Changes for page LDDS45 - LoRaWAN Distance Detection Sensor User Manual
Last modified by Xiaoling on 2025/04/27 13:54
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 29 added, 0 removed)
- 1654846127817-788.png
- 1654847051249-359.png
- 1654847583902-256.png
- 1654848616367-242.png
- 1654849068701-275.png
- 1654850511545-399.png
- 1654850829385-439.png
- 1654851029373-510.png
- 1654852175653-550.png
- 1654852253176-749.png
- image-20220610154839-1.png
- image-20220610155021-2.png
- image-20220610155021-3.png
- image-20220610161353-4.png
- image-20220610161353-5.png
- image-20220610161353-6.png
- image-20220610161353-7.png
- image-20220610161538-8.png
- image-20220610161538-9.png
- image-20220610161724-10.png
- image-20220610165129-11.png
- image-20220610172003-1.png
- image-20220610172003-2.png
- image-20220610172400-3.png
- image-20220610172924-4.png
- image-20220610172924-5.png
- image-20220610172924-6.png
- image-20220610173409-7.png
- image-20220610174836-8.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -L LDS12-LoRaWANLiDAR ToF Distance Sensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,10 +1,8 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220610095606-1.png]]2 +[[image:1654846127817-788.png]] 3 3 4 - 5 5 **Contents:** 6 6 7 -{{toc/}} 8 8 9 9 10 10 ... ... @@ -14,38 +14,33 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==15 +== 1.1 What is LoRaWAN Distance Detection Sensor == 18 18 19 19 ((( 20 20 21 21 22 22 ((( 23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 24 -))) 21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 25 25 26 -((( 27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 -))) 29 29 30 -((( 31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 32 -))) 24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 33 33 34 -((( 35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 36 -))) 37 37 38 -((( 39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 40 -))) 27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 42 -((( 43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 29 + 30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 31 + 32 + 33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 34 + 35 + 36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors 44 44 ))) 45 45 ))) 46 46 47 47 48 -[[image:16548 26306458-414.png]]41 +[[image:1654847051249-359.png]] 49 49 50 50 51 51 ... ... @@ -52,43 +52,50 @@ 52 52 == 1.2 Features == 53 53 54 54 * LoRaWAN 1.0.3 Class A 55 -* Ultra -low power consumption56 -* Lasertechnologyfor distancedetection57 -* OperatingRange - 0.1m~~12m①58 -* Accuracy -±5cm@(0.1-6m),±1%@(6m-12m)59 -* Monitor BatteryLevel48 +* Ultra low power consumption 49 +* Distance Detection by Ultrasonic technology 50 +* Flat object range 280mm - 7500mm 51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 52 +* Cable Length : 25cm 60 60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 61 61 * AT Commands to change parameters 62 62 * Uplink on periodically 63 63 * Downlink to change configure 64 -* 8500mAh Battery for long term use 57 +* IP66 Waterproof Enclosure 58 +* 4000mAh or 8500mAh Battery for long term use 65 65 60 +== 1.3 Specification == 66 66 67 -== 1.3 ProbeSpecification ==62 +=== 1.3.1 Rated environmental conditions === 68 68 69 -* Storage temperature :-20℃~~75℃ 70 -* Operating temperature - -20℃~~60℃ 71 -* Operating Range - 0.1m~~12m① 72 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m) 73 -* Distance resolution - 5mm 74 -* Ambient light immunity - 70klux 75 -* Enclosure rating - IP65 76 -* Light source - LED 77 -* Central wavelength - 850nm 78 -* FOV - 3.6° 79 -* Material of enclosure - ABS+PC 80 -* Wire length - 25cm 64 +[[image:image-20220610154839-1.png]] 81 81 66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 82 82 83 - == 1.4ProbeDimension==68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 84 84 85 85 86 -[[image:1654827224480-952.png]] 87 87 72 +=== 1.3.2 Effective measurement range Reference beam pattern === 88 88 74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 75 + 76 + 77 + 78 +[[image:1654852253176-749.png]] 79 + 80 + 81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 82 + 83 + 84 +[[image:1654852175653-550.png]](% style="display:none" %) ** ** 85 + 86 + 87 + 89 89 == 1.5 Applications == 90 90 91 91 * Horizontal distance measurement 91 +* Liquid level measurement 92 92 * Parking management system 93 93 * Object proximity and presence detection 94 94 * Intelligent trash can management system ... ... @@ -95,27 +95,29 @@ 95 95 * Robot obstacle avoidance 96 96 * Automatic control 97 97 * Sewer 98 +* Bottom water level monitoring 98 98 99 - 100 100 == 1.6 Pin mapping and power on == 101 101 102 102 103 -[[image:16548 27332142-133.png]]103 +[[image:1654847583902-256.png]] 104 104 105 105 106 -= 2. Configure LLDS12 to connect to LoRaWAN network = 107 107 107 += 2. Configure LDDS75 to connect to LoRaWAN network = 108 + 108 108 == 2.1 How it works == 109 109 110 110 ((( 111 -The L LDS12is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect alocalLoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 112 112 ))) 113 113 114 114 ((( 115 -In case you can ’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 116 116 ))) 117 117 118 118 120 + 119 119 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 120 120 121 121 ((( ... ... @@ -123,7 +123,7 @@ 123 123 ))) 124 124 125 125 ((( 126 -[[image:16548 27857527-556.png]]128 +[[image:1654848616367-242.png]] 127 127 ))) 128 128 129 129 ((( ... ... @@ -131,57 +131,57 @@ 131 131 ))) 132 132 133 133 ((( 134 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LS PH01.136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 135 135 ))) 136 136 137 137 ((( 138 -Each LS PH01is shipped with a sticker with the default deviceEUIas below:140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 139 139 ))) 140 140 141 141 [[image:image-20220607170145-1.jpeg]] 142 142 143 143 146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 144 144 145 - You canenter this key in the LoRaWAN Server portal. Below is TTN screen shot:148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 146 146 150 +**Add APP EUI in the application** 147 147 148 - **Register the device**152 +[[image:image-20220610161353-4.png]] 149 149 154 +[[image:image-20220610161353-5.png]] 150 150 151 -[[image: 1654592600093-601.png]]156 +[[image:image-20220610161353-6.png]] 152 152 153 153 159 +[[image:image-20220610161353-7.png]] 154 154 155 -**Add APP EUI and DEV EUI** 156 156 157 - [[image:1654592619856-881.png]]162 +You can also choose to create the device manually. 158 158 164 + [[image:image-20220610161538-8.png]] 159 159 160 160 161 -**Add APP EUI in the application** 162 162 163 - [[image:1654592632656-512.png]]168 +**Add APP KEY and DEV EUI** 164 164 170 +[[image:image-20220610161538-9.png]] 165 165 166 166 167 -**Add APP KEY** 168 168 169 - [[image:1654592653453-934.png]]174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 170 170 171 171 172 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12 173 - 174 - 175 175 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 176 176 177 -[[image:image-2022060 7170442-2.png]]179 +[[image:image-20220610161724-10.png]] 178 178 179 179 180 180 ((( 181 -(% style="color:blue" %)**Step 3**(%%)**:** The L LDS12will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 182 182 ))) 183 183 184 -[[image:16548 33501679-968.png]]186 +[[image:1654849068701-275.png]] 185 185 186 186 187 187 ... ... @@ -188,11 +188,10 @@ 188 188 == 2.3 Uplink Payload == 189 189 190 190 ((( 191 -LLDS12 will uplink payload via LoRaWAN with below payload format: 192 -))) 193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 193 193 194 - (((195 - Uplink payload includesintotal11bytes.195 +Uplink payload includes in total 4 bytes. 196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 196 196 ))) 197 197 198 198 ((( ... ... @@ -202,23 +202,23 @@ 202 202 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 203 203 |=(% style="width: 62.5px;" %)((( 204 204 **Size (bytes)** 205 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1** 206 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)((( 207 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]] 208 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 209 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]] 210 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|((( 211 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 212 -))) 206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 208 +[[Distance>>||anchor="H2.3.3A0Distance"]] 213 213 214 -[[image:1654833689380-972.png]] 210 +(unit: mm) 211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 213 +)))|[[Sensor Flag>>path:#Sensor_Flag]] 215 215 215 +[[image:1654850511545-399.png]] 216 216 217 217 218 + 218 218 === 2.3.1 Battery Info === 219 219 220 220 221 -Check the battery voltage for L LDS12.222 +Check the battery voltage for LDDS75. 222 222 223 223 Ex1: 0x0B45 = 2885mV 224 224 ... ... @@ -226,49 +226,20 @@ 226 226 227 227 228 228 229 -=== 2.3.2 D S18B20 Temperaturesensor===230 +=== 2.3.2 Distance === 230 230 231 - Thisisoptional, usercanconnectexternalDS18B20sensor to the +3.3v, 1-wireand GND pin . and this field will report temperature.232 +Get the distance. Flat object range 280mm - 7500mm. 232 232 234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 233 233 234 -**Example**: 235 235 236 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 237 237 238 - If payload is: FF3FH : (FF3F & FC00==1) , temp=(FF3FH - 65536)/10 = -19.3degrees.240 +=== 2.3.3 Interrupt Pin === 239 239 240 - 241 - 242 -=== 2.3.3 Distance === 243 - 244 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 245 - 246 - 247 -**Example**: 248 - 249 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 250 - 251 - 252 - 253 -=== 2.3.4 Distance signal strength === 254 - 255 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 256 - 257 - 258 -**Example**: 259 - 260 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 261 - 262 -Customers can judge whether they need to adjust the environment based on the signal strength. 263 - 264 - 265 - 266 -=== 2.3.5 Interrupt Pin === 267 - 268 268 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 269 269 270 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 271 - 272 272 **Example:** 273 273 274 274 0x00: Normal uplink packet. ... ... @@ -277,53 +277,44 @@ 277 277 278 278 279 279 280 -=== 2.3. 6LiDARtemp ===252 +=== 2.3.4 DS18B20 Temperature sensor === 281 281 282 - Characterizetheinternaltemperature valueofthesensor.254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 283 283 284 -**Example: ** 285 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 286 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 256 +**Example**: 287 287 258 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 288 288 260 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 289 289 290 -= ==2.3.7MessageType===262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 291 291 292 -((( 293 -For a normal uplink payload, the message type is always 0x01. 294 -))) 295 295 296 -((( 297 -Valid Message Type: 298 -))) 299 299 266 +=== 2.3.5 Sensor Flag === 300 300 301 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %) 302 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload** 303 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 304 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 268 +0x01: Detect Ultrasonic Sensor 305 305 270 +0x00: No Ultrasonic Sensor 306 306 307 -=== 2.3.8 Decode payload in The Things Network === 308 308 273 +=== 274 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 275 + 309 309 While using TTN network, you can add the payload format to decode the payload. 310 310 311 311 312 -[[image:16545 92762713-715.png]]279 +[[image:1654850829385-439.png]] 313 313 314 -((( 315 -The payload decoder function for TTN is here: 316 -))) 281 +The payload decoder function for TTN V3 is here: 317 317 318 -((( 319 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]] 320 -))) 283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 321 321 322 322 323 323 324 324 == 2.4 Uplink Interval == 325 325 326 -The L LDS12by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 327 327 328 328 329 329 ... ... @@ -354,47 +354,25 @@ 354 354 355 355 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 356 356 357 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12product.**320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 358 358 359 -[[image:16548 32691989-514.png]]322 +[[image:1654851029373-510.png]] 360 360 361 361 362 - [[image:1654592833877-762.png]]325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 363 363 327 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 364 364 365 -[[image:1654832740634-933.png]] 366 366 367 367 368 - 369 -((( 370 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode** 371 -))) 372 - 373 -((( 374 - 375 -))) 376 - 377 -[[image:1654833065139-942.png]] 378 - 379 - 380 - 381 -[[image:1654833092678-390.png]] 382 - 383 - 384 - 385 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 386 - 387 -[[image:1654833163048-332.png]] 388 - 389 - 390 - 391 391 == 2.6 Frequency Plans == 392 392 393 393 ((( 394 -The L LDS12uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 395 395 ))) 396 396 397 397 338 + 398 398 === 2.6.1 EU863-870 (EU868) === 399 399 400 400 ((( ... ... @@ -458,21 +458,51 @@ 458 458 === 2.6.2 US902-928(US915) === 459 459 460 460 ((( 461 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 462 -))) 402 +Used in USA, Canada and South America. Default use CHE=2 463 463 464 -((( 465 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 466 -))) 404 +(% style="color:blue" %)**Uplink:** 467 467 468 -((( 469 -After Join success, the end node will switch to the correct sub band by: 470 -))) 406 +903.9 - SF7BW125 to SF10BW125 471 471 472 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 473 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 408 +904.1 - SF7BW125 to SF10BW125 474 474 410 +904.3 - SF7BW125 to SF10BW125 475 475 412 +904.5 - SF7BW125 to SF10BW125 413 + 414 +904.7 - SF7BW125 to SF10BW125 415 + 416 +904.9 - SF7BW125 to SF10BW125 417 + 418 +905.1 - SF7BW125 to SF10BW125 419 + 420 +905.3 - SF7BW125 to SF10BW125 421 + 422 + 423 +(% style="color:blue" %)**Downlink:** 424 + 425 +923.3 - SF7BW500 to SF12BW500 426 + 427 +923.9 - SF7BW500 to SF12BW500 428 + 429 +924.5 - SF7BW500 to SF12BW500 430 + 431 +925.1 - SF7BW500 to SF12BW500 432 + 433 +925.7 - SF7BW500 to SF12BW500 434 + 435 +926.3 - SF7BW500 to SF12BW500 436 + 437 +926.9 - SF7BW500 to SF12BW500 438 + 439 +927.5 - SF7BW500 to SF12BW500 440 + 441 +923.3 - SF12BW500(RX2 downlink only) 442 + 443 + 444 + 445 +))) 446 + 476 476 === 2.6.3 CN470-510 (CN470) === 477 477 478 478 ((( ... ... @@ -561,29 +561,54 @@ 561 561 562 562 563 563 564 - 565 565 === 2.6.4 AU915-928(AU915) === 566 566 567 567 ((( 568 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 569 -))) 538 +Default use CHE=2 570 570 571 -((( 572 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 573 -))) 540 +(% style="color:blue" %)**Uplink:** 574 574 575 -((( 576 - 577 -))) 542 +916.8 - SF7BW125 to SF12BW125 578 578 579 -((( 580 -After Join success, the end node will switch to the correct sub band by: 581 -))) 544 +917.0 - SF7BW125 to SF12BW125 582 582 583 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 584 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 546 +917.2 - SF7BW125 to SF12BW125 585 585 548 +917.4 - SF7BW125 to SF12BW125 586 586 550 +917.6 - SF7BW125 to SF12BW125 551 + 552 +917.8 - SF7BW125 to SF12BW125 553 + 554 +918.0 - SF7BW125 to SF12BW125 555 + 556 +918.2 - SF7BW125 to SF12BW125 557 + 558 + 559 +(% style="color:blue" %)**Downlink:** 560 + 561 +923.3 - SF7BW500 to SF12BW500 562 + 563 +923.9 - SF7BW500 to SF12BW500 564 + 565 +924.5 - SF7BW500 to SF12BW500 566 + 567 +925.1 - SF7BW500 to SF12BW500 568 + 569 +925.7 - SF7BW500 to SF12BW500 570 + 571 +926.3 - SF7BW500 to SF12BW500 572 + 573 +926.9 - SF7BW500 to SF12BW500 574 + 575 +927.5 - SF7BW500 to SF12BW500 576 + 577 +923.3 - SF12BW500(RX2 downlink only) 578 + 579 + 580 + 581 +))) 582 + 587 587 === 2.6.5 AS920-923 & AS923-925 (AS923) === 588 588 589 589 ((( ... ... @@ -692,7 +692,6 @@ 692 692 693 693 694 694 695 - 696 696 === 2.6.6 KR920-923 (KR920) === 697 697 698 698 ((( ... ... @@ -765,7 +765,6 @@ 765 765 766 766 767 767 768 - 769 769 === 2.6.7 IN865-867 (IN865) === 770 770 771 771 ((( ... ... @@ -802,19 +802,20 @@ 802 802 803 803 804 804 805 - 806 806 == 2.7 LED Indicator == 807 807 808 -The L LDS12has an internal LED which is to show the status of different state.801 +The LDDS75 has an internal LED which is to show the status of different state. 809 809 810 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected. 803 + 804 +* Blink once when device power on. 805 +* The device detects the sensor and flashes 5 times. 806 +* Solid ON for 5 seconds once device successful Join the network. 811 811 * Blink once when device transmit a packet. 812 812 813 - 814 814 == 2.8 Firmware Change Log == 815 815 816 816 817 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/L LDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 818 818 819 819 820 820 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] ... ... @@ -821,72 +821,58 @@ 821 821 822 822 823 823 824 -= 3.LiDAR ToFMeasurement=819 +== 2.9 Mechanical == 825 825 826 -== 3.1 Principle of Distance Measurement == 827 827 828 - The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contactingobject.Theproduct obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.822 +[[image:image-20220610172003-1.png]] 829 829 830 -[[image: 1654831757579-263.png]]824 +[[image:image-20220610172003-2.png]] 831 831 832 832 827 +== 2.10 Battery Analysis == 833 833 834 -== 3.2Distance MeasurementCharacteristics==829 +=== 2.10.1 Battery Type === 835 835 836 - Withoptimization oflight pathand algorithm,TheLiDARprobehas minimizedinfluence fromexternalenvironmentondistancemeasurementperformance.Despite that,the rangeofdistancemeasurementmaystillbeaffectedbytheenvironment illuminationintensityandthe reflectivityofdetection object. As showninbelow:831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 837 837 838 -[[image:1654831774373-275.png]] 839 839 834 +The battery related documents as below: 840 840 841 -((( 842 - (%style="color:blue"%)**① **(%%)Representsthe detectionblind zone of The LiDARprobe, 0-10cm,withinwhichtheoutput data is unreliable.836 +* ((( 837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 843 843 ))) 844 - 845 -((( 846 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 839 +* ((( 840 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 847 847 ))) 848 - 849 -((( 850 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 842 +* ((( 843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 851 851 ))) 852 852 846 + [[image:image-20220610172400-3.png]] 853 853 854 -((( 855 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 856 -))) 857 857 858 858 859 - [[image:1654831797521-720.png]]850 +=== 2.10.2 Replace the battery === 860 860 852 +((( 853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 854 +))) 861 861 862 862 ((( 863 - Inthe formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.857 + 864 864 ))) 865 865 866 -[[image:1654831810009-716.png]] 867 - 868 - 869 869 ((( 870 - If the lightspotreachestwoobjectswithdifferent distances,asshown inFigure3, theoutput distancevaluewillbeavaluebetween theactual distancevaluesofthe twoobjects.Forahighaccuracy requirementinpractice,theabove situation should benoticedtoavoid themeasurementrror.861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 871 871 ))) 872 872 873 873 874 874 875 -= =3.3Notice ofusage:==866 += 3. Configure LLDS12 via AT Command or LoRaWAN Downlink = 876 876 877 -Possible invalid /wrong reading for LiDAR ToF tech: 878 - 879 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 880 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong. 881 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 882 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window. 883 - 884 - 885 -= 4. Configure LLDS12 via AT Command or LoRaWAN Downlink = 886 - 887 887 ((( 888 888 ((( 889 -Use can configure L LDS12via AT Command or LoRaWAN Downlink.870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink. 890 890 ))) 891 891 ))) 892 892 ... ... @@ -907,7 +907,7 @@ 907 907 ))) 908 908 909 909 ((( 910 -There are two kinds of commands to configure L LDS12, they are:891 +There are two kinds of commands to configure LDDS75, they are: 911 911 ))) 912 912 ))) 913 913 ... ... @@ -948,298 +948,96 @@ 948 948 949 949 * ((( 950 950 ((( 951 -(% style="color:#4f81bd" %)** Commands special design for L LDS12**932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75** 952 952 ))) 953 953 ))) 954 954 955 955 ((( 956 956 ((( 957 -These commands only valid for L LDS12, as below:938 +These commands only valid for LDDS75, as below: 958 958 ))) 959 959 ))) 960 960 961 961 962 962 963 -== 4.1SetTransmitInterval Time==944 +== 3.1 Access AT Commands == 964 964 965 - Feature:ChangeLoRaWANEndNode TransmitInterval.946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below. 966 966 967 - (% style="color:#037691"%)**AT Command: AT+TDC**948 +[[image:image-20220610172924-4.png||height="483" width="988"]] 968 968 969 -[[image:image-20220607171554-8.png]] 970 970 951 +Or if you have below board, use below connection: 971 971 972 -((( 973 -(% style="color:#037691" %)**Downlink Command: 0x01** 974 -))) 975 975 976 -((( 977 -Format: Command Code (0x01) followed by 3 bytes time value. 978 -))) 954 +[[image:image-20220610172924-5.png]] 979 979 980 -((( 981 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 982 -))) 983 983 984 -* ((( 985 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 986 -))) 987 -* ((( 988 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 989 -))) 957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 990 990 991 991 992 - ==4.2 Set InterruptMode==960 + [[image:image-20220610172924-6.png||height="601" width="860"]] 993 993 994 -Feature, Set Interrupt mode for GPIO_EXIT. 995 995 996 -(% style="color:#037691" %)**AT Command: AT+INTMOD** 997 997 998 - [[image:image-20220610105806-2.png]]964 +== 3.2 Set Transmit Interval Time == 999 999 966 +Feature: Change LoRaWAN End Node Transmit Interval. 1000 1000 1001 -((( 1002 -(% style="color:#037691" %)**Downlink Command: 0x06** 1003 -))) 968 +(% style="color:#037691" %)**AT Command: AT+TDC** 1004 1004 1005 -((( 1006 -Format: Command Code (0x06) followed by 3 bytes. 1007 -))) 970 +[[image:image-20220610173409-7.png]] 1008 1008 1009 -((( 1010 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1011 -))) 1012 1012 1013 -* ((( 1014 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1015 -))) 1016 -* ((( 1017 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1018 -))) 1019 - 1020 - 1021 -== 4.3 Get Firmware Version Info == 1022 - 1023 -Feature: use downlink to get firmware version. 1024 - 1025 -(% style="color:#037691" %)**Downlink Command: 0x26** 1026 - 1027 -[[image:image-20220607171917-10.png]] 1028 - 1029 -* Reply to the confirmation package: 26 01 1030 -* Reply to non-confirmed packet: 26 00 1031 - 1032 -Device will send an uplink after got this downlink command. With below payload: 1033 - 1034 -Configures info payload: 1035 - 1036 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 1037 -|=((( 1038 -**Size(bytes)** 1039 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1** 1040 -|**Value**|Software Type|((( 1041 -Frequency 1042 - 1043 -Band 1044 -)))|Sub-band|((( 1045 -Firmware 1046 - 1047 -Version 1048 -)))|Sensor Type|Reserve|((( 1049 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 1050 -Always 0x02 1051 -))) 1052 - 1053 -**Software Type**: Always 0x03 for LLDS12 1054 - 1055 - 1056 -**Frequency Band**: 1057 - 1058 -*0x01: EU868 1059 - 1060 -*0x02: US915 1061 - 1062 -*0x03: IN865 1063 - 1064 -*0x04: AU915 1065 - 1066 -*0x05: KZ865 1067 - 1068 -*0x06: RU864 1069 - 1070 -*0x07: AS923 1071 - 1072 -*0x08: AS923-1 1073 - 1074 -*0x09: AS923-2 1075 - 1076 -*0xa0: AS923-3 1077 - 1078 - 1079 -**Sub-Band**: value 0x00 ~~ 0x08 1080 - 1081 - 1082 -**Firmware Version**: 0x0100, Means: v1.0.0 version 1083 - 1084 - 1085 -**Sensor Type**: 1086 - 1087 -0x01: LSE01 1088 - 1089 -0x02: LDDS75 1090 - 1091 -0x03: LDDS20 1092 - 1093 -0x04: LLMS01 1094 - 1095 -0x05: LSPH01 1096 - 1097 -0x06: LSNPK01 1098 - 1099 -0x07: LLDS12 1100 - 1101 - 1102 - 1103 -= 5. Battery & How to replace = 1104 - 1105 -== 5.1 Battery Type == 1106 - 1107 1107 ((( 1108 - LLDS12isequipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]].The battery is un-rechargeable battery with low discharge rate targetingfor 8~~10 years use. This type of battery is commonly usedin IoT target for long-term running, such as water meter.974 +(% style="color:#037691" %)**Downlink Command: 0x01** 1109 1109 ))) 1110 1110 1111 1111 ((( 1112 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 1113 -))) 1114 - 1115 -[[image:1654593587246-335.png]] 1116 - 1117 - 1118 -Minimum Working Voltage for the LLDS12: 1119 - 1120 -LLDS12: 2.45v ~~ 3.6v 1121 - 1122 - 1123 - 1124 -== 5.2 Replace Battery == 1125 - 1126 1126 ((( 1127 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery. 1128 -))) 979 +Format: Command Code (0x01) followed by 3 bytes time value. 1129 1129 1130 -((( 1131 -And make sure the positive and negative pins match. 1132 -))) 981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 1133 1133 1134 - 1135 - 1136 -== 5.3 Power Consumption Analyze == 1137 - 1138 -((( 1139 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1140 1140 ))) 1141 1141 1142 -((( 1143 -Instruction to use as below: 1144 -))) 1145 1145 1146 - 1147 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 1148 - 1149 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 1150 - 1151 - 1152 -**Step 2**: Open it and choose 1153 - 1154 -* Product Model 1155 -* Uplink Interval 1156 -* Working Mode 1157 - 1158 -And the Life expectation in difference case will be shown on the right. 1159 - 1160 -[[image:1654593605679-189.png]] 1161 - 1162 - 1163 -The battery related documents as below: 1164 - 1165 -* ((( 1166 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 988 + 1167 1167 ))) 1168 -* ((( 1169 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 1170 -))) 1171 -* ((( 1172 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 1173 -))) 1174 1174 1175 - [[image:image-20220607172042-11.png]]991 +== 3.3 Set Interrupt Mode == 1176 1176 993 +Feature, Set Interrupt mode for GPIO_EXIT. 1177 1177 995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD** 1178 1178 1179 - === 5.3.1 Battery Note===997 +[[image:image-20220610174836-8.png]] 1180 1180 1181 -((( 1182 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 1183 -))) 1184 1184 1000 +(% style="color:#037691" %)**Downlink Command: 0x06** 1185 1185 1002 +Format: Command Code (0x06) followed by 3 bytes. 1186 1186 1187 - ===5.3.2Replace thebattery===1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1188 1188 1189 -((( 1190 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 1191 -))) 1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1192 1192 1193 -((( 1194 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 1195 -))) 1196 1196 1197 1197 1011 += 4. FAQ = 1198 1198 1199 -= 6.UseATCommand =1013 +== 4.1 How to change the LoRa Frequency Bands/Region == 1200 1200 1201 -== 6.1 Access AT Commands == 1202 - 1203 -LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below. 1204 - 1205 -[[image:1654593668970-604.png]] 1206 - 1207 -**Connection:** 1208 - 1209 -(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND** 1210 - 1211 -(% style="background-color:yellow" %)** USB TTL TXD <~-~-~-~-> UART_RXD** 1212 - 1213 -(% style="background-color:yellow" %)** USB TTL RXD <~-~-~-~-> UART_TXD** 1214 - 1215 - 1216 -((( 1217 -((( 1218 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12. 1219 -))) 1220 - 1221 -((( 1222 -LLDS12 will output system info once power on as below: 1223 -))) 1224 -))) 1225 - 1226 - 1227 - [[image:1654593712276-618.png]] 1228 - 1229 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]]. 1230 - 1231 - 1232 -= 7. FAQ = 1233 - 1234 -== 7.1 How to change the LoRa Frequency Bands/Region == 1235 - 1236 1236 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]]. 1237 1237 When downloading the images, choose the required image file for download. 1238 1238 1239 1239 1240 -= 8. Trouble Shooting =1019 += 5. Trouble Shooting = 1241 1241 1242 -== 8.1 AT Commands input doesn’t work ==1021 +== 5.1 AT Commands input doesn’t work == 1243 1243 1244 1244 1245 1245 ((( ... ... @@ -1247,7 +1247,7 @@ 1247 1247 ))) 1248 1248 1249 1249 1250 -== 8.2 Significant error between the output distant value of LiDAR and actual distance ==1029 +== 5.2 Significant error between the output distant value of LiDAR and actual distance == 1251 1251 1252 1252 1253 1253 ((( ... ... @@ -1272,10 +1272,10 @@ 1272 1272 1273 1273 1274 1274 1275 -= 9. Order Info =1054 += 6. Order Info = 1276 1276 1277 1277 1278 -Part Number: (% style="color:blue" %)**L LDS12-XX**1057 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY** 1279 1279 1280 1280 1281 1281 (% style="color:blue" %)**XX**(%%): The default frequency band ... ... @@ -1289,13 +1289,18 @@ 1289 1289 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1290 1290 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1291 1291 1071 +(% style="color:blue" %)**YY**(%%): Battery Option 1292 1292 1293 -= 10. Packing Info = 1073 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1074 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1294 1294 1295 1295 1077 += 7. Packing Info = 1078 + 1079 + 1296 1296 **Package Includes**: 1297 1297 1298 -* L LDS12LoRaWANLiDAR Distance Sensor x 11082 +* LDDS75 LoRaWAN Distance Detection Sensor x 1 1299 1299 1300 1300 **Dimension and weight**: 1301 1301 ... ... @@ -1305,7 +1305,7 @@ 1305 1305 * Weight / pcs : g 1306 1306 1307 1307 1308 -= 11. Support =1092 += 8. Support = 1309 1309 1310 1310 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1311 1311 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
- 1654846127817-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +107.3 KB - Content
- 1654847051249-359.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654847583902-256.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1654848616367-242.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654849068701-275.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850511545-399.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850829385-439.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654851029373-510.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654852175653-550.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.2 KB - Content
- 1654852253176-749.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.6 KB - Content
- image-20220610154839-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.3 KB - Content
- image-20220610155021-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +164.8 KB - Content
- image-20220610155021-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.8 KB - Content
- image-20220610161353-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +32.2 KB - Content
- image-20220610161353-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.7 KB - Content
- image-20220610161353-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20220610161353-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.1 KB - Content
- image-20220610161538-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.2 KB - Content
- image-20220610161538-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +28.7 KB - Content
- image-20220610161724-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +180.0 KB - Content
- image-20220610165129-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +50.5 KB - Content
- image-20220610172003-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.9 KB - Content
- image-20220610172003-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.6 KB - Content
- image-20220610172400-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220610172924-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20220610172924-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +901.4 KB - Content
- image-20220610172924-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.6 KB - Content
- image-20220610173409-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.8 KB - Content
- image-20220610174836-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +34.3 KB - Content