  |=(% style="width: 62.5px;" %)(((
201 201  **Size (bytes)**
202 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
203 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
204 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
205 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
207 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
208 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
209 -)))
200 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
201 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
202 +[[Distance>>||anchor="H2.3.3A0Distance"]]
210 210  
204 +(unit: mm)
205 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
207 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
208 +
211 211  [[image:1654833689380-972.png]]
212 212  
213 213  
... ... @@ -215,7 +215,7 @@
215 215  === 2.3.1  Battery Info ===
216 216  
217 217  
218 -Check the battery voltage for LLDS12.
216 +Check the battery voltage for LDDS75.
219 219  
220 220  Ex1: 0x0B45 = 2885mV
221 221  
... ... @@ -223,49 +223,23 @@
223 223  
224 224  
225 225  
226 -=== 2.3.2  DS18B20 Temperature sensor ===
224 +=== 2.3.2  Distance ===
227 227  
228 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
226 +Get the distance. Flat object range 280mm - 7500mm.
229 229  
228 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is
230 230  
231 -**Example**:
230 +**0B05(H) = 2821 (D) = 2821 mm.**
232 232  
233 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
234 234  
235 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
233 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
234 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
236 236  
237 237  
237 +=== 2.3.3  Interrupt Pin ===
238 238  
239 -=== 2.3.3  Distance ===
240 -
241 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
242 -
243 -
244 -**Example**:
245 -
246 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
247 -
248 -
249 -
250 -=== 2.3.4  Distance signal strength ===
251 -
252 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
253 -
254 -
255 -**Example**:
256 -
257 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
258 -
259 -Customers can judge whether they need to adjust the environment based on the signal strength.
260 -
261 -
262 -
263 -=== 2.3.5  Interrupt Pin ===
264 -
265 265  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
266 266  
267 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
268 -
269 269  **Example:**
270 270  
271 271  0x00: Normal uplink packet.
... ... @@ -273,35 +273,28 @@
273 273  0x01: Interrupt Uplink Packet.
274 274  
275 275  
248 +=== 2.3.4  DS18B20 Temperature sensor ===
276 276  
277 -=== 2.3. LiDAR temp ===
250 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
278 278  
279 -Characterize the internal temperature value of the sensor.
252 +**Example**:
280 280  
281 -**Example: **
282 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
283 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
254 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
284 284  
256 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
285 285  
258 +Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
286 286  
287 -=== 2.3.7  Message Type ===
260 +=== 2.3.5  Sensor Flag ===
288 288  
289 -(((
290 -For a normal uplink payload, the message type is always 0x01.
291 -)))
262 +0x01: Detect Ultrasonic Sensor
292 292  
293 -(((
294 -Valid Message Type:
295 -)))
264 +0x00: No Ultrasonic Sensor
296 296  
297 297  
298 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
299 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
300 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
301 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
267 +===
268 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
302 302  
303 -=== 2.3.8  Decode payload in The Things Network ===
304 -
305 305  While using TTN network, you can add the payload format to decode the payload.
306 306  
307 307  
... ... @@ -804,8 +804,6 @@
804 804  * The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
805 805  * Blink once when device transmit a packet.
806 806  
807 -
808 -
809 809  == 2.8  ​Firmware Change Log ==
810 810  
811 811  
... ... @@ -1281,9 +1281,6 @@
1281 1281  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1282 1282  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1283 1283  
1284 -
1285 -
1286 -
1287 1287  = 10. ​ Packing Info =
1288 1288  
1289 1289  
... ... @@ -1298,9 +1298,6 @@
1298 1298  * Package Size / pcs : cm
1299 1299  * Weight / pcs : g
1300 1300  
1301 -
1302 -
1303 -
1304 1304  = 11.  ​Support =
1305 1305  
1306 1306  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0