Last modified by Xiaoling on 2025/04/27 13:54

From version 115.2
edited by Xiaoling
on 2022/06/10 15:13
Change comment: There is no comment for this version
To version 149.3
edited by Xiaoling
on 2022/06/10 17:55
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,8 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 -{{toc/}}
8 8  
9 9  
10 10  
... ... @@ -14,38 +14,33 @@
14 14  
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 25  
26 -(((
27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 -)))
29 29  
30 -(((
31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 33  
34 -(((
35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 -)))
37 37  
38 -(((
39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  
42 -(((
43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
44 44  )))
45 45  )))
46 46  
47 47  
48 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
49 49  
50 50  
51 51  
... ... @@ -52,45 +52,50 @@
52 52  == ​1.2  Features ==
53 53  
54 54  * LoRaWAN 1.0.3 Class A
55 -* Ultra-low power consumption
56 -* Laser technology for distance detection
57 -* Operating Range - 0.1m~~12m
58 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
60 60  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 61  * AT Commands to change parameters
62 62  * Uplink on periodically
63 63  * Downlink to change configure
64 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
65 65  
60 +== 1.3  Specification ==
66 66  
62 +=== 1.3.1  Rated environmental conditions ===
67 67  
68 -== 1.3  Probe Specification ==
64 +[[image:image-20220610154839-1.png]]
69 69  
70 -* Storage temperature :-20℃~~75℃
71 -* Operating temperature - -20℃~~60℃
72 -* Operating Range - 0.1m~~12m①
73 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
74 -* Distance resolution - 5mm
75 -* Ambient light immunity - 70klux
76 -* Enclosure rating - IP65
77 -* Light source - LED
78 -* Central wavelength - 850nm
79 -* FOV - 3.6°
80 -* Material of enclosure - ABS+PC
81 -* Wire length - 25cm
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
82 82  
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
83 83  
84 84  
85 -== 1.4  Probe Dimension ==
86 86  
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
87 87  
88 -[[image:1654827224480-952.png]]
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
89 89  
90 90  
77 +
78 +[[image:1654852253176-749.png]]
79 +
80 +
81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
82 +
83 +
84 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
85 +
86 +
87 +
91 91  == 1.5 ​ Applications ==
92 92  
93 93  * Horizontal distance measurement
91 +* Liquid level measurement
94 94  * Parking management system
95 95  * Object proximity and presence detection
96 96  * Intelligent trash can management system
... ... @@ -97,28 +97,29 @@
97 97  * Robot obstacle avoidance
98 98  * Automatic control
99 99  * Sewer
98 +* Bottom water level monitoring
100 100  
101 -
102 -
103 103  == 1.6  Pin mapping and power on ==
104 104  
105 105  
106 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
107 107  
108 108  
109 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
110 110  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
108 +
111 111  == 2.1  How it works ==
112 112  
113 113  (((
114 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
115 115  )))
116 116  
117 117  (((
118 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
119 119  )))
120 120  
121 121  
120 +
122 122  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
123 123  
124 124  (((
... ... @@ -126,7 +126,7 @@
126 126  )))
127 127  
128 128  (((
129 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
130 130  )))
131 131  
132 132  (((
... ... @@ -134,57 +134,57 @@
134 134  )))
135 135  
136 136  (((
137 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
138 138  )))
139 139  
140 140  (((
141 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
142 142  )))
143 143  
144 144  [[image:image-20220607170145-1.jpeg]]
145 145  
146 146  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
147 147  
148 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
149 149  
150 +**Add APP EUI in the application**
150 150  
151 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
152 152  
154 +[[image:image-20220610161353-5.png]]
153 153  
154 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
155 155  
156 156  
159 +[[image:image-20220610161353-7.png]]
157 157  
158 -**Add APP EUI and DEV EUI**
159 159  
160 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
161 161  
164 + [[image:image-20220610161538-8.png]]
162 162  
163 163  
164 -**Add APP EUI in the application**
165 165  
166 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
167 167  
170 +[[image:image-20220610161538-9.png]]
168 168  
169 169  
170 -**Add APP KEY**
171 171  
172 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
173 173  
174 174  
175 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
176 -
177 -
178 178  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
179 179  
180 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
181 181  
182 182  
183 183  (((
184 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
185 185  )))
186 186  
187 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
188 188  
189 189  
190 190  
... ... @@ -191,11 +191,10 @@
191 191  == 2.3  ​Uplink Payload ==
192 192  
193 193  (((
194 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
195 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
196 196  
197 -(((
198 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
199 199  )))
200 200  
201 201  (((
... ... @@ -205,23 +205,23 @@
205 205  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
206 206  |=(% style="width: 62.5px;" %)(((
207 207  **Size (bytes)**
208 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
209 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
210 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
211 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
213 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
214 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
215 -)))
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
216 216  
217 -[[image:1654833689380-972.png]]
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
218 218  
215 +[[image:1654850511545-399.png]]
219 219  
220 220  
218 +
221 221  === 2.3.1  Battery Info ===
222 222  
223 223  
224 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
225 225  
226 226  Ex1: 0x0B45 = 2885mV
227 227  
... ... @@ -229,49 +229,20 @@
229 229  
230 230  
231 231  
232 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
233 233  
234 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
235 235  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
236 236  
237 -**Example**:
238 238  
239 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
240 240  
241 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240 +=== 2.3.3  Interrupt Pin ===
242 242  
243 -
244 -
245 -=== 2.3.3  Distance ===
246 -
247 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
248 -
249 -
250 -**Example**:
251 -
252 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
253 -
254 -
255 -
256 -=== 2.3.4  Distance signal strength ===
257 -
258 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
259 -
260 -
261 -**Example**:
262 -
263 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
264 -
265 -Customers can judge whether they need to adjust the environment based on the signal strength.
266 -
267 -
268 -
269 -=== 2.3.5  Interrupt Pin ===
270 -
271 271  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
272 272  
273 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
274 -
275 275  **Example:**
276 276  
277 277  0x00: Normal uplink packet.
... ... @@ -280,54 +280,44 @@
280 280  
281 281  
282 282  
283 -=== 2.3.6  LiDAR temp ===
252 +=== 2.3.4  DS18B20 Temperature sensor ===
284 284  
285 -Characterize the internal temperature value of the sensor.
254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
286 286  
287 -**Example: **
288 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
289 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
256 +**Example**:
290 290  
258 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
291 291  
260 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
292 292  
293 -=== 2.3.7  Message Type ===
262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
294 294  
295 -(((
296 -For a normal uplink payload, the message type is always 0x01.
297 -)))
298 298  
299 -(((
300 -Valid Message Type:
301 -)))
302 302  
266 +=== 2.3.5  Sensor Flag ===
303 303  
304 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
305 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
306 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
307 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
268 +0x01: Detect Ultrasonic Sensor
308 308  
270 +0x00: No Ultrasonic Sensor
309 309  
310 310  
311 -=== 2.3.8  Decode payload in The Things Network ===
273 +===
274 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
312 312  
313 313  While using TTN network, you can add the payload format to decode the payload.
314 314  
315 315  
316 -[[image:1654592762713-715.png]]
279 +[[image:1654850829385-439.png]]
317 317  
318 -(((
319 -The payload decoder function for TTN is here:
320 -)))
281 +The payload decoder function for TTN V3 is here:
321 321  
322 -(((
323 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
324 -)))
283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
325 325  
326 326  
327 327  
328 328  == 2.4  Uplink Interval ==
329 329  
330 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
331 331  
332 332  
333 333  
... ... @@ -358,47 +358,25 @@
358 358  
359 359  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
360 360  
361 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
362 362  
363 -[[image:1654832691989-514.png]]
322 +[[image:1654851029373-510.png]]
364 364  
365 365  
366 -[[image:1654592833877-762.png]]
325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
367 367  
327 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
368 368  
369 -[[image:1654832740634-933.png]]
370 370  
371 371  
372 -
373 -(((
374 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
375 -)))
376 -
377 -(((
378 -
379 -)))
380 -
381 -[[image:1654833065139-942.png]]
382 -
383 -
384 -
385 -[[image:1654833092678-390.png]]
386 -
387 -
388 -
389 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
390 -
391 -[[image:1654833163048-332.png]]
392 -
393 -
394 -
395 395  == 2.6  Frequency Plans ==
396 396  
397 397  (((
398 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
399 399  )))
400 400  
401 401  
338 +
402 402  === 2.6.1  EU863-870 (EU868) ===
403 403  
404 404  (((
... ... @@ -462,22 +462,51 @@
462 462  === 2.6.2  US902-928(US915) ===
463 463  
464 464  (((
465 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
466 -)))
402 +Used in USA, Canada and South America. Default use CHE=2
467 467  
468 -(((
469 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
470 -)))
404 +(% style="color:blue" %)**Uplink:**
471 471  
472 -(((
473 -After Join success, the end node will switch to the correct sub band by:
474 -)))
406 +903.9 - SF7BW125 to SF10BW125
475 475  
476 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
477 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
408 +904.1 - SF7BW125 to SF10BW125
478 478  
410 +904.3 - SF7BW125 to SF10BW125
479 479  
412 +904.5 - SF7BW125 to SF10BW125
480 480  
414 +904.7 - SF7BW125 to SF10BW125
415 +
416 +904.9 - SF7BW125 to SF10BW125
417 +
418 +905.1 - SF7BW125 to SF10BW125
419 +
420 +905.3 - SF7BW125 to SF10BW125
421 +
422 +
423 +(% style="color:blue" %)**Downlink:**
424 +
425 +923.3 - SF7BW500 to SF12BW500
426 +
427 +923.9 - SF7BW500 to SF12BW500
428 +
429 +924.5 - SF7BW500 to SF12BW500
430 +
431 +925.1 - SF7BW500 to SF12BW500
432 +
433 +925.7 - SF7BW500 to SF12BW500
434 +
435 +926.3 - SF7BW500 to SF12BW500
436 +
437 +926.9 - SF7BW500 to SF12BW500
438 +
439 +927.5 - SF7BW500 to SF12BW500
440 +
441 +923.3 - SF12BW500(RX2 downlink only)
442 +
443 +
444 +
445 +)))
446 +
481 481  === 2.6.3  CN470-510 (CN470) ===
482 482  
483 483  (((
... ... @@ -566,30 +566,54 @@
566 566  
567 567  
568 568  
569 -
570 570  === 2.6.4  AU915-928(AU915) ===
571 571  
572 572  (((
573 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
574 -)))
538 +Default use CHE=2
575 575  
576 -(((
577 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
578 -)))
540 +(% style="color:blue" %)**Uplink:**
579 579  
580 -(((
581 -
582 -)))
542 +916.8 - SF7BW125 to SF12BW125
583 583  
584 -(((
585 -After Join success, the end node will switch to the correct sub band by:
586 -)))
544 +917.0 - SF7BW125 to SF12BW125
587 587  
588 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
589 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546 +917.2 - SF7BW125 to SF12BW125
590 590  
548 +917.4 - SF7BW125 to SF12BW125
591 591  
550 +917.6 - SF7BW125 to SF12BW125
592 592  
552 +917.8 - SF7BW125 to SF12BW125
553 +
554 +918.0 - SF7BW125 to SF12BW125
555 +
556 +918.2 - SF7BW125 to SF12BW125
557 +
558 +
559 +(% style="color:blue" %)**Downlink:**
560 +
561 +923.3 - SF7BW500 to SF12BW500
562 +
563 +923.9 - SF7BW500 to SF12BW500
564 +
565 +924.5 - SF7BW500 to SF12BW500
566 +
567 +925.1 - SF7BW500 to SF12BW500
568 +
569 +925.7 - SF7BW500 to SF12BW500
570 +
571 +926.3 - SF7BW500 to SF12BW500
572 +
573 +926.9 - SF7BW500 to SF12BW500
574 +
575 +927.5 - SF7BW500 to SF12BW500
576 +
577 +923.3 - SF12BW500(RX2 downlink only)
578 +
579 +
580 +
581 +)))
582 +
593 593  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
594 594  
595 595  (((
... ... @@ -698,7 +698,6 @@
698 698  
699 699  
700 700  
701 -
702 702  === 2.6.6  KR920-923 (KR920) ===
703 703  
704 704  (((
... ... @@ -771,7 +771,6 @@
771 771  
772 772  
773 773  
774 -
775 775  === 2.6.7  IN865-867 (IN865) ===
776 776  
777 777  (((
... ... @@ -808,20 +808,20 @@
808 808  
809 809  
810 810  
811 -
812 812  == 2.7  LED Indicator ==
813 813  
814 -The LLDS12 has an internal LED which is to show the status of different state.
801 +The LDDS75 has an internal LED which is to show the status of different state.
815 815  
816 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 +
804 +* Blink once when device power on.
805 +* The device detects the sensor and flashes 5 times.
806 +* Solid ON for 5 seconds once device successful Join the network.
817 817  * Blink once when device transmit a packet.
818 818  
819 -
820 -
821 821  == 2.8  ​Firmware Change Log ==
822 822  
823 823  
824 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
825 825  
826 826  
827 827  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -828,73 +828,58 @@
828 828  
829 829  
830 830  
831 -= 3LiDAR ToF Measurement =
819 +== 2.9  Mechanical ==
832 832  
833 -== 3.1 Principle of Distance Measurement ==
834 834  
835 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
822 +[[image:image-20220610172003-1.png]]
836 836  
837 -[[image:1654831757579-263.png]]
824 +[[image:image-20220610172003-2.png]]
838 838  
839 839  
827 +== 2.10  Battery Analysis ==
840 840  
841 -== 3.2 Distance Measurement Characteristics ==
829 +=== 2.10.1  Battery Type ===
842 842  
843 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
844 844  
845 -[[image:1654831774373-275.png]]
846 846  
834 +The battery related documents as below:
847 847  
848 -(((
849 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 +* (((
837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
850 850  )))
851 -
852 -(((
853 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
839 +* (((
840 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
854 854  )))
855 -
856 -(((
857 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
842 +* (((
843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
858 858  )))
859 859  
846 + [[image:image-20220610172400-3.png]]
860 860  
861 -(((
862 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
863 -)))
864 864  
865 865  
866 -[[image:1654831797521-720.png]]
850 +=== 2.10.2  Replace the battery ===
867 867  
852 +(((
853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
854 +)))
868 868  
869 869  (((
870 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
857 +
871 871  )))
872 872  
873 -[[image:1654831810009-716.png]]
874 -
875 -
876 876  (((
877 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
878 878  )))
879 879  
880 880  
881 881  
882 -== 3.3 Notice of usage: ==
866 += 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
883 883  
884 -Possible invalid /wrong reading for LiDAR ToF tech:
885 -
886 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
887 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
888 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
889 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
890 -
891 -
892 -
893 -= 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
894 -
895 895  (((
896 896  (((
897 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
898 898  )))
899 899  )))
900 900  
... ... @@ -915,7 +915,7 @@
915 915  )))
916 916  
917 917  (((
918 -There are two kinds of commands to configure LLDS12, they are:
891 +There are two kinds of commands to configure LDDS75, they are:
919 919  )))
920 920  )))
921 921  
... ... @@ -956,308 +956,117 @@
956 956  
957 957  * (((
958 958  (((
959 -(% style="color:#4f81bd" %)** Commands special design for LLDS12**
932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
960 960  )))
961 961  )))
962 962  
963 963  (((
964 964  (((
965 -These commands only valid for LLDS12, as below:
938 +These commands only valid for LDDS75, as below:
966 966  )))
967 967  )))
968 968  
969 969  
970 970  
971 -== 4.1  Set Transmit Interval Time ==
944 +== 3.1  Access AT Commands ==
972 972  
973 -Feature: Change LoRaWAN End Node Transmit Interval.
946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
974 974  
975 -(% style="color:#037691" %)**AT Command: AT+TDC**
948 +[[image:image-20220610172924-4.png||height="483" width="988"]]
976 976  
977 -[[image:image-20220607171554-8.png]]
978 978  
951 +Or if you have below board, use below connection:
979 979  
980 -(((
981 -(% style="color:#037691" %)**Downlink Command: 0x01**
982 -)))
983 983  
984 -(((
985 -Format: Command Code (0x01) followed by 3 bytes time value.
986 -)))
954 +[[image:image-20220610172924-5.png]]
987 987  
988 -(((
989 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
990 -)))
991 991  
992 -* (((
993 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
994 -)))
995 -* (((
996 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
997 -)))
957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
998 998  
999 999  
960 + [[image:image-20220610172924-6.png||height="601" width="860"]]
1000 1000  
1001 -== 4.2  Set Interrupt Mode ==
1002 1002  
1003 -Feature, Set Interrupt mode for GPIO_EXIT.
1004 1004  
1005 -(% style="color:#037691" %)**AT Command: AT+INTMOD**
964 +== 3.2  Set Transmit Interval Time ==
1006 1006  
1007 -[[image:image-20220610105806-2.png]]
966 +Feature: Change LoRaWAN End Node Transmit Interval.
1008 1008  
968 +(% style="color:#037691" %)**AT Command: AT+TDC**
1009 1009  
1010 -(((
1011 -(% style="color:#037691" %)**Downlink Command: 0x06**
1012 -)))
970 +[[image:image-20220610173409-7.png]]
1013 1013  
1014 -(((
1015 -Format: Command Code (0x06) followed by 3 bytes.
1016 -)))
1017 1017  
1018 1018  (((
1019 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
974 +(% style="color:#037691" %)**Downlink Command: 0x01**
1020 1020  )))
1021 1021  
1022 -* (((
1023 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1024 -)))
1025 -* (((
1026 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1027 -)))
1028 -
1029 -
1030 -
1031 -== 4.3  Get Firmware Version Info ==
1032 -
1033 -Feature: use downlink to get firmware version.
1034 -
1035 -(% style="color:#037691" %)**Downlink Command: 0x26**
1036 -
1037 -[[image:image-20220607171917-10.png]]
1038 -
1039 -* Reply to the confirmation package: 26 01
1040 -* Reply to non-confirmed packet: 26 00
1041 -
1042 -Device will send an uplink after got this downlink command. With below payload:
1043 -
1044 -Configures info payload:
1045 -
1046 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1047 -|=(((
1048 -**Size(bytes)**
1049 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1050 -|**Value**|Software Type|(((
1051 -Frequency
1052 -
1053 -Band
1054 -)))|Sub-band|(((
1055 -Firmware
1056 -
1057 -Version
1058 -)))|Sensor Type|Reserve|(((
1059 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1060 -Always 0x02
1061 -)))
1062 -
1063 -**Software Type**: Always 0x03 for LLDS12
1064 -
1065 -
1066 -**Frequency Band**:
1067 -
1068 -*0x01: EU868
1069 -
1070 -*0x02: US915
1071 -
1072 -*0x03: IN865
1073 -
1074 -*0x04: AU915
1075 -
1076 -*0x05: KZ865
1077 -
1078 -*0x06: RU864
1079 -
1080 -*0x07: AS923
1081 -
1082 -*0x08: AS923-1
1083 -
1084 -*0x09: AS923-2
1085 -
1086 -*0xa0: AS923-3
1087 -
1088 -
1089 -**Sub-Band**: value 0x00 ~~ 0x08
1090 -
1091 -
1092 -**Firmware Version**: 0x0100, Means: v1.0.0 version
1093 -
1094 -
1095 -**Sensor Type**:
1096 -
1097 -0x01: LSE01
1098 -
1099 -0x02: LDDS75
1100 -
1101 -0x03: LDDS20
1102 -
1103 -0x04: LLMS01
1104 -
1105 -0x05: LSPH01
1106 -
1107 -0x06: LSNPK01
1108 -
1109 -0x07: LLDS12
1110 -
1111 -
1112 -
1113 -= 5.  Battery & How to replace =
1114 -
1115 -== 5.1  Battery Type ==
1116 -
1117 1117  (((
1118 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1119 -)))
1120 -
1121 1121  (((
1122 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1123 -)))
979 +Format: Command Code (0x01) followed by 3 bytes time value.
1124 1124  
1125 -[[image:1654593587246-335.png]]
981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1126 1126  
1127 -
1128 -Minimum Working Voltage for the LLDS12:
1129 -
1130 -LLDS12:  2.45v ~~ 3.6v
1131 -
1132 -
1133 -
1134 -== 5.2  Replace Battery ==
1135 -
1136 -(((
1137 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1138 1138  )))
1139 1139  
1140 -(((
1141 -And make sure the positive and negative pins match.
1142 -)))
1143 1143  
1144 -
1145 -
1146 -== 5.3  Power Consumption Analyze ==
1147 -
1148 -(((
1149 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
988 +
1150 1150  )))
1151 1151  
1152 -(((
1153 -Instruction to use as below:
1154 -)))
991 +== 3.3  Set Interrupt Mode ==
1155 1155  
993 +Feature, Set Interrupt mode for GPIO_EXIT.
1156 1156  
1157 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1158 1158  
1159 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
997 +[[image:image-20220610174917-9.png]]
1160 1160  
1161 1161  
1162 -**Step 2**: Open it and choose
1000 +(% style="color:#037691" %)**Downlink Command: 0x06**
1163 1163  
1164 -* Product Model
1165 -* Uplink Interval
1166 -* Working Mode
1002 +Format: Command Code (0x06) followed by 3 bytes.
1167 1167  
1168 -And the Life expectation in difference case will be shown on the right.
1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1169 1169  
1170 -[[image:1654593605679-189.png]]
1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1171 1171  
1172 1172  
1173 -The battery related documents as below:
1174 1174  
1175 -* (((
1176 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1177 -)))
1178 -* (((
1179 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1180 -)))
1181 -* (((
1182 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1183 -)))
1011 += 4.  FAQ =
1184 1184  
1185 -[[image:image-20220607172042-11.png]]
1013 +== 4.1  What is the frequency plan for LDDS75? ==
1186 1186  
1015 +LDDS75 use the same frequency as other Dragino products. User can see the detail from this link:
1187 1187  
1188 1188  
1189 -=== 5.3.1  ​Battery Note ===
1190 1190  
1191 -(((
1192 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1193 -)))
1019 +== 4.2  How to change the LoRa Frequency Bands/Region ==
1194 1194  
1021 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1022 +When downloading the images, choose the required image file for download. ​
1195 1195  
1196 1196  
1197 -=== ​5.3.2  Replace the battery ===
1198 1198  
1199 -(((
1200 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1201 -)))
1026 +== 4.3  Can I use LDDS75 in condensation environment? ==
1202 1202  
1203 -(((
1204 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1205 -)))
1028 +LDDS75 is not suitable to be used in condensation environment. Condensation on the LDDS75 probe will affect the reading and always got 0.
1206 1206  
1207 1207  
1208 1208  
1209 -= 6Use AT Command =
1032 += 5Trouble Shooting =
1210 1210  
1211 -== 6.1  Access AT Commands ==
1034 +== 5.1  AT Commands input doesn’t work ==
1212 1212  
1213 -LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1214 1214  
1215 -[[image:1654593668970-604.png]]
1216 -
1217 -**Connection:**
1218 -
1219 -(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1220 -
1221 -(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1222 -
1223 -(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1224 -
1225 -
1226 1226  (((
1227 -(((
1228 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1229 -)))
1230 -
1231 -(((
1232 -LLDS12 will output system info once power on as below:
1233 -)))
1234 -)))
1235 -
1236 -
1237 - [[image:1654593712276-618.png]]
1238 -
1239 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1240 -
1241 -
1242 -= 7.  FAQ =
1243 -
1244 -== 7.1  How to change the LoRa Frequency Bands/Region ==
1245 -
1246 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1247 -When downloading the images, choose the required image file for download. ​
1248 -
1249 -
1250 -= 8.  Trouble Shooting =
1251 -
1252 -== 8.1  AT Commands input doesn’t work ==
1253 -
1254 -
1255 -(((
1256 1256  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1257 1257  )))
1258 1258  
1259 1259  
1260 -== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1042 +== 5.2  Significant error between the output distant value of LiDAR and actual distance ==
1261 1261  
1262 1262  
1263 1263  (((
... ... @@ -1282,10 +1282,10 @@
1282 1282  
1283 1283  
1284 1284  
1285 -= 9.  Order Info =
1067 += 6.  Order Info =
1286 1286  
1287 1287  
1288 -Part Number: (% style="color:blue" %)**LLDS12-XX**
1070 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY**
1289 1289  
1290 1290  
1291 1291  (% style="color:blue" %)**XX**(%%): The default frequency band
... ... @@ -1299,14 +1299,18 @@
1299 1299  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1300 1300  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1301 1301  
1084 +(% style="color:blue" %)**YY**(%%): Battery Option
1302 1302  
1086 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1087 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1303 1303  
1304 -= 10. ​ Packing Info =
1305 1305  
1090 += 7. ​ Packing Info =
1306 1306  
1092 +
1307 1307  **Package Includes**:
1308 1308  
1309 -* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1095 +* LDDS75 LoRaWAN Distance Detection Sensor x 1
1310 1310  
1311 1311  **Dimension and weight**:
1312 1312  
... ... @@ -1316,8 +1316,7 @@
1316 1316  * Weight / pcs : g
1317 1317  
1318 1318  
1105 += 8.  ​Support =
1319 1319  
1320 -= 11.  ​Support =
1321 -
1322 1322  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1323 1323  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654846127817-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content