Changes for page LDDS45 - LoRaWAN Distance Detection Sensor User Manual
Last modified by Xiaoling on 2025/04/27 13:54
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 30 added, 0 removed)
- 1654846127817-788.png
- 1654847051249-359.png
- 1654847583902-256.png
- 1654848616367-242.png
- 1654849068701-275.png
- 1654850511545-399.png
- 1654850829385-439.png
- 1654851029373-510.png
- 1654852175653-550.png
- 1654852253176-749.png
- image-20220610154839-1.png
- image-20220610155021-2.png
- image-20220610155021-3.png
- image-20220610161353-4.png
- image-20220610161353-5.png
- image-20220610161353-6.png
- image-20220610161353-7.png
- image-20220610161538-8.png
- image-20220610161538-9.png
- image-20220610161724-10.png
- image-20220610165129-11.png
- image-20220610172003-1.png
- image-20220610172003-2.png
- image-20220610172400-3.png
- image-20220610172924-4.png
- image-20220610172924-5.png
- image-20220610172924-6.png
- image-20220610173409-7.png
- image-20220610174836-8.png
- image-20220610174917-9.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -L LDS12-LoRaWANLiDAR ToF Distance Sensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,10 +1,8 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220610095606-1.png]]2 +[[image:1654846127817-788.png]] 3 3 4 - 5 5 **Contents:** 6 6 7 -{{toc/}} 8 8 9 9 10 10 ... ... @@ -14,38 +14,33 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==15 +== 1.1 What is LoRaWAN Distance Detection Sensor == 18 18 19 19 ((( 20 20 21 21 22 22 ((( 23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 24 -))) 21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 25 25 26 -((( 27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 -))) 29 29 30 -((( 31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 32 -))) 24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 33 33 34 -((( 35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 36 -))) 37 37 38 -((( 39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 40 -))) 27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 42 -((( 43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 29 + 30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 31 + 32 + 33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 34 + 35 + 36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors 44 44 ))) 45 45 ))) 46 46 47 47 48 -[[image:16548 26306458-414.png]]41 +[[image:1654847051249-359.png]] 49 49 50 50 51 51 ... ... @@ -52,47 +52,50 @@ 52 52 == 1.2 Features == 53 53 54 54 * LoRaWAN 1.0.3 Class A 55 -* Ultra -low power consumption56 -* Lasertechnologyfor distancedetection57 -* OperatingRange - 0.1m~~12m①58 -* Accuracy -±5cm@(0.1-6m),±1%@(6m-12m)59 -* Monitor BatteryLevel48 +* Ultra low power consumption 49 +* Distance Detection by Ultrasonic technology 50 +* Flat object range 280mm - 7500mm 51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 52 +* Cable Length : 25cm 60 60 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 61 61 * AT Commands to change parameters 62 62 * Uplink on periodically 63 63 * Downlink to change configure 64 -* 8500mAh Battery for long term use 57 +* IP66 Waterproof Enclosure 58 +* 4000mAh or 8500mAh Battery for long term use 65 65 60 +== 1.3 Specification == 66 66 62 +=== 1.3.1 Rated environmental conditions === 67 67 64 +[[image:image-20220610154839-1.png]] 68 68 69 - ==1.3ProbeSpecification==66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 70 70 71 -* Storage temperature :-20℃~~75℃ 72 -* Operating temperature - -20℃~~60℃ 73 -* Operating Range - 0.1m~~12m① 74 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m) 75 -* Distance resolution - 5mm 76 -* Ambient light immunity - 70klux 77 -* Enclosure rating - IP65 78 -* Light source - LED 79 -* Central wavelength - 850nm 80 -* FOV - 3.6° 81 -* Material of enclosure - ABS+PC 82 -* Wire length - 25cm 68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 83 83 84 84 85 85 72 +=== 1.3.2 Effective measurement range Reference beam pattern === 86 86 87 - ==1.4ProbeDimension==74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 88 88 89 89 90 -[[image:1654827224480-952.png]] 91 91 78 +[[image:1654852253176-749.png]] 92 92 80 + 81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 82 + 83 + 84 +[[image:1654852175653-550.png]](% style="display:none" %) ** ** 85 + 86 + 87 + 93 93 == 1.5 Applications == 94 94 95 95 * Horizontal distance measurement 91 +* Liquid level measurement 96 96 * Parking management system 97 97 * Object proximity and presence detection 98 98 * Intelligent trash can management system ... ... @@ -99,26 +99,29 @@ 99 99 * Robot obstacle avoidance 100 100 * Automatic control 101 101 * Sewer 98 +* Bottom water level monitoring 102 102 103 103 == 1.6 Pin mapping and power on == 104 104 105 105 106 -[[image:16548 27332142-133.png]]103 +[[image:1654847583902-256.png]] 107 107 108 108 109 -= 2. Configure LLDS12 to connect to LoRaWAN network = 110 110 107 += 2. Configure LDDS75 to connect to LoRaWAN network = 108 + 111 111 == 2.1 How it works == 112 112 113 113 ((( 114 -The L LDS12is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect alocalLoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 115 115 ))) 116 116 117 117 ((( 118 -In case you can ’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 119 119 ))) 120 120 121 121 120 + 122 122 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 123 123 124 124 ((( ... ... @@ -126,7 +126,7 @@ 126 126 ))) 127 127 128 128 ((( 129 -[[image:16548 27857527-556.png]]128 +[[image:1654848616367-242.png]] 130 130 ))) 131 131 132 132 ((( ... ... @@ -134,57 +134,57 @@ 134 134 ))) 135 135 136 136 ((( 137 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LS PH01.136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 138 138 ))) 139 139 140 140 ((( 141 -Each LS PH01is shipped with a sticker with the default deviceEUIas below:140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 142 142 ))) 143 143 144 144 [[image:image-20220607170145-1.jpeg]] 145 145 146 146 146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 147 147 148 - You canenter this key in the LoRaWAN Server portal. Below is TTN screen shot:148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 149 149 150 +**Add APP EUI in the application** 150 150 151 - **Register the device**152 +[[image:image-20220610161353-4.png]] 152 152 154 +[[image:image-20220610161353-5.png]] 153 153 154 -[[image: 1654592600093-601.png]]156 +[[image:image-20220610161353-6.png]] 155 155 156 156 159 +[[image:image-20220610161353-7.png]] 157 157 158 -**Add APP EUI and DEV EUI** 159 159 160 - [[image:1654592619856-881.png]]162 +You can also choose to create the device manually. 161 161 164 + [[image:image-20220610161538-8.png]] 162 162 163 163 164 -**Add APP EUI in the application** 165 165 166 - [[image:1654592632656-512.png]]168 +**Add APP KEY and DEV EUI** 167 167 170 +[[image:image-20220610161538-9.png]] 168 168 169 169 170 -**Add APP KEY** 171 171 172 - [[image:1654592653453-934.png]]174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 173 173 174 174 175 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12 176 - 177 - 178 178 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 179 179 180 -[[image:image-2022060 7170442-2.png]]179 +[[image:image-20220610161724-10.png]] 181 181 182 182 183 183 ((( 184 -(% style="color:blue" %)**Step 3**(%%)**:** The L LDS12will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 185 185 ))) 186 186 187 -[[image:16548 33501679-968.png]]186 +[[image:1654849068701-275.png]] 188 188 189 189 190 190 ... ... @@ -191,11 +191,10 @@ 191 191 == 2.3 Uplink Payload == 192 192 193 193 ((( 194 -LLDS12 will uplink payload via LoRaWAN with below payload format: 195 -))) 193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 196 196 197 - (((198 - Uplink payload includesintotal11bytes.195 +Uplink payload includes in total 4 bytes. 196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 199 199 ))) 200 200 201 201 ((( ... ... @@ -205,23 +205,23 @@ 205 205 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 206 206 |=(% style="width: 62.5px;" %)((( 207 207 **Size (bytes)** 208 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1** 209 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)((( 210 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]] 211 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 212 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]] 213 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|((( 214 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 215 -))) 206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 208 +[[Distance>>||anchor="H2.3.3A0Distance"]] 216 216 217 -[[image:1654833689380-972.png]] 210 +(unit: mm) 211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 213 +)))|[[Sensor Flag>>path:#Sensor_Flag]] 218 218 215 +[[image:1654850511545-399.png]] 219 219 220 220 218 + 221 221 === 2.3.1 Battery Info === 222 222 223 223 224 -Check the battery voltage for L LDS12.222 +Check the battery voltage for LDDS75. 225 225 226 226 Ex1: 0x0B45 = 2885mV 227 227 ... ... @@ -229,49 +229,20 @@ 229 229 230 230 231 231 232 -=== 2.3.2 D S18B20 Temperaturesensor===230 +=== 2.3.2 Distance === 233 233 234 - Thisisoptional, usercanconnectexternalDS18B20sensor to the +3.3v, 1-wireand GND pin . and this field will report temperature.232 +Get the distance. Flat object range 280mm - 7500mm. 235 235 234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 236 236 237 -**Example**: 238 238 239 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 240 240 241 - If payload is: FF3FH : (FF3F & FC00==1) , temp=(FF3FH - 65536)/10 = -19.3degrees.240 +=== 2.3.3 Interrupt Pin === 242 242 243 - 244 - 245 -=== 2.3.3 Distance === 246 - 247 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 248 - 249 - 250 -**Example**: 251 - 252 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 253 - 254 - 255 - 256 -=== 2.3.4 Distance signal strength === 257 - 258 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 259 - 260 - 261 -**Example**: 262 - 263 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 264 - 265 -Customers can judge whether they need to adjust the environment based on the signal strength. 266 - 267 - 268 - 269 -=== 2.3.5 Interrupt Pin === 270 - 271 271 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 272 272 273 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]]. 274 - 275 275 **Example:** 276 276 277 277 0x00: Normal uplink packet. ... ... @@ -280,52 +280,44 @@ 280 280 281 281 282 282 283 -=== 2.3. 6LiDARtemp ===252 +=== 2.3.4 DS18B20 Temperature sensor === 284 284 285 - Characterizetheinternaltemperature valueofthesensor.254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 286 286 287 -**Example: ** 288 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 289 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 256 +**Example**: 290 290 258 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 291 291 260 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 292 292 293 -= ==2.3.7MessageType===262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 294 294 295 -((( 296 -For a normal uplink payload, the message type is always 0x01. 297 -))) 298 298 299 -((( 300 -Valid Message Type: 301 -))) 302 302 266 +=== 2.3.5 Sensor Flag === 303 303 304 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %) 305 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload** 306 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]] 307 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]] 268 +0x01: Detect Ultrasonic Sensor 308 308 309 - ===2.3.8 Decodepayload inTheThingsNetwork ===270 +0x00: No Ultrasonic Sensor 310 310 272 + 273 +=== 274 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 275 + 311 311 While using TTN network, you can add the payload format to decode the payload. 312 312 313 313 314 -[[image:16545 92762713-715.png]]279 +[[image:1654850829385-439.png]] 315 315 316 -((( 317 -The payload decoder function for TTN is here: 318 -))) 281 +The payload decoder function for TTN V3 is here: 319 319 320 -((( 321 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]] 322 -))) 283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 323 323 324 324 325 325 326 326 == 2.4 Uplink Interval == 327 327 328 -The L LDS12by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 329 329 330 330 331 331 ... ... @@ -356,47 +356,25 @@ 356 356 357 357 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 358 358 359 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12product.**320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 360 360 361 -[[image:16548 32691989-514.png]]322 +[[image:1654851029373-510.png]] 362 362 363 363 364 - [[image:1654592833877-762.png]]325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 365 365 327 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 366 366 367 -[[image:1654832740634-933.png]] 368 368 369 369 370 - 371 -((( 372 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode** 373 -))) 374 - 375 -((( 376 - 377 -))) 378 - 379 -[[image:1654833065139-942.png]] 380 - 381 - 382 - 383 -[[image:1654833092678-390.png]] 384 - 385 - 386 - 387 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 388 - 389 -[[image:1654833163048-332.png]] 390 - 391 - 392 - 393 393 == 2.6 Frequency Plans == 394 394 395 395 ((( 396 -The L LDS12uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 397 397 ))) 398 398 399 399 338 + 400 400 === 2.6.1 EU863-870 (EU868) === 401 401 402 402 ((( ... ... @@ -460,20 +460,51 @@ 460 460 === 2.6.2 US902-928(US915) === 461 461 462 462 ((( 463 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 464 -))) 402 +Used in USA, Canada and South America. Default use CHE=2 465 465 466 -((( 467 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 468 -))) 404 +(% style="color:blue" %)**Uplink:** 469 469 470 -((( 471 -After Join success, the end node will switch to the correct sub band by: 472 -))) 406 +903.9 - SF7BW125 to SF10BW125 473 473 474 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 475 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 408 +904.1 - SF7BW125 to SF10BW125 476 476 410 +904.3 - SF7BW125 to SF10BW125 411 + 412 +904.5 - SF7BW125 to SF10BW125 413 + 414 +904.7 - SF7BW125 to SF10BW125 415 + 416 +904.9 - SF7BW125 to SF10BW125 417 + 418 +905.1 - SF7BW125 to SF10BW125 419 + 420 +905.3 - SF7BW125 to SF10BW125 421 + 422 + 423 +(% style="color:blue" %)**Downlink:** 424 + 425 +923.3 - SF7BW500 to SF12BW500 426 + 427 +923.9 - SF7BW500 to SF12BW500 428 + 429 +924.5 - SF7BW500 to SF12BW500 430 + 431 +925.1 - SF7BW500 to SF12BW500 432 + 433 +925.7 - SF7BW500 to SF12BW500 434 + 435 +926.3 - SF7BW500 to SF12BW500 436 + 437 +926.9 - SF7BW500 to SF12BW500 438 + 439 +927.5 - SF7BW500 to SF12BW500 440 + 441 +923.3 - SF12BW500(RX2 downlink only) 442 + 443 + 444 + 445 +))) 446 + 477 477 === 2.6.3 CN470-510 (CN470) === 478 478 479 479 ((( ... ... @@ -562,28 +562,54 @@ 562 562 563 563 564 564 565 - 566 566 === 2.6.4 AU915-928(AU915) === 567 567 568 568 ((( 569 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 570 -))) 538 +Default use CHE=2 571 571 572 -((( 573 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 574 -))) 540 +(% style="color:blue" %)**Uplink:** 575 575 576 -((( 577 - 578 -))) 542 +916.8 - SF7BW125 to SF12BW125 579 579 580 -((( 581 -After Join success, the end node will switch to the correct sub band by: 582 -))) 544 +917.0 - SF7BW125 to SF12BW125 583 583 584 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 585 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 546 +917.2 - SF7BW125 to SF12BW125 586 586 548 +917.4 - SF7BW125 to SF12BW125 549 + 550 +917.6 - SF7BW125 to SF12BW125 551 + 552 +917.8 - SF7BW125 to SF12BW125 553 + 554 +918.0 - SF7BW125 to SF12BW125 555 + 556 +918.2 - SF7BW125 to SF12BW125 557 + 558 + 559 +(% style="color:blue" %)**Downlink:** 560 + 561 +923.3 - SF7BW500 to SF12BW500 562 + 563 +923.9 - SF7BW500 to SF12BW500 564 + 565 +924.5 - SF7BW500 to SF12BW500 566 + 567 +925.1 - SF7BW500 to SF12BW500 568 + 569 +925.7 - SF7BW500 to SF12BW500 570 + 571 +926.3 - SF7BW500 to SF12BW500 572 + 573 +926.9 - SF7BW500 to SF12BW500 574 + 575 +927.5 - SF7BW500 to SF12BW500 576 + 577 +923.3 - SF12BW500(RX2 downlink only) 578 + 579 + 580 + 581 +))) 582 + 587 587 === 2.6.5 AS920-923 & AS923-925 (AS923) === 588 588 589 589 ((( ... ... @@ -692,7 +692,6 @@ 692 692 693 693 694 694 695 - 696 696 === 2.6.6 KR920-923 (KR920) === 697 697 698 698 ((( ... ... @@ -765,7 +765,6 @@ 765 765 766 766 767 767 768 - 769 769 === 2.6.7 IN865-867 (IN865) === 770 770 771 771 ((( ... ... @@ -802,18 +802,20 @@ 802 802 803 803 804 804 805 - 806 806 == 2.7 LED Indicator == 807 807 808 -The L LDS12has an internal LED which is to show the status of different state.801 +The LDDS75 has an internal LED which is to show the status of different state. 809 809 810 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected. 803 + 804 +* Blink once when device power on. 805 +* The device detects the sensor and flashes 5 times. 806 +* Solid ON for 5 seconds once device successful Join the network. 811 811 * Blink once when device transmit a packet. 812 812 813 813 == 2.8 Firmware Change Log == 814 814 815 815 816 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/L LDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 817 817 818 818 819 819 **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] ... ... @@ -820,71 +820,58 @@ 820 820 821 821 822 822 823 -= 3.LiDAR ToFMeasurement=819 +== 2.9 Mechanical == 824 824 825 -== 3.1 Principle of Distance Measurement == 826 826 827 - The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contactingobject.Theproduct obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.822 +[[image:image-20220610172003-1.png]] 828 828 829 -[[image: 1654831757579-263.png]]824 +[[image:image-20220610172003-2.png]] 830 830 831 831 827 +== 2.10 Battery Analysis == 832 832 833 -== 3.2Distance MeasurementCharacteristics==829 +=== 2.10.1 Battery Type === 834 834 835 - Withoptimization oflight pathand algorithm,TheLiDARprobehas minimizedinfluence fromexternalenvironmentondistancemeasurementperformance.Despite that,the rangeofdistancemeasurementmaystillbeaffectedbytheenvironment illuminationintensityandthe reflectivityofdetection object. As showninbelow:831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 836 836 837 -[[image:1654831774373-275.png]] 838 838 834 +The battery related documents as below: 839 839 840 -((( 841 - (%style="color:blue"%)**① **(%%)Representsthe detectionblind zone of The LiDARprobe, 0-10cm,withinwhichtheoutput data is unreliable.836 +* ((( 837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 842 842 ))) 843 - 844 -((( 845 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m. 839 +* ((( 840 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 846 846 ))) 847 - 848 -((( 849 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 842 +* ((( 843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 850 850 ))) 851 851 846 + [[image:image-20220610172400-3.png]] 852 852 853 -((( 854 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows: 855 -))) 856 856 857 857 858 - [[image:1654831797521-720.png]]850 +=== 2.10.2 Replace the battery === 859 859 852 +((( 853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 854 +))) 860 860 861 861 ((( 862 - Inthe formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.857 + 863 863 ))) 864 864 865 -[[image:1654831810009-716.png]] 866 - 867 - 868 868 ((( 869 - If the lightspotreachestwoobjectswithdifferent distances,asshown inFigure3, theoutput distancevaluewillbeavaluebetween theactual distancevaluesofthe twoobjects.Forahighaccuracy requirementinpractice,theabove situation should benoticedtoavoid themeasurementrror.861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 870 870 ))) 871 871 872 872 873 873 874 -= =3.3Notice ofusage:==866 += 3. Configure LLDS12 via AT Command or LoRaWAN Downlink = 875 875 876 -Possible invalid /wrong reading for LiDAR ToF tech: 877 - 878 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 879 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong. 880 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 881 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window. 882 - 883 -= 4. Configure LLDS12 via AT Command or LoRaWAN Downlink = 884 - 885 885 ((( 886 886 ((( 887 -Use can configure L LDS12via AT Command or LoRaWAN Downlink.870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink. 888 888 ))) 889 889 ))) 890 890 ... ... @@ -905,7 +905,7 @@ 905 905 ))) 906 906 907 907 ((( 908 -There are two kinds of commands to configure L LDS12, they are:891 +There are two kinds of commands to configure LDDS75, they are: 909 909 ))) 910 910 ))) 911 911 ... ... @@ -946,301 +946,96 @@ 946 946 947 947 * ((( 948 948 ((( 949 -(% style="color:#4f81bd" %)** Commands special design for L LDS12**932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75** 950 950 ))) 951 951 ))) 952 952 953 953 ((( 954 954 ((( 955 -These commands only valid for L LDS12, as below:938 +These commands only valid for LDDS75, as below: 956 956 ))) 957 957 ))) 958 958 959 959 960 960 961 -== 4.1SetTransmitInterval Time==944 +== 3.1 Access AT Commands == 962 962 963 - Feature:ChangeLoRaWANEndNode TransmitInterval.946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below. 964 964 965 - (% style="color:#037691"%)**AT Command: AT+TDC**948 +[[image:image-20220610172924-4.png||height="483" width="988"]] 966 966 967 -[[image:image-20220607171554-8.png]] 968 968 951 +Or if you have below board, use below connection: 969 969 970 -((( 971 -(% style="color:#037691" %)**Downlink Command: 0x01** 972 -))) 973 973 974 -((( 975 -Format: Command Code (0x01) followed by 3 bytes time value. 976 -))) 954 +[[image:image-20220610172924-5.png]] 977 977 978 -((( 979 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 980 -))) 981 981 982 -* ((( 983 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 984 -))) 985 -* ((( 986 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 987 987 988 988 989 - 990 -))) 960 + [[image:image-20220610172924-6.png||height="601" width="860"]] 991 991 992 992 993 -== 4.2 Set Interrupt Mode == 994 994 995 - Feature,Set Interruptmodefor GPIO_EXIT.964 +== 3.2 Set Transmit Interval Time == 996 996 997 - (% style="color:#037691"%)**ATCommand:AT+INTMOD**966 +Feature: Change LoRaWAN End Node Transmit Interval. 998 998 999 - [[image:image-20220610105806-2.png]]968 +(% style="color:#037691" %)**AT Command: AT+TDC** 1000 1000 970 +[[image:image-20220610173409-7.png]] 1001 1001 1002 -((( 1003 -(% style="color:#037691" %)**Downlink Command: 0x06** 1004 -))) 1005 1005 1006 1006 ((( 1007 - Format: CommandCode (0x06) followed by 3 bytes.974 +(% style="color:#037691" %)**Downlink Command: 0x01** 1008 1008 ))) 1009 1009 1010 1010 ((( 1011 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1012 -))) 1013 - 1014 -* ((( 1015 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1016 -))) 1017 -* ((( 1018 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1019 -))) 1020 - 1021 - 1022 -== 4.3 Get Firmware Version Info == 1023 - 1024 -Feature: use downlink to get firmware version. 1025 - 1026 -(% style="color:#037691" %)**Downlink Command: 0x26** 1027 - 1028 -[[image:image-20220607171917-10.png]] 1029 - 1030 -* Reply to the confirmation package: 26 01 1031 -* Reply to non-confirmed packet: 26 00 1032 - 1033 -Device will send an uplink after got this downlink command. With below payload: 1034 - 1035 -Configures info payload: 1036 - 1037 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 1038 -|=((( 1039 -**Size(bytes)** 1040 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1** 1041 -|**Value**|Software Type|((( 1042 -Frequency 1043 - 1044 -Band 1045 -)))|Sub-band|((( 1046 -Firmware 1047 - 1048 -Version 1049 -)))|Sensor Type|Reserve|((( 1050 -[[Message Type>>||anchor="H2.3.7A0MessageType"]] 1051 -Always 0x02 1052 -))) 1053 - 1054 -**Software Type**: Always 0x03 for LLDS12 1055 - 1056 - 1057 -**Frequency Band**: 1058 - 1059 -*0x01: EU868 1060 - 1061 -*0x02: US915 1062 - 1063 -*0x03: IN865 1064 - 1065 -*0x04: AU915 1066 - 1067 -*0x05: KZ865 1068 - 1069 -*0x06: RU864 1070 - 1071 -*0x07: AS923 1072 - 1073 -*0x08: AS923-1 1074 - 1075 -*0x09: AS923-2 1076 - 1077 -*0xa0: AS923-3 1078 - 1079 - 1080 -**Sub-Band**: value 0x00 ~~ 0x08 1081 - 1082 - 1083 -**Firmware Version**: 0x0100, Means: v1.0.0 version 1084 - 1085 - 1086 -**Sensor Type**: 1087 - 1088 -0x01: LSE01 1089 - 1090 -0x02: LDDS75 1091 - 1092 -0x03: LDDS20 1093 - 1094 -0x04: LLMS01 1095 - 1096 -0x05: LSPH01 1097 - 1098 -0x06: LSNPK01 1099 - 1100 -0x07: LLDS12 1101 - 1102 - 1103 - 1104 -= 5. Battery & How to replace = 1105 - 1106 -== 5.1 Battery Type == 1107 - 1108 1108 ((( 1109 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter. 1110 -))) 979 +Format: Command Code (0x01) followed by 3 bytes time value. 1111 1111 1112 -((( 1113 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 1114 -))) 981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 1115 1115 1116 -[[image:1654593587246-335.png]] 1117 - 1118 - 1119 -Minimum Working Voltage for the LLDS12: 1120 - 1121 -LLDS12: 2.45v ~~ 3.6v 1122 - 1123 - 1124 - 1125 -== 5.2 Replace Battery == 1126 - 1127 -((( 1128 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery. 983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1129 1129 ))) 1130 1130 1131 -((( 1132 -And make sure the positive and negative pins match. 1133 -))) 1134 1134 1135 - 1136 - 1137 -== 5.3 Power Consumption Analyze == 1138 - 1139 -((( 1140 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 988 + 1141 1141 ))) 1142 1142 1143 -((( 1144 -Instruction to use as below: 1145 -))) 991 +== 3.3 Set Interrupt Mode == 1146 1146 993 +Feature, Set Interrupt mode for GPIO_EXIT. 1147 1147 1148 - **Step1**:Downlinkthe up-to-dateDRAGINO_Battery_Life_Prediction_Table.xlsx from:995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD** 1149 1149 1150 -[[ https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]997 +[[image:image-20220610174917-9.png]] 1151 1151 1152 1152 1153 - **Step2**: Opentandchoose1000 +(% style="color:#037691" %)**Downlink Command: 0x06** 1154 1154 1155 -* Product Model 1156 -* Uplink Interval 1157 -* Working Mode 1002 +Format: Command Code (0x06) followed by 3 bytes. 1158 1158 1159 - AndtheLifeexpectationindifferencecasewillbeshownonthe right.1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1160 1160 1161 -[[image:1654593605679-189.png]] 1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1162 1162 1163 1163 1164 -The battery related documents as below: 1165 1165 1166 -* ((( 1167 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 1168 -))) 1169 -* ((( 1170 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 1171 -))) 1172 -* ((( 1173 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 1174 -))) 1011 += 4. FAQ = 1175 1175 1176 - [[image:image-20220607172042-11.png]]1013 +== 4.1 How to change the LoRa Frequency Bands/Region == 1177 1177 1178 - 1179 - 1180 -=== 5.3.1 Battery Note === 1181 - 1182 -((( 1183 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 1184 -))) 1185 - 1186 - 1187 - 1188 -=== 5.3.2 Replace the battery === 1189 - 1190 -((( 1191 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 1192 -))) 1193 - 1194 -((( 1195 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 1196 -))) 1197 - 1198 - 1199 - 1200 -= 6. Use AT Command = 1201 - 1202 -== 6.1 Access AT Commands == 1203 - 1204 -LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below. 1205 - 1206 -[[image:1654593668970-604.png]] 1207 - 1208 -**Connection:** 1209 - 1210 -(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND** 1211 - 1212 -(% style="background-color:yellow" %)** USB TTL TXD <~-~-~-~-> UART_RXD** 1213 - 1214 -(% style="background-color:yellow" %)** USB TTL RXD <~-~-~-~-> UART_TXD** 1215 - 1216 - 1217 -((( 1218 -((( 1219 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12. 1220 -))) 1221 - 1222 -((( 1223 -LLDS12 will output system info once power on as below: 1224 -))) 1225 -))) 1226 - 1227 - 1228 - [[image:1654593712276-618.png]] 1229 - 1230 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]]. 1231 - 1232 - 1233 -= 7. FAQ = 1234 - 1235 -== 7.1 How to change the LoRa Frequency Bands/Region == 1236 - 1237 1237 You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]]. 1238 1238 When downloading the images, choose the required image file for download. 1239 1239 1240 1240 1241 -= 8. Trouble Shooting =1019 += 5. Trouble Shooting = 1242 1242 1243 -== 8.1 AT Commands input doesn’t work ==1021 +== 5.1 AT Commands input doesn’t work == 1244 1244 1245 1245 1246 1246 ((( ... ... @@ -1248,7 +1248,7 @@ 1248 1248 ))) 1249 1249 1250 1250 1251 -== 8.2 Significant error between the output distant value of LiDAR and actual distance ==1029 +== 5.2 Significant error between the output distant value of LiDAR and actual distance == 1252 1252 1253 1253 1254 1254 ((( ... ... @@ -1273,10 +1273,10 @@ 1273 1273 1274 1274 1275 1275 1276 -= 9. Order Info =1054 += 6. Order Info = 1277 1277 1278 1278 1279 -Part Number: (% style="color:blue" %)**L LDS12-XX**1057 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY** 1280 1280 1281 1281 1282 1282 (% style="color:blue" %)**XX**(%%): The default frequency band ... ... @@ -1290,12 +1290,18 @@ 1290 1290 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1291 1291 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1292 1292 1293 -= 10. PackingInfo=1071 +(% style="color:blue" %)**YY**(%%): Battery Option 1294 1294 1073 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1074 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1295 1295 1076 + 1077 += 7. Packing Info = 1078 + 1079 + 1296 1296 **Package Includes**: 1297 1297 1298 -* L LDS12LoRaWANLiDAR Distance Sensor x 11082 +* LDDS75 LoRaWAN Distance Detection Sensor x 1 1299 1299 1300 1300 **Dimension and weight**: 1301 1301 ... ... @@ -1304,7 +1304,8 @@ 1304 1304 * Package Size / pcs : cm 1305 1305 * Weight / pcs : g 1306 1306 1307 -= 11. Support = 1308 1308 1092 += 8. Support = 1093 + 1309 1309 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1310 1310 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
- 1654846127817-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +107.3 KB - Content
- 1654847051249-359.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654847583902-256.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1654848616367-242.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654849068701-275.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850511545-399.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850829385-439.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654851029373-510.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654852175653-550.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.2 KB - Content
- 1654852253176-749.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.6 KB - Content
- image-20220610154839-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.3 KB - Content
- image-20220610155021-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +164.8 KB - Content
- image-20220610155021-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.8 KB - Content
- image-20220610161353-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +32.2 KB - Content
- image-20220610161353-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.7 KB - Content
- image-20220610161353-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20220610161353-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.1 KB - Content
- image-20220610161538-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.2 KB - Content
- image-20220610161538-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +28.7 KB - Content
- image-20220610161724-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +180.0 KB - Content
- image-20220610165129-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +50.5 KB - Content
- image-20220610172003-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.9 KB - Content
- image-20220610172003-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.6 KB - Content
- image-20220610172400-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220610172924-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20220610172924-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +901.4 KB - Content
- image-20220610172924-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.6 KB - Content
- image-20220610173409-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.8 KB - Content
- image-20220610174836-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +34.3 KB - Content
- image-20220610174917-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +34.3 KB - Content