Last modified by Xiaoling on 2025/04/27 13:54

From version 116.1
edited by Xiaoling
on 2022/06/10 15:14
Change comment: There is no comment for this version
To version 149.4
edited by Xiaoling
on 2022/06/10 17:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,8 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 -{{toc/}}
8 8  
9 9  
10 10  
... ... @@ -14,38 +14,33 @@
14 14  
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 25  
26 -(((
27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 -)))
29 29  
30 -(((
31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 33  
34 -(((
35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 -)))
37 37  
38 -(((
39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  
42 -(((
43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
44 44  )))
45 45  )))
46 46  
47 47  
48 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
49 49  
50 50  
51 51  
... ... @@ -52,43 +52,50 @@
52 52  == ​1.2  Features ==
53 53  
54 54  * LoRaWAN 1.0.3 Class A
55 -* Ultra-low power consumption
56 -* Laser technology for distance detection
57 -* Operating Range - 0.1m~~12m
58 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
60 60  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 61  * AT Commands to change parameters
62 62  * Uplink on periodically
63 63  * Downlink to change configure
64 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
65 65  
60 +== 1.3  Specification ==
66 66  
67 -== 1.3  Probe Specification ==
62 +=== 1.3.1  Rated environmental conditions ===
68 68  
69 -* Storage temperature :-20℃~~75℃
70 -* Operating temperature - -20℃~~60℃
71 -* Operating Range - 0.1m~~12m①
72 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
73 -* Distance resolution - 5mm
74 -* Ambient light immunity - 70klux
75 -* Enclosure rating - IP65
76 -* Light source - LED
77 -* Central wavelength - 850nm
78 -* FOV - 3.6°
79 -* Material of enclosure - ABS+PC
80 -* Wire length - 25cm
64 +[[image:image-20220610154839-1.png]]
81 81  
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
82 82  
83 -== 1.4  Probe Dimension ==
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
84 84  
85 85  
86 -[[image:1654827224480-952.png]]
87 87  
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
88 88  
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
75 +
76 +
77 +
78 +[[image:1654852253176-749.png]]
79 +
80 +
81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
82 +
83 +
84 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
85 +
86 +
87 +
89 89  == 1.5 ​ Applications ==
90 90  
91 91  * Horizontal distance measurement
91 +* Liquid level measurement
92 92  * Parking management system
93 93  * Object proximity and presence detection
94 94  * Intelligent trash can management system
... ... @@ -95,27 +95,29 @@
95 95  * Robot obstacle avoidance
96 96  * Automatic control
97 97  * Sewer
98 +* Bottom water level monitoring
98 98  
99 -
100 100  == 1.6  Pin mapping and power on ==
101 101  
102 102  
103 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
104 104  
105 105  
106 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
107 107  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
108 +
108 108  == 2.1  How it works ==
109 109  
110 110  (((
111 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
112 112  )))
113 113  
114 114  (((
115 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
116 116  )))
117 117  
118 118  
120 +
119 119  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
120 120  
121 121  (((
... ... @@ -123,7 +123,7 @@
123 123  )))
124 124  
125 125  (((
126 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
127 127  )))
128 128  
129 129  (((
... ... @@ -131,57 +131,57 @@
131 131  )))
132 132  
133 133  (((
134 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
135 135  )))
136 136  
137 137  (((
138 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
139 139  )))
140 140  
141 141  [[image:image-20220607170145-1.jpeg]]
142 142  
143 143  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
144 144  
145 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
146 146  
150 +**Add APP EUI in the application**
147 147  
148 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
149 149  
154 +[[image:image-20220610161353-5.png]]
150 150  
151 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
152 152  
153 153  
159 +[[image:image-20220610161353-7.png]]
154 154  
155 -**Add APP EUI and DEV EUI**
156 156  
157 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
158 158  
164 + [[image:image-20220610161538-8.png]]
159 159  
160 160  
161 -**Add APP EUI in the application**
162 162  
163 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
164 164  
170 +[[image:image-20220610161538-9.png]]
165 165  
166 166  
167 -**Add APP KEY**
168 168  
169 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
170 170  
171 171  
172 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
173 -
174 -
175 175  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
176 176  
177 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
178 178  
179 179  
180 180  (((
181 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
182 182  )))
183 183  
184 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
185 185  
186 186  
187 187  
... ... @@ -188,11 +188,10 @@
188 188  == 2.3  ​Uplink Payload ==
189 189  
190 190  (((
191 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
192 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
193 193  
194 -(((
195 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
196 196  )))
197 197  
198 198  (((
... ... @@ -202,23 +202,23 @@
202 202  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
203 203  |=(% style="width: 62.5px;" %)(((
204 204  **Size (bytes)**
205 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
206 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
207 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
208 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
209 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
210 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
211 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
212 -)))
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
213 213  
214 -[[image:1654833689380-972.png]]
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
215 215  
215 +[[image:1654850511545-399.png]]
216 216  
217 217  
218 +
218 218  === 2.3.1  Battery Info ===
219 219  
220 220  
221 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
222 222  
223 223  Ex1: 0x0B45 = 2885mV
224 224  
... ... @@ -226,49 +226,20 @@
226 226  
227 227  
228 228  
229 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
230 230  
231 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
232 232  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
233 233  
234 -**Example**:
235 235  
236 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
237 237  
238 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240 +=== 2.3.3  Interrupt Pin ===
239 239  
240 -
241 -
242 -=== 2.3.3  Distance ===
243 -
244 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
245 -
246 -
247 -**Example**:
248 -
249 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
250 -
251 -
252 -
253 -=== 2.3.4  Distance signal strength ===
254 -
255 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
256 -
257 -
258 -**Example**:
259 -
260 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
261 -
262 -Customers can judge whether they need to adjust the environment based on the signal strength.
263 -
264 -
265 -
266 -=== 2.3.5  Interrupt Pin ===
267 -
268 268  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
269 269  
270 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
271 -
272 272  **Example:**
273 273  
274 274  0x00: Normal uplink packet.
... ... @@ -277,53 +277,44 @@
277 277  
278 278  
279 279  
280 -=== 2.3.6  LiDAR temp ===
252 +=== 2.3.4  DS18B20 Temperature sensor ===
281 281  
282 -Characterize the internal temperature value of the sensor.
254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
283 283  
284 -**Example: **
285 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
286 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
256 +**Example**:
287 287  
258 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
288 288  
260 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
289 289  
290 -=== 2.3.7  Message Type ===
262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
291 291  
292 -(((
293 -For a normal uplink payload, the message type is always 0x01.
294 -)))
295 295  
296 -(((
297 -Valid Message Type:
298 -)))
299 299  
266 +=== 2.3.5  Sensor Flag ===
300 300  
301 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
302 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
303 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
304 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
268 +0x01: Detect Ultrasonic Sensor
305 305  
270 +0x00: No Ultrasonic Sensor
306 306  
307 -=== 2.3.8  Decode payload in The Things Network ===
308 308  
273 +===
274 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
275 +
309 309  While using TTN network, you can add the payload format to decode the payload.
310 310  
311 311  
312 -[[image:1654592762713-715.png]]
279 +[[image:1654850829385-439.png]]
313 313  
314 -(((
315 -The payload decoder function for TTN is here:
316 -)))
281 +The payload decoder function for TTN V3 is here:
317 317  
318 -(((
319 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
320 -)))
283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
321 321  
322 322  
323 323  
324 324  == 2.4  Uplink Interval ==
325 325  
326 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
327 327  
328 328  
329 329  
... ... @@ -354,47 +354,25 @@
354 354  
355 355  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
356 356  
357 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
358 358  
359 -[[image:1654832691989-514.png]]
322 +[[image:1654851029373-510.png]]
360 360  
361 361  
362 -[[image:1654592833877-762.png]]
325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
363 363  
327 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
364 364  
365 -[[image:1654832740634-933.png]]
366 366  
367 367  
368 -
369 -(((
370 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
371 -)))
372 -
373 -(((
374 -
375 -)))
376 -
377 -[[image:1654833065139-942.png]]
378 -
379 -
380 -
381 -[[image:1654833092678-390.png]]
382 -
383 -
384 -
385 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
386 -
387 -[[image:1654833163048-332.png]]
388 -
389 -
390 -
391 391  == 2.6  Frequency Plans ==
392 392  
393 393  (((
394 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
395 395  )))
396 396  
397 397  
338 +
398 398  === 2.6.1  EU863-870 (EU868) ===
399 399  
400 400  (((
... ... @@ -458,21 +458,51 @@
458 458  === 2.6.2  US902-928(US915) ===
459 459  
460 460  (((
461 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
462 -)))
402 +Used in USA, Canada and South America. Default use CHE=2
463 463  
464 -(((
465 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
466 -)))
404 +(% style="color:blue" %)**Uplink:**
467 467  
468 -(((
469 -After Join success, the end node will switch to the correct sub band by:
470 -)))
406 +903.9 - SF7BW125 to SF10BW125
471 471  
472 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
473 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
408 +904.1 - SF7BW125 to SF10BW125
474 474  
410 +904.3 - SF7BW125 to SF10BW125
475 475  
412 +904.5 - SF7BW125 to SF10BW125
413 +
414 +904.7 - SF7BW125 to SF10BW125
415 +
416 +904.9 - SF7BW125 to SF10BW125
417 +
418 +905.1 - SF7BW125 to SF10BW125
419 +
420 +905.3 - SF7BW125 to SF10BW125
421 +
422 +
423 +(% style="color:blue" %)**Downlink:**
424 +
425 +923.3 - SF7BW500 to SF12BW500
426 +
427 +923.9 - SF7BW500 to SF12BW500
428 +
429 +924.5 - SF7BW500 to SF12BW500
430 +
431 +925.1 - SF7BW500 to SF12BW500
432 +
433 +925.7 - SF7BW500 to SF12BW500
434 +
435 +926.3 - SF7BW500 to SF12BW500
436 +
437 +926.9 - SF7BW500 to SF12BW500
438 +
439 +927.5 - SF7BW500 to SF12BW500
440 +
441 +923.3 - SF12BW500(RX2 downlink only)
442 +
443 +
444 +
445 +)))
446 +
476 476  === 2.6.3  CN470-510 (CN470) ===
477 477  
478 478  (((
... ... @@ -561,29 +561,54 @@
561 561  
562 562  
563 563  
564 -
565 565  === 2.6.4  AU915-928(AU915) ===
566 566  
567 567  (((
568 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
569 -)))
538 +Default use CHE=2
570 570  
571 -(((
572 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
573 -)))
540 +(% style="color:blue" %)**Uplink:**
574 574  
575 -(((
576 -
577 -)))
542 +916.8 - SF7BW125 to SF12BW125
578 578  
579 -(((
580 -After Join success, the end node will switch to the correct sub band by:
581 -)))
544 +917.0 - SF7BW125 to SF12BW125
582 582  
583 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
584 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546 +917.2 - SF7BW125 to SF12BW125
585 585  
548 +917.4 - SF7BW125 to SF12BW125
586 586  
550 +917.6 - SF7BW125 to SF12BW125
551 +
552 +917.8 - SF7BW125 to SF12BW125
553 +
554 +918.0 - SF7BW125 to SF12BW125
555 +
556 +918.2 - SF7BW125 to SF12BW125
557 +
558 +
559 +(% style="color:blue" %)**Downlink:**
560 +
561 +923.3 - SF7BW500 to SF12BW500
562 +
563 +923.9 - SF7BW500 to SF12BW500
564 +
565 +924.5 - SF7BW500 to SF12BW500
566 +
567 +925.1 - SF7BW500 to SF12BW500
568 +
569 +925.7 - SF7BW500 to SF12BW500
570 +
571 +926.3 - SF7BW500 to SF12BW500
572 +
573 +926.9 - SF7BW500 to SF12BW500
574 +
575 +927.5 - SF7BW500 to SF12BW500
576 +
577 +923.3 - SF12BW500(RX2 downlink only)
578 +
579 +
580 +
581 +)))
582 +
587 587  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
588 588  
589 589  (((
... ... @@ -692,7 +692,6 @@
692 692  
693 693  
694 694  
695 -
696 696  === 2.6.6  KR920-923 (KR920) ===
697 697  
698 698  (((
... ... @@ -765,7 +765,6 @@
765 765  
766 766  
767 767  
768 -
769 769  === 2.6.7  IN865-867 (IN865) ===
770 770  
771 771  (((
... ... @@ -802,19 +802,20 @@
802 802  
803 803  
804 804  
805 -
806 806  == 2.7  LED Indicator ==
807 807  
808 -The LLDS12 has an internal LED which is to show the status of different state.
801 +The LDDS75 has an internal LED which is to show the status of different state.
809 809  
810 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 +
804 +* Blink once when device power on.
805 +* The device detects the sensor and flashes 5 times.
806 +* Solid ON for 5 seconds once device successful Join the network.
811 811  * Blink once when device transmit a packet.
812 812  
813 -
814 814  == 2.8  ​Firmware Change Log ==
815 815  
816 816  
817 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
818 818  
819 819  
820 820  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -821,72 +821,58 @@
821 821  
822 822  
823 823  
824 -= 3LiDAR ToF Measurement =
819 +== 2.9  Mechanical ==
825 825  
826 -== 3.1 Principle of Distance Measurement ==
827 827  
828 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
822 +[[image:image-20220610172003-1.png]]
829 829  
830 -[[image:1654831757579-263.png]]
824 +[[image:image-20220610172003-2.png]]
831 831  
832 832  
827 +== 2.10  Battery Analysis ==
833 833  
834 -== 3.2 Distance Measurement Characteristics ==
829 +=== 2.10.1  Battery Type ===
835 835  
836 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
837 837  
838 -[[image:1654831774373-275.png]]
839 839  
834 +The battery related documents as below:
840 840  
841 -(((
842 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 +* (((
837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
843 843  )))
844 -
845 -(((
846 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
839 +* (((
840 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
847 847  )))
848 -
849 -(((
850 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
842 +* (((
843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
851 851  )))
852 852  
846 + [[image:image-20220610172400-3.png]]
853 853  
854 -(((
855 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
856 -)))
857 857  
858 858  
859 -[[image:1654831797521-720.png]]
850 +=== 2.10.2  Replace the battery ===
860 860  
852 +(((
853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
854 +)))
861 861  
862 862  (((
863 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
857 +
864 864  )))
865 865  
866 -[[image:1654831810009-716.png]]
867 -
868 -
869 869  (((
870 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
871 871  )))
872 872  
873 873  
874 874  
875 -== 3.3 Notice of usage: ==
866 += 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
876 876  
877 -Possible invalid /wrong reading for LiDAR ToF tech:
878 -
879 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
880 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
881 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
882 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
883 -
884 -
885 -= 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
886 -
887 887  (((
888 888  (((
889 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
890 890  )))
891 891  )))
892 892  
... ... @@ -907,7 +907,7 @@
907 907  )))
908 908  
909 909  (((
910 -There are two kinds of commands to configure LLDS12, they are:
891 +There are two kinds of commands to configure LDDS75, they are:
911 911  )))
912 912  )))
913 913  
... ... @@ -948,336 +948,132 @@
948 948  
949 949  * (((
950 950  (((
951 -(% style="color:#4f81bd" %)** Commands special design for LLDS12**
932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
952 952  )))
953 953  )))
954 954  
955 955  (((
956 956  (((
957 -These commands only valid for LLDS12, as below:
938 +These commands only valid for LDDS75, as below:
958 958  )))
959 959  )))
960 960  
961 961  
962 962  
963 -== 4.1  Set Transmit Interval Time ==
944 +== 3.1  Access AT Commands ==
964 964  
965 -Feature: Change LoRaWAN End Node Transmit Interval.
946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
966 966  
967 -(% style="color:#037691" %)**AT Command: AT+TDC**
948 +[[image:image-20220610172924-4.png||height="483" width="988"]]
968 968  
969 -[[image:image-20220607171554-8.png]]
970 970  
951 +Or if you have below board, use below connection:
971 971  
972 -(((
973 -(% style="color:#037691" %)**Downlink Command: 0x01**
974 -)))
975 975  
976 -(((
977 -Format: Command Code (0x01) followed by 3 bytes time value.
978 -)))
954 +[[image:image-20220610172924-5.png]]
979 979  
980 -(((
981 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
982 -)))
983 983  
984 -* (((
985 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
986 -)))
987 -* (((
988 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
989 -)))
957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
990 990  
991 991  
992 -== 4.2  Set Interrupt Mode ==
960 + [[image:image-20220610172924-6.png||height="601" width="860"]]
993 993  
994 -Feature, Set Interrupt mode for GPIO_EXIT.
995 995  
996 -(% style="color:#037691" %)**AT Command: AT+INTMOD**
997 997  
998 -[[image:image-20220610105806-2.png]]
964 +== 3.2  Set Transmit Interval Time ==
999 999  
966 +Feature: Change LoRaWAN End Node Transmit Interval.
1000 1000  
1001 -(((
1002 -(% style="color:#037691" %)**Downlink Command: 0x06**
1003 -)))
968 +(% style="color:#037691" %)**AT Command: AT+TDC**
1004 1004  
1005 -(((
1006 -Format: Command Code (0x06) followed by 3 bytes.
1007 -)))
970 +[[image:image-20220610173409-7.png]]
1008 1008  
1009 -(((
1010 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1011 -)))
1012 1012  
1013 -* (((
1014 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1015 -)))
1016 -* (((
1017 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1018 -)))
1019 -
1020 -
1021 -== 4.3  Get Firmware Version Info ==
1022 -
1023 -Feature: use downlink to get firmware version.
1024 -
1025 -(% style="color:#037691" %)**Downlink Command: 0x26**
1026 -
1027 -[[image:image-20220607171917-10.png]]
1028 -
1029 -* Reply to the confirmation package: 26 01
1030 -* Reply to non-confirmed packet: 26 00
1031 -
1032 -Device will send an uplink after got this downlink command. With below payload:
1033 -
1034 -Configures info payload:
1035 -
1036 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1037 -|=(((
1038 -**Size(bytes)**
1039 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1040 -|**Value**|Software Type|(((
1041 -Frequency
1042 -
1043 -Band
1044 -)))|Sub-band|(((
1045 -Firmware
1046 -
1047 -Version
1048 -)))|Sensor Type|Reserve|(((
1049 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1050 -Always 0x02
1051 -)))
1052 -
1053 -**Software Type**: Always 0x03 for LLDS12
1054 -
1055 -
1056 -**Frequency Band**:
1057 -
1058 -*0x01: EU868
1059 -
1060 -*0x02: US915
1061 -
1062 -*0x03: IN865
1063 -
1064 -*0x04: AU915
1065 -
1066 -*0x05: KZ865
1067 -
1068 -*0x06: RU864
1069 -
1070 -*0x07: AS923
1071 -
1072 -*0x08: AS923-1
1073 -
1074 -*0x09: AS923-2
1075 -
1076 -*0xa0: AS923-3
1077 -
1078 -
1079 -**Sub-Band**: value 0x00 ~~ 0x08
1080 -
1081 -
1082 -**Firmware Version**: 0x0100, Means: v1.0.0 version
1083 -
1084 -
1085 -**Sensor Type**:
1086 -
1087 -0x01: LSE01
1088 -
1089 -0x02: LDDS75
1090 -
1091 -0x03: LDDS20
1092 -
1093 -0x04: LLMS01
1094 -
1095 -0x05: LSPH01
1096 -
1097 -0x06: LSNPK01
1098 -
1099 -0x07: LLDS12
1100 -
1101 -
1102 -
1103 -= 5.  Battery & How to replace =
1104 -
1105 -== 5.1  Battery Type ==
1106 -
1107 1107  (((
1108 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
974 +(% style="color:#037691" %)**Downlink Command: 0x01**
1109 1109  )))
1110 1110  
1111 1111  (((
1112 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1113 -)))
978 +(((
979 +Format: Command Code (0x01) followed by 3 bytes time value.
1114 1114  
1115 -[[image:1654593587246-335.png]]
981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1116 1116  
1117 -
1118 -Minimum Working Voltage for the LLDS12:
1119 -
1120 -LLDS12:  2.45v ~~ 3.6v
1121 -
1122 -
1123 -
1124 -== 5.2  Replace Battery ==
1125 -
1126 -(((
1127 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1128 1128  )))
1129 1129  
1130 -(((
1131 -And make sure the positive and negative pins match.
1132 -)))
1133 1133  
1134 -
1135 -
1136 -== 5.3  Power Consumption Analyze ==
1137 -
1138 -(((
1139 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
988 +
1140 1140  )))
1141 1141  
1142 -(((
1143 -Instruction to use as below:
1144 -)))
991 +== 3.3  Set Interrupt Mode ==
1145 1145  
993 +Feature, Set Interrupt mode for GPIO_EXIT.
1146 1146  
1147 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1148 1148  
1149 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
997 +[[image:image-20220610174917-9.png]]
1150 1150  
1151 1151  
1152 -**Step 2**: Open it and choose
1000 +(% style="color:#037691" %)**Downlink Command: 0x06**
1153 1153  
1154 -* Product Model
1155 -* Uplink Interval
1156 -* Working Mode
1002 +Format: Command Code (0x06) followed by 3 bytes.
1157 1157  
1158 -And the Life expectation in difference case will be shown on the right.
1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1159 1159  
1160 -[[image:1654593605679-189.png]]
1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1161 1161  
1162 1162  
1163 -The battery related documents as below:
1164 1164  
1165 -* (((
1166 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1167 -)))
1168 -* (((
1169 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1170 -)))
1171 -* (((
1172 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1173 -)))
1011 += 4.  FAQ =
1174 1174  
1175 -[[image:image-20220607172042-11.png]]
1013 +== 4.1  What is the frequency plan for LDDS75? ==
1176 1176  
1015 +LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:
1177 1177  
1178 1178  
1179 -=== 5.3.1  ​Battery Note ===
1180 1180  
1181 -(((
1182 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1183 -)))
1019 +== 4.2  How to change the LoRa Frequency Bands/Region ==
1184 1184  
1021 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1022 +When downloading the images, choose the required image file for download. ​
1185 1185  
1186 1186  
1187 -=== ​5.3.2  Replace the battery ===
1188 1188  
1189 -(((
1190 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1191 -)))
1026 +== 4.3  Can I use LDDS75 in condensation environment? ==
1192 1192  
1193 -(((
1194 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1195 -)))
1028 +LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1196 1196  
1197 1197  
1198 1198  
1199 -= 6Use AT Command =
1032 += 5Trouble Shooting =
1200 1200  
1201 -== 6.1  Access AT Commands ==
1034 +== 5.1  Why I can’t join TTN V3 in US915 / AU915 bands? ==
1202 1202  
1203 -LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1204 1204  
1205 -[[image:1654593668970-604.png]]
1206 -
1207 -**Connection:**
1208 -
1209 -(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1210 -
1211 -(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1212 -
1213 -(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1214 -
1215 -
1216 1216  (((
1217 -(((
1218 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1038 +
1219 1219  )))
1220 1220  
1221 -(((
1222 -LLDS12 will output system info once power on as below:
1223 -)))
1224 -)))
1225 1225  
1042 +== 5.2  AT Command input doesn't work ==
1226 1226  
1227 - [[image:1654593712276-618.png]]
1228 -
1229 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1230 -
1231 -
1232 -= 7.  FAQ =
1233 -
1234 -== 7.1  How to change the LoRa Frequency Bands/Region ==
1235 -
1236 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1237 -When downloading the images, choose the required image file for download. ​
1238 -
1239 -
1240 -= 8.  Trouble Shooting =
1241 -
1242 -== 8.1  AT Commands input doesn’t work ==
1243 -
1244 -
1245 -(((
1246 1246  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1247 -)))
1248 1248  
1249 -
1250 -== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1251 -
1252 -
1253 1253  (((
1254 -(% style="color:blue" %)**Cause ①**(%%)**:**Due to the physical principles of The LiDAR probe, the above phenomenon is likely to occur if the detection object is the material with high reflectivity (such as mirror, smooth floor tile, etc.) or transparent substance (such as glass and water, etc.)
1255 -)))
1256 -
1257 -(((
1258 -Troubleshooting: Please avoid use of this product under such circumstance in practice.
1259 -)))
1260 -
1261 -(((
1262 1262  
1263 1263  )))
1264 1264  
1265 -(((
1266 -(% style="color:blue" %)**Cause ②**(%%)**: **The IR-pass filters are blocked.
1267 -)))
1268 1268  
1269 -(((
1270 -Troubleshooting: please use dry dust-free cloth to gently remove the foreign matter.
1271 -)))
1272 1272  
1052 += 6.  Order Info =
1273 1273  
1274 1274  
1275 -= 9.  Order Info =
1055 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY**
1276 1276  
1277 1277  
1278 -Part Number: (% style="color:blue" %)**LLDS12-XX**
1279 -
1280 -
1281 1281  (% style="color:blue" %)**XX**(%%): The default frequency band
1282 1282  
1283 1283  * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
... ... @@ -1289,13 +1289,18 @@
1289 1289  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1290 1290  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1291 1291  
1069 +(% style="color:blue" %)**YY**(%%): Battery Option
1292 1292  
1293 -= 10. ​ Packing Info =
1071 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1072 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1294 1294  
1295 1295  
1075 += 7. ​ Packing Info =
1076 +
1077 +
1296 1296  **Package Includes**:
1297 1297  
1298 -* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1080 +* LDDS75 LoRaWAN Distance Detection Sensor x 1
1299 1299  
1300 1300  **Dimension and weight**:
1301 1301  
... ... @@ -1305,7 +1305,7 @@
1305 1305  * Weight / pcs : g
1306 1306  
1307 1307  
1308 -= 11.  ​Support =
1090 += 8.  ​Support =
1309 1309  
1310 1310  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1311 1311  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654846127817-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content