Last modified by Xiaoling on 2025/04/27 13:54

From version 113.6
edited by Xiaoling
on 2022/06/10 15:06
Change comment: There is no comment for this version
To version 149.2
edited by Xiaoling
on 2022/06/10 17:49
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,8 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 -{{toc/}}
8 8  
9 9  
10 10  
... ... @@ -14,38 +14,33 @@
14 14  
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 25  
26 -(((
27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 -)))
29 29  
30 -(((
31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 33  
34 -(((
35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 -)))
37 37  
38 -(((
39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  
42 -(((
43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
44 44  )))
45 45  )))
46 46  
47 47  
48 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
49 49  
50 50  
51 51  
... ... @@ -52,47 +52,50 @@
52 52  == ​1.2  Features ==
53 53  
54 54  * LoRaWAN 1.0.3 Class A
55 -* Ultra-low power consumption
56 -* Laser technology for distance detection
57 -* Operating Range - 0.1m~~12m
58 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
60 60  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 61  * AT Commands to change parameters
62 62  * Uplink on periodically
63 63  * Downlink to change configure
64 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
65 65  
60 +== 1.3  Specification ==
66 66  
62 +=== 1.3.1  Rated environmental conditions ===
67 67  
64 +[[image:image-20220610154839-1.png]]
68 68  
69 -== 1. Probe Specification ==
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
70 70  
71 -* Storage temperature :-20℃~~75℃
72 -* Operating temperature - -20℃~~60℃
73 -* Operating Range - 0.1m~~12m①
74 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
75 -* Distance resolution - 5mm
76 -* Ambient light immunity - 70klux
77 -* Enclosure rating - IP65
78 -* Light source - LED
79 -* Central wavelength - 850nm
80 -* FOV - 3.6°
81 -* Material of enclosure - ABS+PC
82 -* Wire length - 25cm
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
83 83  
84 84  
85 85  
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
86 86  
87 -== 1.4  Probe Dimension ==
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
88 88  
89 89  
90 -[[image:1654827224480-952.png]]
91 91  
78 +[[image:1654852253176-749.png]]
92 92  
80 +
81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
82 +
83 +
84 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
85 +
86 +
87 +
93 93  == 1.5 ​ Applications ==
94 94  
95 95  * Horizontal distance measurement
91 +* Liquid level measurement
96 96  * Parking management system
97 97  * Object proximity and presence detection
98 98  * Intelligent trash can management system
... ... @@ -99,29 +99,29 @@
99 99  * Robot obstacle avoidance
100 100  * Automatic control
101 101  * Sewer
98 +* Bottom water level monitoring
102 102  
103 -
104 -
105 -
106 106  == 1.6  Pin mapping and power on ==
107 107  
108 108  
109 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
110 110  
111 111  
112 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
113 113  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
108 +
114 114  == 2.1  How it works ==
115 115  
116 116  (((
117 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
118 118  )))
119 119  
120 120  (((
121 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
122 122  )))
123 123  
124 124  
120 +
125 125  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
126 126  
127 127  (((
... ... @@ -129,7 +129,7 @@
129 129  )))
130 130  
131 131  (((
132 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
133 133  )))
134 134  
135 135  (((
... ... @@ -137,57 +137,57 @@
137 137  )))
138 138  
139 139  (((
140 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
141 141  )))
142 142  
143 143  (((
144 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
145 145  )))
146 146  
147 147  [[image:image-20220607170145-1.jpeg]]
148 148  
149 149  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
150 150  
151 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
152 152  
150 +**Add APP EUI in the application**
153 153  
154 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
155 155  
154 +[[image:image-20220610161353-5.png]]
156 156  
157 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
158 158  
159 159  
159 +[[image:image-20220610161353-7.png]]
160 160  
161 -**Add APP EUI and DEV EUI**
162 162  
163 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
164 164  
164 + [[image:image-20220610161538-8.png]]
165 165  
166 166  
167 -**Add APP EUI in the application**
168 168  
169 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
170 170  
170 +[[image:image-20220610161538-9.png]]
171 171  
172 172  
173 -**Add APP KEY**
174 174  
175 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
176 176  
177 177  
178 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
179 -
180 -
181 181  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
182 182  
183 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
184 184  
185 185  
186 186  (((
187 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 188  )))
189 189  
190 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
191 191  
192 192  
193 193  
... ... @@ -194,11 +194,10 @@
194 194  == 2.3  ​Uplink Payload ==
195 195  
196 196  (((
197 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
198 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
199 199  
200 -(((
201 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
202 202  )))
203 203  
204 204  (((
... ... @@ -208,23 +208,23 @@
208 208  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
209 209  |=(% style="width: 62.5px;" %)(((
210 210  **Size (bytes)**
211 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
212 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
213 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
214 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
215 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
216 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
217 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
218 -)))
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
219 219  
220 -[[image:1654833689380-972.png]]
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
221 221  
215 +[[image:1654850511545-399.png]]
222 222  
223 223  
218 +
224 224  === 2.3.1  Battery Info ===
225 225  
226 226  
227 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
228 228  
229 229  Ex1: 0x0B45 = 2885mV
230 230  
... ... @@ -232,49 +232,20 @@
232 232  
233 233  
234 234  
235 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
236 236  
237 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
238 238  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
239 239  
240 -**Example**:
241 241  
242 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
243 243  
244 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240 +=== 2.3.3  Interrupt Pin ===
245 245  
246 -
247 -
248 -=== 2.3.3  Distance ===
249 -
250 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
251 -
252 -
253 -**Example**:
254 -
255 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
256 -
257 -
258 -
259 -=== 2.3.4  Distance signal strength ===
260 -
261 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
262 -
263 -
264 -**Example**:
265 -
266 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
267 -
268 -Customers can judge whether they need to adjust the environment based on the signal strength.
269 -
270 -
271 -
272 -=== 2.3.5  Interrupt Pin ===
273 -
274 274  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
275 275  
276 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
277 -
278 278  **Example:**
279 279  
280 280  0x00: Normal uplink packet.
... ... @@ -283,55 +283,44 @@
283 283  
284 284  
285 285  
286 -=== 2.3.6  LiDAR temp ===
252 +=== 2.3.4  DS18B20 Temperature sensor ===
287 287  
288 -Characterize the internal temperature value of the sensor.
254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
289 289  
290 -**Example: **
291 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
292 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
256 +**Example**:
293 293  
258 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
294 294  
260 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
295 295  
296 -=== 2.3.7  Message Type ===
262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
297 297  
298 -(((
299 -For a normal uplink payload, the message type is always 0x01.
300 -)))
301 301  
302 -(((
303 -Valid Message Type:
304 -)))
305 305  
266 +=== 2.3.5  Sensor Flag ===
306 306  
307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
308 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
309 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
310 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
268 +0x01: Detect Ultrasonic Sensor
311 311  
270 +0x00: No Ultrasonic Sensor
312 312  
313 313  
273 +===
274 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
314 314  
315 -=== 2.3.8  Decode payload in The Things Network ===
316 -
317 317  While using TTN network, you can add the payload format to decode the payload.
318 318  
319 319  
320 -[[image:1654592762713-715.png]]
279 +[[image:1654850829385-439.png]]
321 321  
322 -(((
323 -The payload decoder function for TTN is here:
324 -)))
281 +The payload decoder function for TTN V3 is here:
325 325  
326 -(((
327 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
328 -)))
283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
329 329  
330 330  
331 331  
332 332  == 2.4  Uplink Interval ==
333 333  
334 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
335 335  
336 336  
337 337  
... ... @@ -362,47 +362,25 @@
362 362  
363 363  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
364 364  
365 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
366 366  
367 -[[image:1654832691989-514.png]]
322 +[[image:1654851029373-510.png]]
368 368  
369 369  
370 -[[image:1654592833877-762.png]]
325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
371 371  
327 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
372 372  
373 -[[image:1654832740634-933.png]]
374 374  
375 375  
376 -
377 -(((
378 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
379 -)))
380 -
381 -(((
382 -
383 -)))
384 -
385 -[[image:1654833065139-942.png]]
386 -
387 -
388 -
389 -[[image:1654833092678-390.png]]
390 -
391 -
392 -
393 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
394 -
395 -[[image:1654833163048-332.png]]
396 -
397 -
398 -
399 399  == 2.6  Frequency Plans ==
400 400  
401 401  (((
402 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
403 403  )))
404 404  
405 405  
338 +
406 406  === 2.6.1  EU863-870 (EU868) ===
407 407  
408 408  (((
... ... @@ -466,23 +466,51 @@
466 466  === 2.6.2  US902-928(US915) ===
467 467  
468 468  (((
469 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
470 -)))
402 +Used in USA, Canada and South America. Default use CHE=2
471 471  
472 -(((
473 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
474 -)))
404 +(% style="color:blue" %)**Uplink:**
475 475  
476 -(((
477 -After Join success, the end node will switch to the correct sub band by:
478 -)))
406 +903.9 - SF7BW125 to SF10BW125
479 479  
480 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
481 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
408 +904.1 - SF7BW125 to SF10BW125
482 482  
410 +904.3 - SF7BW125 to SF10BW125
483 483  
412 +904.5 - SF7BW125 to SF10BW125
484 484  
414 +904.7 - SF7BW125 to SF10BW125
485 485  
416 +904.9 - SF7BW125 to SF10BW125
417 +
418 +905.1 - SF7BW125 to SF10BW125
419 +
420 +905.3 - SF7BW125 to SF10BW125
421 +
422 +
423 +(% style="color:blue" %)**Downlink:**
424 +
425 +923.3 - SF7BW500 to SF12BW500
426 +
427 +923.9 - SF7BW500 to SF12BW500
428 +
429 +924.5 - SF7BW500 to SF12BW500
430 +
431 +925.1 - SF7BW500 to SF12BW500
432 +
433 +925.7 - SF7BW500 to SF12BW500
434 +
435 +926.3 - SF7BW500 to SF12BW500
436 +
437 +926.9 - SF7BW500 to SF12BW500
438 +
439 +927.5 - SF7BW500 to SF12BW500
440 +
441 +923.3 - SF12BW500(RX2 downlink only)
442 +
443 +
444 +
445 +)))
446 +
486 486  === 2.6.3  CN470-510 (CN470) ===
487 487  
488 488  (((
... ... @@ -571,28 +571,54 @@
571 571  
572 572  
573 573  
574 -
575 575  === 2.6.4  AU915-928(AU915) ===
576 576  
577 577  (((
578 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
579 -)))
538 +Default use CHE=2
580 580  
581 -(((
582 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
583 -)))
540 +(% style="color:blue" %)**Uplink:**
584 584  
585 -(((
586 -
587 -)))
542 +916.8 - SF7BW125 to SF12BW125
588 588  
589 -(((
590 -After Join success, the end node will switch to the correct sub band by:
591 -)))
544 +917.0 - SF7BW125 to SF12BW125
592 592  
593 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
594 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546 +917.2 - SF7BW125 to SF12BW125
595 595  
548 +917.4 - SF7BW125 to SF12BW125
549 +
550 +917.6 - SF7BW125 to SF12BW125
551 +
552 +917.8 - SF7BW125 to SF12BW125
553 +
554 +918.0 - SF7BW125 to SF12BW125
555 +
556 +918.2 - SF7BW125 to SF12BW125
557 +
558 +
559 +(% style="color:blue" %)**Downlink:**
560 +
561 +923.3 - SF7BW500 to SF12BW500
562 +
563 +923.9 - SF7BW500 to SF12BW500
564 +
565 +924.5 - SF7BW500 to SF12BW500
566 +
567 +925.1 - SF7BW500 to SF12BW500
568 +
569 +925.7 - SF7BW500 to SF12BW500
570 +
571 +926.3 - SF7BW500 to SF12BW500
572 +
573 +926.9 - SF7BW500 to SF12BW500
574 +
575 +927.5 - SF7BW500 to SF12BW500
576 +
577 +923.3 - SF12BW500(RX2 downlink only)
578 +
579 +
580 +
581 +)))
582 +
596 596  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
597 597  
598 598  (((
... ... @@ -701,7 +701,6 @@
701 701  
702 702  
703 703  
704 -
705 705  === 2.6.6  KR920-923 (KR920) ===
706 706  
707 707  (((
... ... @@ -774,7 +774,6 @@
774 774  
775 775  
776 776  
777 -
778 778  === 2.6.7  IN865-867 (IN865) ===
779 779  
780 780  (((
... ... @@ -811,18 +811,20 @@
811 811  
812 812  
813 813  
814 -
815 815  == 2.7  LED Indicator ==
816 816  
817 -The LLDS12 has an internal LED which is to show the status of different state.
801 +The LDDS75 has an internal LED which is to show the status of different state.
818 818  
819 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 +
804 +* Blink once when device power on.
805 +* The device detects the sensor and flashes 5 times.
806 +* Solid ON for 5 seconds once device successful Join the network.
820 820  * Blink once when device transmit a packet.
821 821  
822 822  == 2.8  ​Firmware Change Log ==
823 823  
824 824  
825 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
826 826  
827 827  
828 828  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -829,71 +829,58 @@
829 829  
830 830  
831 831  
832 -= 3LiDAR ToF Measurement =
819 +== 2.9  Mechanical ==
833 833  
834 -== 3.1 Principle of Distance Measurement ==
835 835  
836 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
822 +[[image:image-20220610172003-1.png]]
837 837  
838 -[[image:1654831757579-263.png]]
824 +[[image:image-20220610172003-2.png]]
839 839  
840 840  
827 +== 2.10  Battery Analysis ==
841 841  
842 -== 3.2 Distance Measurement Characteristics ==
829 +=== 2.10.1  Battery Type ===
843 843  
844 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
845 845  
846 -[[image:1654831774373-275.png]]
847 847  
834 +The battery related documents as below:
848 848  
849 -(((
850 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 +* (((
837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
851 851  )))
852 -
853 -(((
854 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
839 +* (((
840 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
855 855  )))
856 -
857 -(((
858 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
842 +* (((
843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
859 859  )))
860 860  
846 + [[image:image-20220610172400-3.png]]
861 861  
862 -(((
863 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
864 -)))
865 865  
866 866  
867 -[[image:1654831797521-720.png]]
850 +=== 2.10.2  Replace the battery ===
868 868  
852 +(((
853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
854 +)))
869 869  
870 870  (((
871 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
857 +
872 872  )))
873 873  
874 -[[image:1654831810009-716.png]]
875 -
876 -
877 877  (((
878 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
879 879  )))
880 880  
881 881  
882 882  
883 -== 3.3 Notice of usage: ==
866 += 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
884 884  
885 -Possible invalid /wrong reading for LiDAR ToF tech:
886 -
887 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
888 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
889 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
890 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
891 -
892 -= 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
893 -
894 894  (((
895 895  (((
896 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
897 897  )))
898 898  )))
899 899  
... ... @@ -914,7 +914,7 @@
914 914  )))
915 915  
916 916  (((
917 -There are two kinds of commands to configure LLDS12, they are:
891 +There are two kinds of commands to configure LDDS75, they are:
918 918  )))
919 919  )))
920 920  
... ... @@ -955,301 +955,96 @@
955 955  
956 956  * (((
957 957  (((
958 -(% style="color:#4f81bd" %)** Commands special design for LLDS12**
932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
959 959  )))
960 960  )))
961 961  
962 962  (((
963 963  (((
964 -These commands only valid for LLDS12, as below:
938 +These commands only valid for LDDS75, as below:
965 965  )))
966 966  )))
967 967  
968 968  
969 969  
970 -== 4.1  Set Transmit Interval Time ==
944 +== 3.1  Access AT Commands ==
971 971  
972 -Feature: Change LoRaWAN End Node Transmit Interval.
946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
973 973  
974 -(% style="color:#037691" %)**AT Command: AT+TDC**
948 +[[image:image-20220610172924-4.png||height="483" width="988"]]
975 975  
976 -[[image:image-20220607171554-8.png]]
977 977  
951 +Or if you have below board, use below connection:
978 978  
979 -(((
980 -(% style="color:#037691" %)**Downlink Command: 0x01**
981 -)))
982 982  
983 -(((
984 -Format: Command Code (0x01) followed by 3 bytes time value.
985 -)))
954 +[[image:image-20220610172924-5.png]]
986 986  
987 -(((
988 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
989 -)))
990 990  
991 -* (((
992 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
993 -)))
994 -* (((
995 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
996 996  
997 997  
998 -
999 -)))
960 + [[image:image-20220610172924-6.png||height="601" width="860"]]
1000 1000  
1001 1001  
1002 -== 4.2  Set Interrupt Mode ==
1003 1003  
1004 -Feature, Set Interrupt mode for GPIO_EXIT.
964 +== 3.2  Set Transmit Interval Time ==
1005 1005  
1006 -(% style="color:#037691" %)**AT Command: AT+INTMOD**
966 +Feature: Change LoRaWAN End Node Transmit Interval.
1007 1007  
1008 -[[image:image-20220610105806-2.png]]
968 +(% style="color:#037691" %)**AT Command: AT+TDC**
1009 1009  
970 +[[image:image-20220610173409-7.png]]
1010 1010  
1011 -(((
1012 -(% style="color:#037691" %)**Downlink Command: 0x06**
1013 -)))
1014 1014  
1015 1015  (((
1016 -Format: Command Code (0x06) followed by 3 bytes.
974 +(% style="color:#037691" %)**Downlink Command: 0x01**
1017 1017  )))
1018 1018  
1019 1019  (((
1020 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1021 -)))
1022 -
1023 -* (((
1024 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1025 -)))
1026 -* (((
1027 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1028 -)))
1029 -
1030 -
1031 -== 4.3  Get Firmware Version Info ==
1032 -
1033 -Feature: use downlink to get firmware version.
1034 -
1035 -(% style="color:#037691" %)**Downlink Command: 0x26**
1036 -
1037 -[[image:image-20220607171917-10.png]]
1038 -
1039 -* Reply to the confirmation package: 26 01
1040 -* Reply to non-confirmed packet: 26 00
1041 -
1042 -Device will send an uplink after got this downlink command. With below payload:
1043 -
1044 -Configures info payload:
1045 -
1046 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1047 -|=(((
1048 -**Size(bytes)**
1049 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1050 -|**Value**|Software Type|(((
1051 -Frequency
1052 -
1053 -Band
1054 -)))|Sub-band|(((
1055 -Firmware
1056 -
1057 -Version
1058 -)))|Sensor Type|Reserve|(((
1059 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1060 -Always 0x02
1061 -)))
1062 -
1063 -**Software Type**: Always 0x03 for LLDS12
1064 -
1065 -
1066 -**Frequency Band**:
1067 -
1068 -*0x01: EU868
1069 -
1070 -*0x02: US915
1071 -
1072 -*0x03: IN865
1073 -
1074 -*0x04: AU915
1075 -
1076 -*0x05: KZ865
1077 -
1078 -*0x06: RU864
1079 -
1080 -*0x07: AS923
1081 -
1082 -*0x08: AS923-1
1083 -
1084 -*0x09: AS923-2
1085 -
1086 -*0xa0: AS923-3
1087 -
1088 -
1089 -**Sub-Band**: value 0x00 ~~ 0x08
1090 -
1091 -
1092 -**Firmware Version**: 0x0100, Means: v1.0.0 version
1093 -
1094 -
1095 -**Sensor Type**:
1096 -
1097 -0x01: LSE01
1098 -
1099 -0x02: LDDS75
1100 -
1101 -0x03: LDDS20
1102 -
1103 -0x04: LLMS01
1104 -
1105 -0x05: LSPH01
1106 -
1107 -0x06: LSNPK01
1108 -
1109 -0x07: LLDS12
1110 -
1111 -
1112 -
1113 -= 5.  Battery & How to replace =
1114 -
1115 -== 5.1  Battery Type ==
1116 -
1117 1117  (((
1118 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1119 -)))
979 +Format: Command Code (0x01) followed by 3 bytes time value.
1120 1120  
1121 -(((
1122 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1123 -)))
981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1124 1124  
1125 -[[image:1654593587246-335.png]]
1126 -
1127 -
1128 -Minimum Working Voltage for the LLDS12:
1129 -
1130 -LLDS12:  2.45v ~~ 3.6v
1131 -
1132 -
1133 -
1134 -== 5.2  Replace Battery ==
1135 -
1136 -(((
1137 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1138 1138  )))
1139 1139  
1140 -(((
1141 -And make sure the positive and negative pins match.
1142 -)))
1143 1143  
1144 -
1145 -
1146 -== 5.3  Power Consumption Analyze ==
1147 -
1148 -(((
1149 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
988 +
1150 1150  )))
1151 1151  
1152 -(((
1153 -Instruction to use as below:
1154 -)))
991 +== 3.3  Set Interrupt Mode ==
1155 1155  
993 +Feature, Set Interrupt mode for GPIO_EXIT.
1156 1156  
1157 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1158 1158  
1159 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
997 +[[image:image-20220610174917-9.png]]
1160 1160  
1161 1161  
1162 -**Step 2**: Open it and choose
1000 +(% style="color:#037691" %)**Downlink Command: 0x06**
1163 1163  
1164 -* Product Model
1165 -* Uplink Interval
1166 -* Working Mode
1002 +Format: Command Code (0x06) followed by 3 bytes.
1167 1167  
1168 -And the Life expectation in difference case will be shown on the right.
1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1169 1169  
1170 -[[image:1654593605679-189.png]]
1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1171 1171  
1172 1172  
1173 -The battery related documents as below:
1174 1174  
1175 -* (((
1176 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1177 -)))
1178 -* (((
1179 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1180 -)))
1181 -* (((
1182 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1183 -)))
1011 += 4.  FAQ =
1184 1184  
1185 -[[image:image-20220607172042-11.png]]
1013 +== 4.1  How to change the LoRa Frequency Bands/Region ==
1186 1186  
1187 -
1188 -
1189 -=== 5.3.1  ​Battery Note ===
1190 -
1191 -(((
1192 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1193 -)))
1194 -
1195 -
1196 -
1197 -=== ​5.3.2  Replace the battery ===
1198 -
1199 -(((
1200 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1201 -)))
1202 -
1203 -(((
1204 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1205 -)))
1206 -
1207 -
1208 -
1209 -= 6.  Use AT Command =
1210 -
1211 -== 6.1  Access AT Commands ==
1212 -
1213 -LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1214 -
1215 -[[image:1654593668970-604.png]]
1216 -
1217 -**Connection:**
1218 -
1219 -(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1220 -
1221 -(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1222 -
1223 -(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1224 -
1225 -
1226 -(((
1227 -(((
1228 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1229 -)))
1230 -
1231 -(((
1232 -LLDS12 will output system info once power on as below:
1233 -)))
1234 -)))
1235 -
1236 -
1237 - [[image:1654593712276-618.png]]
1238 -
1239 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1240 -
1241 -
1242 -= 7.  FAQ =
1243 -
1244 -== 7.1  How to change the LoRa Frequency Bands/Region ==
1245 -
1246 1246  You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1247 1247  When downloading the images, choose the required image file for download. ​
1248 1248  
1249 1249  
1250 -= 8.  Trouble Shooting =
1019 += 5.  Trouble Shooting =
1251 1251  
1252 -== 8.1  AT Commands input doesn’t work ==
1021 +== 5.1  AT Commands input doesn’t work ==
1253 1253  
1254 1254  
1255 1255  (((
... ... @@ -1257,7 +1257,7 @@
1257 1257  )))
1258 1258  
1259 1259  
1260 -== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1029 +== 5.2  Significant error between the output distant value of LiDAR and actual distance ==
1261 1261  
1262 1262  
1263 1263  (((
... ... @@ -1282,10 +1282,10 @@
1282 1282  
1283 1283  
1284 1284  
1285 -= 9.  Order Info =
1054 += 6.  Order Info =
1286 1286  
1287 1287  
1288 -Part Number: (% style="color:blue" %)**LLDS12-XX**
1057 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY**
1289 1289  
1290 1290  
1291 1291  (% style="color:blue" %)**XX**(%%): The default frequency band
... ... @@ -1299,12 +1299,18 @@
1299 1299  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1300 1300  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1301 1301  
1302 -= 10. ​ Packing Info =
1071 +(% style="color:blue" %)**YY**(%%): Battery Option
1303 1303  
1073 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1074 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1304 1304  
1076 +
1077 += 7. ​ Packing Info =
1078 +
1079 +
1305 1305  **Package Includes**:
1306 1306  
1307 -* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1082 +* LDDS75 LoRaWAN Distance Detection Sensor x 1
1308 1308  
1309 1309  **Dimension and weight**:
1310 1310  
... ... @@ -1313,7 +1313,8 @@
1313 1313  * Package Size / pcs : cm
1314 1314  * Weight / pcs : g
1315 1315  
1316 -= 11.  ​Support =
1317 1317  
1092 += 8.  ​Support =
1093 +
1318 1318  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1319 1319  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654846127817-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content