Changes for page LDDS45 - LoRaWAN Distance Detection Sensor User Manual
Last modified by Xiaoling on 2025/04/27 13:54
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 30 added, 0 removed)
- 1654846127817-788.png
- 1654847051249-359.png
- 1654847583902-256.png
- 1654848616367-242.png
- 1654849068701-275.png
- 1654850511545-399.png
- 1654850829385-439.png
- 1654851029373-510.png
- 1654852175653-550.png
- 1654852253176-749.png
- image-20220610154839-1.png
- image-20220610155021-2.png
- image-20220610155021-3.png
- image-20220610161353-4.png
- image-20220610161353-5.png
- image-20220610161353-6.png
- image-20220610161353-7.png
- image-20220610161538-8.png
- image-20220610161538-9.png
- image-20220610161724-10.png
- image-20220610165129-11.png
- image-20220610172003-1.png
- image-20220610172003-2.png
- image-20220610172400-3.png
- image-20220610172924-4.png
- image-20220610172924-5.png
- image-20220610172924-6.png
- image-20220610173409-7.png
- image-20220610174836-8.png
- image-20220610174917-9.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -L LDS12-LoRaWANLiDAR ToF Distance Sensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,10 +1,8 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220610095606-1.png]]2 +[[image:1654846127817-788.png]] 3 3 4 - 5 5 **Contents:** 6 6 7 -{{toc/}} 8 8 9 9 10 10 ... ... @@ -14,38 +14,33 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==15 +== 1.1 What is LoRaWAN Distance Detection Sensor == 18 18 19 19 ((( 20 20 21 21 22 22 ((( 23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 24 -))) 21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 25 25 26 -((( 27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 -))) 29 29 30 -((( 31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 32 -))) 24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 33 33 34 -((( 35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 36 -))) 37 37 38 -((( 39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 40 -))) 27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 42 -((( 43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 29 + 30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 31 + 32 + 33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 34 + 35 + 36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors 44 44 ))) 45 45 ))) 46 46 47 47 48 -[[image:16548 26306458-414.png]]41 +[[image:1654847051249-359.png]] 49 49 50 50 51 51 ... ... @@ -52,47 +52,50 @@ 52 52 == 1.2 Features == 53 53 54 54 * LoRaWAN 1.0.3 Class A 55 -* Ultra -low power consumption56 -* Lasertechnologyfor distancedetection57 -* OperatingRange - 0.1m~~12m①58 -* Accuracy -±5cm@(0.1-6m),±1%@(6m-12m)59 -* Monitor BatteryLevel48 +* Ultra low power consumption 49 +* Distance Detection by Ultrasonic technology 50 +* Flat object range 280mm - 7500mm 51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 52 +* Cable Length : 25cm 60 60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 61 61 * AT Commands to change parameters 62 62 * Uplink on periodically 63 63 * Downlink to change configure 64 -* 8500mAh Battery for long term use 57 +* IP66 Waterproof Enclosure 58 +* 4000mAh or 8500mAh Battery for long term use 65 65 60 +== 1.3 Specification == 66 66 62 +=== 1.3.1 Rated environmental conditions === 67 67 64 +[[image:image-20220610154839-1.png]] 68 68 69 - ==1.3ProbeSpecification==66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 70 70 71 -* Storage temperature :-20℃~~75℃ 72 -* Operating temperature - -20℃~~60℃ 73 -* Operating Range - 0.1m~~12m① 74 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m) 75 -* Distance resolution - 5mm 76 -* Ambient light immunity - 70klux 77 -* Enclosure rating - IP65 78 -* Light source - LED 79 -* Central wavelength - 850nm 80 -* FOV - 3.6° 81 -* Material of enclosure - ABS+PC 82 -* Wire length - 25cm 68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 83 83 84 84 85 85 72 +=== 1.3.2 Effective measurement range Reference beam pattern === 86 86 87 - ==1.4ProbeDimension==74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 88 88 89 89 90 -[[image:1654827224480-952.png]] 91 91 78 +[[image:1654852253176-749.png]] 92 92 80 + 81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 82 + 83 + 84 +[[image:1654852175653-550.png]](% style="display:none" %) ** ** 85 + 86 + 87 + 93 93 == 1.5 Applications == 94 94 95 95 * Horizontal distance measurement 91 +* Liquid level measurement 96 96 * Parking management system 97 97 * Object proximity and presence detection 98 98 * Intelligent trash can management system ... ... @@ -99,29 +99,29 @@ 99 99 * Robot obstacle avoidance 100 100 * Automatic control 101 101 * Sewer 98 +* Bottom water level monitoring 102 102 103 - 104 - 105 - 106 106 == 1.6 Pin mapping and power on == 107 107 108 108 109 -[[image:16548 27332142-133.png]]103 +[[image:1654847583902-256.png]] 110 110 111 111 112 -= 2. Configure LLDS12 to connect to LoRaWAN network = 113 113 107 += 2. Configure LDDS75 to connect to LoRaWAN network = 108 + 114 114 == 2.1 How it works == 115 115 116 116 ((( 117 -The L LDS12is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect alocalLoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 118 118 ))) 119 119 120 120 ((( 121 -In case you can ’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 122 122 ))) 123 123 124 124 120 + 125 125 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 126 126 127 127 ((( ... ... @@ -129,7 +129,7 @@ 129 129 ))) 130 130 131 131 ((( 132 -[[image:16548 27857527-556.png]]128 +[[image:1654848616367-242.png]] 133 133 ))) 134 134 135 135 ((( ... ... @@ -137,57 +137,57 @@ 137 137 ))) 138 138 139 139 ((( 140 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LS PH01.136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 141 141 ))) 142 142 143 143 ((( 144 -Each LS PH01is shipped with a sticker with the default deviceEUIas below:140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 145 145 ))) 146 146 147 147 [[image:image-20220607170145-1.jpeg]] 148 148 149 149 146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 150 150 151 - You canenter this key in the LoRaWAN Server portal. Below is TTN screen shot:148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 152 152 150 +**Add APP EUI in the application** 153 153 154 - **Register the device**152 +[[image:image-20220610161353-4.png]] 155 155 154 +[[image:image-20220610161353-5.png]] 156 156 157 -[[image: 1654592600093-601.png]]156 +[[image:image-20220610161353-6.png]] 158 158 159 159 159 +[[image:image-20220610161353-7.png]] 160 160 161 -**Add APP EUI and DEV EUI** 162 162 163 - [[image:1654592619856-881.png]]162 +You can also choose to create the device manually. 164 164 164 + [[image:image-20220610161538-8.png]] 165 165 166 166 167 -**Add APP EUI in the application** 168 168 169 - [[image:1654592632656-512.png]]168 +**Add APP KEY and DEV EUI** 170 170 170 +[[image:image-20220610161538-9.png]] 171 171 172 172 173 -**Add APP KEY** 174 174 175 - [[image:1654592653453-934.png]]174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 176 176 177 177 178 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12 179 - 180 - 181 181 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 182 182 183 -[[image:image-2022060 7170442-2.png]]179 +[[image:image-20220610161724-10.png]] 184 184 185 185 186 186 ((( 187 -(% style="color:blue" %)**Step 3**(%%)**:** The L LDS12will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 188 188 ))) 189 189 190 -[[image:16548 33501679-968.png]]186 +[[image:1654849068701-275.png]] 191 191 192 192 193 193 ... ... @@ -194,11 +194,10 @@ 194 194 == 2.3 Uplink Payload == 195 195 196 196 ((( 197 -LLDS12 will uplink payload via LoRaWAN with below payload format: 198 -))) 193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 199 199 200 - (((201 - Uplink payload includesintotal11bytes.195 +Uplink payload includes in total 4 bytes. 196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 202 202 ))) 203 203 204 204 ((( ... ... @@ -208,23 +208,23 @@ 208 208 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 209 209 |=(% style="width: 62.5px;" %)((( 210 210 **Size (bytes)** 211 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1** 212 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)((( 213 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]] 214 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 215 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]] 216 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|((( 217 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 218 -))) 206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 208 +[[Distance>>||anchor="H2.3.3A0Distance"]] 219 219 220 -[[image:1654833689380-972.png]] 210 +(unit: mm) 211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 213 +)))|[[Sensor Flag>>path:#Sensor_Flag]] 221 221 215 +[[image:1654850511545-399.png]] 222 222 223 223 218 + 224 224 === 2.3.1 Battery Info === 225 225 226 226 227 -Check the battery voltage for L LDS12.222 +Check the battery voltage for LDDS75. 228 228 229 229 Ex1: 0x0B45 = 2885mV 230 230 ... ... @@ -232,49 +232,20 @@ 232 232 233 233 234 234 235 -=== 2.3.2 D S18B20 Temperaturesensor===230 +=== 2.3.2 Distance === 236 236 237 - Thisisoptional, usercanconnectexternalDS18B20sensor to the +3.3v, 1-wireand GND pin . and this field will report temperature.232 +Get the distance. Flat object range 280mm - 7500mm. 238 238 234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 239 239 240 -**Example**: 241 241 242 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 243 243 244 - If payload is: FF3FH : (FF3F & FC00==1) , temp=(FF3FH - 65536)/10 = -19.3degrees.240 +=== 2.3.3 Interrupt Pin === 245 245 246 - 247 - 248 -=== 2.3.3 Distance === 249 - 250 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 251 - 252 - 253 -**Example**: 254 - 255 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 256 - 257 - 258 - 259 -=== 2.3.4 Distance signal strength === 260 - 261 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 262 - 263 - 264 -**Example**: 265 - 266 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 267 - 268 -Customers can judge whether they need to adjust the environment based on the signal strength. 269 - 270 - 271 - 272 -=== 2.3.5 Interrupt Pin === 273 - 274 274 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 275 275 276 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 277 - 278 278 **Example:** 279 279 280 280 0x00: Normal uplink packet. ... ... @@ -283,55 +283,44 @@ 283 283 284 284 285 285 286 -=== 2.3. 6LiDARtemp ===252 +=== 2.3.4 DS18B20 Temperature sensor === 287 287 288 - Characterizetheinternaltemperature valueofthesensor.254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 289 289 290 -**Example: ** 291 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 292 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 256 +**Example**: 293 293 258 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 294 294 260 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 295 295 296 -= ==2.3.7MessageType===262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 297 297 298 -((( 299 -For a normal uplink payload, the message type is always 0x01. 300 -))) 301 301 302 -((( 303 -Valid Message Type: 304 -))) 305 305 266 +=== 2.3.5 Sensor Flag === 306 306 307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %) 308 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload** 309 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 310 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 268 +0x01: Detect Ultrasonic Sensor 311 311 270 +0x00: No Ultrasonic Sensor 312 312 313 313 273 +=== 274 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 314 314 315 -=== 2.3.8 Decode payload in The Things Network === 316 - 317 317 While using TTN network, you can add the payload format to decode the payload. 318 318 319 319 320 -[[image:16545 92762713-715.png]]279 +[[image:1654850829385-439.png]] 321 321 322 -((( 323 -The payload decoder function for TTN is here: 324 -))) 281 +The payload decoder function for TTN V3 is here: 325 325 326 -((( 327 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]] 328 -))) 283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 329 329 330 330 331 331 332 332 == 2.4 Uplink Interval == 333 333 334 -The L LDS12by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 335 335 336 336 337 337 ... ... @@ -362,47 +362,25 @@ 362 362 363 363 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 364 364 365 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12product.**320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 366 366 367 -[[image:16548 32691989-514.png]]322 +[[image:1654851029373-510.png]] 368 368 369 369 370 - [[image:1654592833877-762.png]]325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 371 371 327 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 372 372 373 -[[image:1654832740634-933.png]] 374 374 375 375 376 - 377 -((( 378 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode** 379 -))) 380 - 381 -((( 382 - 383 -))) 384 - 385 -[[image:1654833065139-942.png]] 386 - 387 - 388 - 389 -[[image:1654833092678-390.png]] 390 - 391 - 392 - 393 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 394 - 395 -[[image:1654833163048-332.png]] 396 - 397 - 398 - 399 399 == 2.6 Frequency Plans == 400 400 401 401 ((( 402 -The L LDS12uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 403 403 ))) 404 404 405 405 338 + 406 406 === 2.6.1 EU863-870 (EU868) === 407 407 408 408 ((( ... ... @@ -466,20 +466,51 @@ 466 466 === 2.6.2 US902-928(US915) === 467 467 468 468 ((( 469 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 470 -))) 402 +Used in USA, Canada and South America. Default use CHE=2 471 471 472 -((( 473 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 474 -))) 404 +(% style="color:blue" %)**Uplink:** 475 475 476 -((( 477 -After Join success, the end node will switch to the correct sub band by: 478 -))) 406 +903.9 - SF7BW125 to SF10BW125 479 479 480 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 481 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 408 +904.1 - SF7BW125 to SF10BW125 482 482 410 +904.3 - SF7BW125 to SF10BW125 411 + 412 +904.5 - SF7BW125 to SF10BW125 413 + 414 +904.7 - SF7BW125 to SF10BW125 415 + 416 +904.9 - SF7BW125 to SF10BW125 417 + 418 +905.1 - SF7BW125 to SF10BW125 419 + 420 +905.3 - SF7BW125 to SF10BW125 421 + 422 + 423 +(% style="color:blue" %)**Downlink:** 424 + 425 +923.3 - SF7BW500 to SF12BW500 426 + 427 +923.9 - SF7BW500 to SF12BW500 428 + 429 +924.5 - SF7BW500 to SF12BW500 430 + 431 +925.1 - SF7BW500 to SF12BW500 432 + 433 +925.7 - SF7BW500 to SF12BW500 434 + 435 +926.3 - SF7BW500 to SF12BW500 436 + 437 +926.9 - SF7BW500 to SF12BW500 438 + 439 +927.5 - SF7BW500 to SF12BW500 440 + 441 +923.3 - SF12BW500(RX2 downlink only) 442 + 443 + 444 + 445 +))) 446 + 483 483 === 2.6.3 CN470-510 (CN470) === 484 484 485 485 ((( ... ... @@ -568,28 +568,54 @@ 568 568 569 569 570 570 571 - 572 572 === 2.6.4 AU915-928(AU915) === 573 573 574 574 ((( 575 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 576 -))) 538 +Default use CHE=2 577 577 578 -((( 579 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 580 -))) 540 +(% style="color:blue" %)**Uplink:** 581 581 582 -((( 583 - 584 -))) 542 +916.8 - SF7BW125 to SF12BW125 585 585 586 -((( 587 -After Join success, the end node will switch to the correct sub band by: 588 -))) 544 +917.0 - SF7BW125 to SF12BW125 589 589 590 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 591 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 546 +917.2 - SF7BW125 to SF12BW125 592 592 548 +917.4 - SF7BW125 to SF12BW125 549 + 550 +917.6 - SF7BW125 to SF12BW125 551 + 552 +917.8 - SF7BW125 to SF12BW125 553 + 554 +918.0 - SF7BW125 to SF12BW125 555 + 556 +918.2 - SF7BW125 to SF12BW125 557 + 558 + 559 +(% style="color:blue" %)**Downlink:** 560 + 561 +923.3 - SF7BW500 to SF12BW500 562 + 563 +923.9 - SF7BW500 to SF12BW500 564 + 565 +924.5 - SF7BW500 to SF12BW500 566 + 567 +925.1 - SF7BW500 to SF12BW500 568 + 569 +925.7 - SF7BW500 to SF12BW500 570 + 571 +926.3 - SF7BW500 to SF12BW500 572 + 573 +926.9 - SF7BW500 to SF12BW500 574 + 575 +927.5 - SF7BW500 to SF12BW500 576 + 577 +923.3 - SF12BW500(RX2 downlink only) 578 + 579 + 580 + 581 +))) 582 + 593 593 === 2.6.5 AS920-923 & AS923-925 (AS923) === 594 594 595 595 ((( ... ... @@ -698,7 +698,6 @@ 698 698 699 699 700 700 701 - 702 702 === 2.6.6 KR920-923 (KR920) === 703 703 704 704 ((( ... ... @@ -771,7 +771,6 @@ 771 771 772 772 773 773 774 - 775 775 === 2.6.7 IN865-867 (IN865) === 776 776 777 777 ((( ... ... @@ -808,18 +808,20 @@ 808 808 809 809 810 810 811 - 812 812 == 2.7 LED Indicator == 813 813 814 -The L LDS12has an internal LED which is to show the status of different state.801 +The LDDS75 has an internal LED which is to show the status of different state. 815 815 816 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected. 803 + 804 +* Blink once when device power on. 805 +* The device detects the sensor and flashes 5 times. 806 +* Solid ON for 5 seconds once device successful Join the network. 817 817 * Blink once when device transmit a packet. 818 818 819 819 == 2.8 Firmware Change Log == 820 820 821 821 822 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/L LDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 823 823 824 824 825 825 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] ... ... @@ -826,71 +826,58 @@ 826 826 827 827 828 828 829 -= 3.LiDAR ToFMeasurement=819 +== 2.9 Mechanical == 830 830 831 -== 3.1 Principle of Distance Measurement == 832 832 833 - The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contactingobject.Theproduct obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.822 +[[image:image-20220610172003-1.png]] 834 834 835 -[[image: 1654831757579-263.png]]824 +[[image:image-20220610172003-2.png]] 836 836 837 837 827 +== 2.10 Battery Analysis == 838 838 839 -== 3.2Distance MeasurementCharacteristics==829 +=== 2.10.1 Battery Type === 840 840 841 - Withoptimization oflight pathand algorithm,TheLiDARprobehas minimizedinfluence fromexternalenvironmentondistancemeasurementperformance.Despite that,the rangeofdistancemeasurementmaystillbeaffectedbytheenvironment illuminationintensityandthe reflectivityofdetection object. As showninbelow:831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 842 842 843 -[[image:1654831774373-275.png]] 844 844 834 +The battery related documents as below: 845 845 846 -((( 847 - (%style="color:blue"%)**① **(%%)Representsthe detectionblind zone of The LiDARprobe, 0-10cm,withinwhichtheoutput data is unreliable.836 +* ((( 837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 848 848 ))) 849 - 850 -((( 851 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 839 +* ((( 840 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 852 852 ))) 853 - 854 -((( 855 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 842 +* ((( 843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 856 856 ))) 857 857 846 + [[image:image-20220610172400-3.png]] 858 858 859 -((( 860 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 861 -))) 862 862 863 863 864 - [[image:1654831797521-720.png]]850 +=== 2.10.2 Replace the battery === 865 865 852 +((( 853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 854 +))) 866 866 867 867 ((( 868 - Inthe formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.857 + 869 869 ))) 870 870 871 -[[image:1654831810009-716.png]] 872 - 873 - 874 874 ((( 875 - If the lightspotreachestwoobjectswithdifferent distances,asshown inFigure3, theoutput distancevaluewillbeavaluebetween theactual distancevaluesofthe twoobjects.Forahighaccuracy requirementinpractice,theabove situation should benoticedtoavoid themeasurementrror.861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 876 876 ))) 877 877 878 878 879 879 880 -= =3.3Notice ofusage:==866 += 3. Configure LLDS12 via AT Command or LoRaWAN Downlink = 881 881 882 -Possible invalid /wrong reading for LiDAR ToF tech: 883 - 884 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 885 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong. 886 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 887 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window. 888 - 889 -= 4. Configure LLDS12 via AT Command or LoRaWAN Downlink = 890 - 891 891 ((( 892 892 ((( 893 -Use can configure L LDS12via AT Command or LoRaWAN Downlink.870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink. 894 894 ))) 895 895 ))) 896 896 ... ... @@ -911,7 +911,7 @@ 911 911 ))) 912 912 913 913 ((( 914 -There are two kinds of commands to configure L LDS12, they are:891 +There are two kinds of commands to configure LDDS75, they are: 915 915 ))) 916 916 ))) 917 917 ... ... @@ -952,301 +952,96 @@ 952 952 953 953 * ((( 954 954 ((( 955 -(% style="color:#4f81bd" %)** Commands special design for L LDS12**932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75** 956 956 ))) 957 957 ))) 958 958 959 959 ((( 960 960 ((( 961 -These commands only valid for L LDS12, as below:938 +These commands only valid for LDDS75, as below: 962 962 ))) 963 963 ))) 964 964 965 965 966 966 967 -== 4.1SetTransmitInterval Time==944 +== 3.1 Access AT Commands == 968 968 969 - Feature:ChangeLoRaWANEndNode TransmitInterval.946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below. 970 970 971 - (% style="color:#037691"%)**AT Command: AT+TDC**948 +[[image:image-20220610172924-4.png||height="483" width="988"]] 972 972 973 -[[image:image-20220607171554-8.png]] 974 974 951 +Or if you have below board, use below connection: 975 975 976 -((( 977 -(% style="color:#037691" %)**Downlink Command: 0x01** 978 -))) 979 979 980 -((( 981 -Format: Command Code (0x01) followed by 3 bytes time value. 982 -))) 954 +[[image:image-20220610172924-5.png]] 983 983 984 -((( 985 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 986 -))) 987 987 988 -* ((( 989 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 990 -))) 991 -* ((( 992 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 993 993 994 994 995 - 996 -))) 960 + [[image:image-20220610172924-6.png||height="601" width="860"]] 997 997 998 998 999 -== 4.2 Set Interrupt Mode == 1000 1000 1001 - Feature,Set Interruptmodefor GPIO_EXIT.964 +== 3.2 Set Transmit Interval Time == 1002 1002 1003 - (% style="color:#037691"%)**ATCommand:AT+INTMOD**966 +Feature: Change LoRaWAN End Node Transmit Interval. 1004 1004 1005 - [[image:image-20220610105806-2.png]]968 +(% style="color:#037691" %)**AT Command: AT+TDC** 1006 1006 970 +[[image:image-20220610173409-7.png]] 1007 1007 1008 -((( 1009 -(% style="color:#037691" %)**Downlink Command: 0x06** 1010 -))) 1011 1011 1012 1012 ((( 1013 - Format: CommandCode (0x06) followed by 3 bytes.974 +(% style="color:#037691" %)**Downlink Command: 0x01** 1014 1014 ))) 1015 1015 1016 1016 ((( 1017 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1018 -))) 1019 - 1020 -* ((( 1021 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1022 -))) 1023 -* ((( 1024 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1025 -))) 1026 - 1027 - 1028 -== 4.3 Get Firmware Version Info == 1029 - 1030 -Feature: use downlink to get firmware version. 1031 - 1032 -(% style="color:#037691" %)**Downlink Command: 0x26** 1033 - 1034 -[[image:image-20220607171917-10.png]] 1035 - 1036 -* Reply to the confirmation package: 26 01 1037 -* Reply to non-confirmed packet: 26 00 1038 - 1039 -Device will send an uplink after got this downlink command. With below payload: 1040 - 1041 -Configures info payload: 1042 - 1043 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 1044 -|=((( 1045 -**Size(bytes)** 1046 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1** 1047 -|**Value**|Software Type|((( 1048 -Frequency 1049 - 1050 -Band 1051 -)))|Sub-band|((( 1052 -Firmware 1053 - 1054 -Version 1055 -)))|Sensor Type|Reserve|((( 1056 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 1057 -Always 0x02 1058 -))) 1059 - 1060 -**Software Type**: Always 0x03 for LLDS12 1061 - 1062 - 1063 -**Frequency Band**: 1064 - 1065 -*0x01: EU868 1066 - 1067 -*0x02: US915 1068 - 1069 -*0x03: IN865 1070 - 1071 -*0x04: AU915 1072 - 1073 -*0x05: KZ865 1074 - 1075 -*0x06: RU864 1076 - 1077 -*0x07: AS923 1078 - 1079 -*0x08: AS923-1 1080 - 1081 -*0x09: AS923-2 1082 - 1083 -*0xa0: AS923-3 1084 - 1085 - 1086 -**Sub-Band**: value 0x00 ~~ 0x08 1087 - 1088 - 1089 -**Firmware Version**: 0x0100, Means: v1.0.0 version 1090 - 1091 - 1092 -**Sensor Type**: 1093 - 1094 -0x01: LSE01 1095 - 1096 -0x02: LDDS75 1097 - 1098 -0x03: LDDS20 1099 - 1100 -0x04: LLMS01 1101 - 1102 -0x05: LSPH01 1103 - 1104 -0x06: LSNPK01 1105 - 1106 -0x07: LLDS12 1107 - 1108 - 1109 - 1110 -= 5. Battery & How to replace = 1111 - 1112 -== 5.1 Battery Type == 1113 - 1114 1114 ((( 1115 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 1116 -))) 979 +Format: Command Code (0x01) followed by 3 bytes time value. 1117 1117 1118 -((( 1119 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 1120 -))) 981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 1121 1121 1122 -[[image:1654593587246-335.png]] 1123 - 1124 - 1125 -Minimum Working Voltage for the LLDS12: 1126 - 1127 -LLDS12: 2.45v ~~ 3.6v 1128 - 1129 - 1130 - 1131 -== 5.2 Replace Battery == 1132 - 1133 -((( 1134 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery. 983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1135 1135 ))) 1136 1136 1137 -((( 1138 -And make sure the positive and negative pins match. 1139 -))) 1140 1140 1141 - 1142 - 1143 -== 5.3 Power Consumption Analyze == 1144 - 1145 -((( 1146 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 988 + 1147 1147 ))) 1148 1148 1149 -((( 1150 -Instruction to use as below: 1151 -))) 991 +== 3.3 Set Interrupt Mode == 1152 1152 993 +Feature, Set Interrupt mode for GPIO_EXIT. 1153 1153 1154 - **Step1**:Downlinkthe up-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsx from:995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD** 1155 1155 1156 -[[ https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]997 +[[image:image-20220610174917-9.png]] 1157 1157 1158 1158 1159 - **Step2**: Opentandchoose1000 +(% style="color:#037691" %)**Downlink Command: 0x06** 1160 1160 1161 -* Product Model 1162 -* Uplink Interval 1163 -* Working Mode 1002 +Format: Command Code (0x06) followed by 3 bytes. 1164 1164 1165 - AndtheLifeexpectationindifferencecasewillbeshownonthe right.1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1166 1166 1167 -[[image:1654593605679-189.png]] 1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1168 1168 1169 1169 1170 -The battery related documents as below: 1171 1171 1172 -* ((( 1173 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 1174 -))) 1175 -* ((( 1176 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 1177 -))) 1178 -* ((( 1179 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 1180 -))) 1011 += 4. FAQ = 1181 1181 1182 - [[image:image-20220607172042-11.png]]1013 +== 4.1 How to change the LoRa Frequency Bands/Region == 1183 1183 1184 - 1185 - 1186 -=== 5.3.1 Battery Note === 1187 - 1188 -((( 1189 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 1190 -))) 1191 - 1192 - 1193 - 1194 -=== 5.3.2 Replace the battery === 1195 - 1196 -((( 1197 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 1198 -))) 1199 - 1200 -((( 1201 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 1202 -))) 1203 - 1204 - 1205 - 1206 -= 6. Use AT Command = 1207 - 1208 -== 6.1 Access AT Commands == 1209 - 1210 -LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below. 1211 - 1212 -[[image:1654593668970-604.png]] 1213 - 1214 -**Connection:** 1215 - 1216 -(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND** 1217 - 1218 -(% style="background-color:yellow" %)** USB TTL TXD <~-~-~-~-> UART_RXD** 1219 - 1220 -(% style="background-color:yellow" %)** USB TTL RXD <~-~-~-~-> UART_TXD** 1221 - 1222 - 1223 -((( 1224 -((( 1225 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12. 1226 -))) 1227 - 1228 -((( 1229 -LLDS12 will output system info once power on as below: 1230 -))) 1231 -))) 1232 - 1233 - 1234 - [[image:1654593712276-618.png]] 1235 - 1236 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]]. 1237 - 1238 - 1239 -= 7. FAQ = 1240 - 1241 -== 7.1 How to change the LoRa Frequency Bands/Region == 1242 - 1243 1243 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]]. 1244 1244 When downloading the images, choose the required image file for download. 1245 1245 1246 1246 1247 -= 8. Trouble Shooting =1019 += 5. Trouble Shooting = 1248 1248 1249 -== 8.1 AT Commands input doesn’t work ==1021 +== 5.1 AT Commands input doesn’t work == 1250 1250 1251 1251 1252 1252 ((( ... ... @@ -1254,7 +1254,7 @@ 1254 1254 ))) 1255 1255 1256 1256 1257 -== 8.2 Significant error between the output distant value of LiDAR and actual distance ==1029 +== 5.2 Significant error between the output distant value of LiDAR and actual distance == 1258 1258 1259 1259 1260 1260 ((( ... ... @@ -1279,10 +1279,10 @@ 1279 1279 1280 1280 1281 1281 1282 -= 9. Order Info =1054 += 6. Order Info = 1283 1283 1284 1284 1285 -Part Number: (% style="color:blue" %)**L LDS12-XX**1057 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY** 1286 1286 1287 1287 1288 1288 (% style="color:blue" %)**XX**(%%): The default frequency band ... ... @@ -1296,12 +1296,18 @@ 1296 1296 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1297 1297 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1298 1298 1299 -= 10. PackingInfo=1071 +(% style="color:blue" %)**YY**(%%): Battery Option 1300 1300 1073 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1074 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1301 1301 1076 + 1077 += 7. Packing Info = 1078 + 1079 + 1302 1302 **Package Includes**: 1303 1303 1304 -* L LDS12LoRaWANLiDAR Distance Sensor x 11082 +* LDDS75 LoRaWAN Distance Detection Sensor x 1 1305 1305 1306 1306 **Dimension and weight**: 1307 1307 ... ... @@ -1310,7 +1310,8 @@ 1310 1310 * Package Size / pcs : cm 1311 1311 * Weight / pcs : g 1312 1312 1313 -= 11. Support = 1314 1314 1092 += 8. Support = 1093 + 1315 1315 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1316 1316 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
- 1654846127817-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +107.3 KB - Content
- 1654847051249-359.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654847583902-256.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1654848616367-242.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654849068701-275.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850511545-399.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850829385-439.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654851029373-510.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654852175653-550.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.2 KB - Content
- 1654852253176-749.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.6 KB - Content
- image-20220610154839-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.3 KB - Content
- image-20220610155021-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +164.8 KB - Content
- image-20220610155021-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.8 KB - Content
- image-20220610161353-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +32.2 KB - Content
- image-20220610161353-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.7 KB - Content
- image-20220610161353-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20220610161353-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.1 KB - Content
- image-20220610161538-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.2 KB - Content
- image-20220610161538-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +28.7 KB - Content
- image-20220610161724-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +180.0 KB - Content
- image-20220610165129-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +50.5 KB - Content
- image-20220610172003-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.9 KB - Content
- image-20220610172003-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.6 KB - Content
- image-20220610172400-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220610172924-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20220610172924-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +901.4 KB - Content
- image-20220610172924-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.6 KB - Content
- image-20220610173409-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.8 KB - Content
- image-20220610174836-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +34.3 KB - Content
- image-20220610174917-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +34.3 KB - Content