Last modified by Xiaoling on 2025/04/27 13:54

From version 113.2
edited by Xiaoling
on 2022/06/10 15:04
Change comment: There is no comment for this version
To version 149.2
edited by Xiaoling
on 2022/06/10 17:49
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,8 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 -{{toc/}}
8 8  
9 9  
10 10  
... ... @@ -14,38 +14,33 @@
14 14  
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 25  
26 -(((
27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 -)))
29 29  
30 -(((
31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 33  
34 -(((
35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 -)))
37 37  
38 -(((
39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  
42 -(((
43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
44 44  )))
45 45  )))
46 46  
47 47  
48 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
49 49  
50 50  
51 51  
... ... @@ -52,44 +52,50 @@
52 52  == ​1.2  Features ==
53 53  
54 54  * LoRaWAN 1.0.3 Class A
55 -* Ultra-low power consumption
56 -* Laser technology for distance detection
57 -* Operating Range - 0.1m~~12m
58 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
60 60  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 61  * AT Commands to change parameters
62 62  * Uplink on periodically
63 63  * Downlink to change configure
64 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
65 65  
60 +== 1.3  Specification ==
66 66  
62 +=== 1.3.1  Rated environmental conditions ===
67 67  
64 +[[image:image-20220610154839-1.png]]
68 68  
69 -== 1. Probe Specification ==
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
70 70  
71 -* Storage temperature :-20℃~~75℃
72 -* Operating temperature - -20℃~~60℃
73 -* Operating Range - 0.1m~~12m①
74 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
75 -* Distance resolution - 5mm
76 -* Ambient light immunity - 70klux
77 -* Enclosure rating - IP65
78 -* Light source - LED
79 -* Central wavelength - 850nm
80 -* FOV - 3.6°
81 -* Material of enclosure - ABS+PC
82 -* Wire length - 25cm
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
83 83  
84 -== 1.4  Probe Dimension ==
85 85  
86 86  
87 -[[image:1654827224480-952.png]]
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
88 88  
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
89 89  
76 +
77 +
78 +[[image:1654852253176-749.png]]
79 +
80 +
81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
82 +
83 +
84 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
85 +
86 +
87 +
90 90  == 1.5 ​ Applications ==
91 91  
92 92  * Horizontal distance measurement
91 +* Liquid level measurement
93 93  * Parking management system
94 94  * Object proximity and presence detection
95 95  * Intelligent trash can management system
... ... @@ -96,26 +96,29 @@
96 96  * Robot obstacle avoidance
97 97  * Automatic control
98 98  * Sewer
98 +* Bottom water level monitoring
99 99  
100 100  == 1.6  Pin mapping and power on ==
101 101  
102 102  
103 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
104 104  
105 105  
106 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
107 107  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
108 +
108 108  == 2.1  How it works ==
109 109  
110 110  (((
111 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
112 112  )))
113 113  
114 114  (((
115 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
116 116  )))
117 117  
118 118  
120 +
119 119  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
120 120  
121 121  (((
... ... @@ -123,7 +123,7 @@
123 123  )))
124 124  
125 125  (((
126 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
127 127  )))
128 128  
129 129  (((
... ... @@ -131,57 +131,57 @@
131 131  )))
132 132  
133 133  (((
134 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
135 135  )))
136 136  
137 137  (((
138 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
139 139  )))
140 140  
141 141  [[image:image-20220607170145-1.jpeg]]
142 142  
143 143  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
144 144  
145 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
146 146  
150 +**Add APP EUI in the application**
147 147  
148 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
149 149  
154 +[[image:image-20220610161353-5.png]]
150 150  
151 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
152 152  
153 153  
159 +[[image:image-20220610161353-7.png]]
154 154  
155 -**Add APP EUI and DEV EUI**
156 156  
157 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
158 158  
164 + [[image:image-20220610161538-8.png]]
159 159  
160 160  
161 -**Add APP EUI in the application**
162 162  
163 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
164 164  
170 +[[image:image-20220610161538-9.png]]
165 165  
166 166  
167 -**Add APP KEY**
168 168  
169 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
170 170  
171 171  
172 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
173 -
174 -
175 175  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
176 176  
177 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
178 178  
179 179  
180 180  (((
181 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
182 182  )))
183 183  
184 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
185 185  
186 186  
187 187  
... ... @@ -188,11 +188,10 @@
188 188  == 2.3  ​Uplink Payload ==
189 189  
190 190  (((
191 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
192 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
193 193  
194 -(((
195 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
196 196  )))
197 197  
198 198  (((
... ... @@ -202,23 +202,23 @@
202 202  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
203 203  |=(% style="width: 62.5px;" %)(((
204 204  **Size (bytes)**
205 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
206 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
207 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
208 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
209 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
210 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
211 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
212 -)))
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
213 213  
214 -[[image:1654833689380-972.png]]
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
215 215  
215 +[[image:1654850511545-399.png]]
216 216  
217 217  
218 +
218 218  === 2.3.1  Battery Info ===
219 219  
220 220  
221 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
222 222  
223 223  Ex1: 0x0B45 = 2885mV
224 224  
... ... @@ -226,49 +226,20 @@
226 226  
227 227  
228 228  
229 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
230 230  
231 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
232 232  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
233 233  
234 -**Example**:
235 235  
236 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
237 237  
238 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240 +=== 2.3.3  Interrupt Pin ===
239 239  
240 -
241 -
242 -=== 2.3.3  Distance ===
243 -
244 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
245 -
246 -
247 -**Example**:
248 -
249 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
250 -
251 -
252 -
253 -=== 2.3.4  Distance signal strength ===
254 -
255 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
256 -
257 -
258 -**Example**:
259 -
260 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
261 -
262 -Customers can judge whether they need to adjust the environment based on the signal strength.
263 -
264 -
265 -
266 -=== 2.3.5  Interrupt Pin ===
267 -
268 268  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
269 269  
270 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
271 -
272 272  **Example:**
273 273  
274 274  0x00: Normal uplink packet.
... ... @@ -277,52 +277,44 @@
277 277  
278 278  
279 279  
280 -=== 2.3.6  LiDAR temp ===
252 +=== 2.3.4  DS18B20 Temperature sensor ===
281 281  
282 -Characterize the internal temperature value of the sensor.
254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
283 283  
284 -**Example: **
285 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
286 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
256 +**Example**:
287 287  
258 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
288 288  
260 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
289 289  
290 -=== 2.3.7  Message Type ===
262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
291 291  
292 -(((
293 -For a normal uplink payload, the message type is always 0x01.
294 -)))
295 295  
296 -(((
297 -Valid Message Type:
298 -)))
299 299  
266 +=== 2.3.5  Sensor Flag ===
300 300  
301 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
302 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
303 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
304 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
268 +0x01: Detect Ultrasonic Sensor
305 305  
306 -=== 2.3.8  Decode payload in The Things Network ===
270 +0x00: No Ultrasonic Sensor
307 307  
272 +
273 +===
274 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
275 +
308 308  While using TTN network, you can add the payload format to decode the payload.
309 309  
310 310  
311 -[[image:1654592762713-715.png]]
279 +[[image:1654850829385-439.png]]
312 312  
313 -(((
314 -The payload decoder function for TTN is here:
315 -)))
281 +The payload decoder function for TTN V3 is here:
316 316  
317 -(((
318 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
319 -)))
283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
320 320  
321 321  
322 322  
323 323  == 2.4  Uplink Interval ==
324 324  
325 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
326 326  
327 327  
328 328  
... ... @@ -353,47 +353,25 @@
353 353  
354 354  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
355 355  
356 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
357 357  
358 -[[image:1654832691989-514.png]]
322 +[[image:1654851029373-510.png]]
359 359  
360 360  
361 -[[image:1654592833877-762.png]]
325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
362 362  
327 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
363 363  
364 -[[image:1654832740634-933.png]]
365 365  
366 366  
367 -
368 -(((
369 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
370 -)))
371 -
372 -(((
373 -
374 -)))
375 -
376 -[[image:1654833065139-942.png]]
377 -
378 -
379 -
380 -[[image:1654833092678-390.png]]
381 -
382 -
383 -
384 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
385 -
386 -[[image:1654833163048-332.png]]
387 -
388 -
389 -
390 390  == 2.6  Frequency Plans ==
391 391  
392 392  (((
393 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
394 394  )))
395 395  
396 396  
338 +
397 397  === 2.6.1  EU863-870 (EU868) ===
398 398  
399 399  (((
... ... @@ -457,20 +457,51 @@
457 457  === 2.6.2  US902-928(US915) ===
458 458  
459 459  (((
460 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
461 -)))
402 +Used in USA, Canada and South America. Default use CHE=2
462 462  
463 -(((
464 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
465 -)))
404 +(% style="color:blue" %)**Uplink:**
466 466  
467 -(((
468 -After Join success, the end node will switch to the correct sub band by:
469 -)))
406 +903.9 - SF7BW125 to SF10BW125
470 470  
471 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
472 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
408 +904.1 - SF7BW125 to SF10BW125
473 473  
410 +904.3 - SF7BW125 to SF10BW125
411 +
412 +904.5 - SF7BW125 to SF10BW125
413 +
414 +904.7 - SF7BW125 to SF10BW125
415 +
416 +904.9 - SF7BW125 to SF10BW125
417 +
418 +905.1 - SF7BW125 to SF10BW125
419 +
420 +905.3 - SF7BW125 to SF10BW125
421 +
422 +
423 +(% style="color:blue" %)**Downlink:**
424 +
425 +923.3 - SF7BW500 to SF12BW500
426 +
427 +923.9 - SF7BW500 to SF12BW500
428 +
429 +924.5 - SF7BW500 to SF12BW500
430 +
431 +925.1 - SF7BW500 to SF12BW500
432 +
433 +925.7 - SF7BW500 to SF12BW500
434 +
435 +926.3 - SF7BW500 to SF12BW500
436 +
437 +926.9 - SF7BW500 to SF12BW500
438 +
439 +927.5 - SF7BW500 to SF12BW500
440 +
441 +923.3 - SF12BW500(RX2 downlink only)
442 +
443 +
444 +
445 +)))
446 +
474 474  === 2.6.3  CN470-510 (CN470) ===
475 475  
476 476  (((
... ... @@ -559,28 +559,54 @@
559 559  
560 560  
561 561  
562 -
563 563  === 2.6.4  AU915-928(AU915) ===
564 564  
565 565  (((
566 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
567 -)))
538 +Default use CHE=2
568 568  
569 -(((
570 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
571 -)))
540 +(% style="color:blue" %)**Uplink:**
572 572  
573 -(((
574 -
575 -)))
542 +916.8 - SF7BW125 to SF12BW125
576 576  
577 -(((
578 -After Join success, the end node will switch to the correct sub band by:
579 -)))
544 +917.0 - SF7BW125 to SF12BW125
580 580  
581 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
582 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546 +917.2 - SF7BW125 to SF12BW125
583 583  
548 +917.4 - SF7BW125 to SF12BW125
549 +
550 +917.6 - SF7BW125 to SF12BW125
551 +
552 +917.8 - SF7BW125 to SF12BW125
553 +
554 +918.0 - SF7BW125 to SF12BW125
555 +
556 +918.2 - SF7BW125 to SF12BW125
557 +
558 +
559 +(% style="color:blue" %)**Downlink:**
560 +
561 +923.3 - SF7BW500 to SF12BW500
562 +
563 +923.9 - SF7BW500 to SF12BW500
564 +
565 +924.5 - SF7BW500 to SF12BW500
566 +
567 +925.1 - SF7BW500 to SF12BW500
568 +
569 +925.7 - SF7BW500 to SF12BW500
570 +
571 +926.3 - SF7BW500 to SF12BW500
572 +
573 +926.9 - SF7BW500 to SF12BW500
574 +
575 +927.5 - SF7BW500 to SF12BW500
576 +
577 +923.3 - SF12BW500(RX2 downlink only)
578 +
579 +
580 +
581 +)))
582 +
584 584  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
585 585  
586 586  (((
... ... @@ -689,7 +689,6 @@
689 689  
690 690  
691 691  
692 -
693 693  === 2.6.6  KR920-923 (KR920) ===
694 694  
695 695  (((
... ... @@ -762,7 +762,6 @@
762 762  
763 763  
764 764  
765 -
766 766  === 2.6.7  IN865-867 (IN865) ===
767 767  
768 768  (((
... ... @@ -799,18 +799,20 @@
799 799  
800 800  
801 801  
802 -
803 803  == 2.7  LED Indicator ==
804 804  
805 -The LLDS12 has an internal LED which is to show the status of different state.
801 +The LDDS75 has an internal LED which is to show the status of different state.
806 806  
807 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 +
804 +* Blink once when device power on.
805 +* The device detects the sensor and flashes 5 times.
806 +* Solid ON for 5 seconds once device successful Join the network.
808 808  * Blink once when device transmit a packet.
809 809  
810 810  == 2.8  ​Firmware Change Log ==
811 811  
812 812  
813 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
814 814  
815 815  
816 816  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -817,71 +817,58 @@
817 817  
818 818  
819 819  
820 -= 3LiDAR ToF Measurement =
819 +== 2.9  Mechanical ==
821 821  
822 -== 3.1 Principle of Distance Measurement ==
823 823  
824 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
822 +[[image:image-20220610172003-1.png]]
825 825  
826 -[[image:1654831757579-263.png]]
824 +[[image:image-20220610172003-2.png]]
827 827  
828 828  
827 +== 2.10  Battery Analysis ==
829 829  
830 -== 3.2 Distance Measurement Characteristics ==
829 +=== 2.10.1  Battery Type ===
831 831  
832 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
833 833  
834 -[[image:1654831774373-275.png]]
835 835  
834 +The battery related documents as below:
836 836  
837 -(((
838 -(% style="color:blue" %)**① **(%%)Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 +* (((
837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
839 839  )))
840 -
841 -(((
842 -(% style="color:blue" %)**② **(%%)Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
839 +* (((
840 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
843 843  )))
844 -
845 -(((
846 -(% style="color:blue" %)**③ **(%%)Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
842 +* (((
843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
847 847  )))
848 848  
846 + [[image:image-20220610172400-3.png]]
849 849  
850 -(((
851 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
852 -)))
853 853  
854 854  
855 -[[image:1654831797521-720.png]]
850 +=== 2.10.2  Replace the battery ===
856 856  
852 +(((
853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
854 +)))
857 857  
858 858  (((
859 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
857 +
860 860  )))
861 861  
862 -[[image:1654831810009-716.png]]
863 -
864 -
865 865  (((
866 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user cant find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
867 867  )))
868 868  
869 869  
870 870  
871 -== 3.3 Notice of usage: ==
866 += 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
872 872  
873 -Possible invalid /wrong reading for LiDAR ToF tech:
874 -
875 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
876 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
877 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
878 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
879 -
880 -= 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
881 -
882 882  (((
883 883  (((
884 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
885 885  )))
886 886  )))
887 887  
... ... @@ -902,7 +902,7 @@
902 902  )))
903 903  
904 904  (((
905 -There are two kinds of commands to configure LLDS12, they are:
891 +There are two kinds of commands to configure LDDS75, they are:
906 906  )))
907 907  )))
908 908  
... ... @@ -943,301 +943,96 @@
943 943  
944 944  * (((
945 945  (((
946 -(% style="color:#4f81bd" %)** Commands special design for LLDS12**
932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
947 947  )))
948 948  )))
949 949  
950 950  (((
951 951  (((
952 -These commands only valid for LLDS12, as below:
938 +These commands only valid for LDDS75, as below:
953 953  )))
954 954  )))
955 955  
956 956  
957 957  
958 -== 4.1  Set Transmit Interval Time ==
944 +== 3.1  Access AT Commands ==
959 959  
960 -Feature: Change LoRaWAN End Node Transmit Interval.
946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
961 961  
962 -(% style="color:#037691" %)**AT Command: AT+TDC**
948 +[[image:image-20220610172924-4.png||height="483" width="988"]]
963 963  
964 -[[image:image-20220607171554-8.png]]
965 965  
951 +Or if you have below board, use below connection:
966 966  
967 -(((
968 -(% style="color:#037691" %)**Downlink Command: 0x01**
969 -)))
970 970  
971 -(((
972 -Format: Command Code (0x01) followed by 3 bytes time value.
973 -)))
954 +[[image:image-20220610172924-5.png]]
974 974  
975 -(((
976 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
977 -)))
978 978  
979 -* (((
980 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
981 -)))
982 -* (((
983 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
984 984  
985 985  
986 -
987 -)))
960 + [[image:image-20220610172924-6.png||height="601" width="860"]]
988 988  
989 989  
990 -== 4.2  Set Interrupt Mode ==
991 991  
992 -Feature, Set Interrupt mode for GPIO_EXIT.
964 +== 3.2  Set Transmit Interval Time ==
993 993  
994 -(% style="color:#037691" %)**AT Command: AT+INTMOD**
966 +Feature: Change LoRaWAN End Node Transmit Interval.
995 995  
996 -[[image:image-20220610105806-2.png]]
968 +(% style="color:#037691" %)**AT Command: AT+TDC**
997 997  
970 +[[image:image-20220610173409-7.png]]
998 998  
999 -(((
1000 -(% style="color:#037691" %)**Downlink Command: 0x06**
1001 -)))
1002 1002  
1003 1003  (((
1004 -Format: Command Code (0x06) followed by 3 bytes.
974 +(% style="color:#037691" %)**Downlink Command: 0x01**
1005 1005  )))
1006 1006  
1007 1007  (((
1008 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1009 -)))
1010 -
1011 -* (((
1012 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1013 -)))
1014 -* (((
1015 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1016 -)))
1017 -
1018 -
1019 -== 4.3  Get Firmware Version Info ==
1020 -
1021 -Feature: use downlink to get firmware version.
1022 -
1023 -(% style="color:#037691" %)**Downlink Command: 0x26**
1024 -
1025 -[[image:image-20220607171917-10.png]]
1026 -
1027 -* Reply to the confirmation package: 26 01
1028 -* Reply to non-confirmed packet: 26 00
1029 -
1030 -Device will send an uplink after got this downlink command. With below payload:
1031 -
1032 -Configures info payload:
1033 -
1034 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1035 -|=(((
1036 -**Size(bytes)**
1037 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1038 -|**Value**|Software Type|(((
1039 -Frequency
1040 -
1041 -Band
1042 -)))|Sub-band|(((
1043 -Firmware
1044 -
1045 -Version
1046 -)))|Sensor Type|Reserve|(((
1047 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1048 -Always 0x02
1049 -)))
1050 -
1051 -**Software Type**: Always 0x03 for LLDS12
1052 -
1053 -
1054 -**Frequency Band**:
1055 -
1056 -*0x01: EU868
1057 -
1058 -*0x02: US915
1059 -
1060 -*0x03: IN865
1061 -
1062 -*0x04: AU915
1063 -
1064 -*0x05: KZ865
1065 -
1066 -*0x06: RU864
1067 -
1068 -*0x07: AS923
1069 -
1070 -*0x08: AS923-1
1071 -
1072 -*0x09: AS923-2
1073 -
1074 -*0xa0: AS923-3
1075 -
1076 -
1077 -**Sub-Band**: value 0x00 ~~ 0x08
1078 -
1079 -
1080 -**Firmware Version**: 0x0100, Means: v1.0.0 version
1081 -
1082 -
1083 -**Sensor Type**:
1084 -
1085 -0x01: LSE01
1086 -
1087 -0x02: LDDS75
1088 -
1089 -0x03: LDDS20
1090 -
1091 -0x04: LLMS01
1092 -
1093 -0x05: LSPH01
1094 -
1095 -0x06: LSNPK01
1096 -
1097 -0x07: LLDS12
1098 -
1099 -
1100 -
1101 -= 5.  Battery & How to replace =
1102 -
1103 -== 5.1  Battery Type ==
1104 -
1105 1105  (((
1106 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1107 -)))
979 +Format: Command Code (0x01) followed by 3 bytes time value.
1108 1108  
1109 -(((
1110 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1111 -)))
981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1112 1112  
1113 -[[image:1654593587246-335.png]]
1114 -
1115 -
1116 -Minimum Working Voltage for the LLDS12:
1117 -
1118 -LLDS12:  2.45v ~~ 3.6v
1119 -
1120 -
1121 -
1122 -== 5.2  Replace Battery ==
1123 -
1124 -(((
1125 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1126 1126  )))
1127 1127  
1128 -(((
1129 -And make sure the positive and negative pins match.
1130 -)))
1131 1131  
1132 -
1133 -
1134 -== 5.3  Power Consumption Analyze ==
1135 -
1136 -(((
1137 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
988 +
1138 1138  )))
1139 1139  
1140 -(((
1141 -Instruction to use as below:
1142 -)))
991 +== 3.3  Set Interrupt Mode ==
1143 1143  
993 +Feature, Set Interrupt mode for GPIO_EXIT.
1144 1144  
1145 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1146 1146  
1147 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
997 +[[image:image-20220610174917-9.png]]
1148 1148  
1149 1149  
1150 -**Step 2**: Open it and choose
1000 +(% style="color:#037691" %)**Downlink Command: 0x06**
1151 1151  
1152 -* Product Model
1153 -* Uplink Interval
1154 -* Working Mode
1002 +Format: Command Code (0x06) followed by 3 bytes.
1155 1155  
1156 -And the Life expectation in difference case will be shown on the right.
1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1157 1157  
1158 -[[image:1654593605679-189.png]]
1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1159 1159  
1160 1160  
1161 -The battery related documents as below:
1162 1162  
1163 -* (((
1164 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1165 -)))
1166 -* (((
1167 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1168 -)))
1169 -* (((
1170 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1171 -)))
1011 += 4.  FAQ =
1172 1172  
1173 -[[image:image-20220607172042-11.png]]
1013 +== 4.1  How to change the LoRa Frequency Bands/Region ==
1174 1174  
1175 -
1176 -
1177 -=== 5.3.1  ​Battery Note ===
1178 -
1179 -(((
1180 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1181 -)))
1182 -
1183 -
1184 -
1185 -=== ​5.3.2  Replace the battery ===
1186 -
1187 -(((
1188 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1189 -)))
1190 -
1191 -(((
1192 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1193 -)))
1194 -
1195 -
1196 -
1197 -= 6.  Use AT Command =
1198 -
1199 -== 6.1  Access AT Commands ==
1200 -
1201 -LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1202 -
1203 -[[image:1654593668970-604.png]]
1204 -
1205 -**Connection:**
1206 -
1207 -(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1208 -
1209 -(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1210 -
1211 -(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1212 -
1213 -
1214 -(((
1215 -(((
1216 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1217 -)))
1218 -
1219 -(((
1220 -LLDS12 will output system info once power on as below:
1221 -)))
1222 -)))
1223 -
1224 -
1225 - [[image:1654593712276-618.png]]
1226 -
1227 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1228 -
1229 -
1230 -= 7.  FAQ =
1231 -
1232 -== 7.1  How to change the LoRa Frequency Bands/Region ==
1233 -
1234 1234  You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1235 1235  When downloading the images, choose the required image file for download. ​
1236 1236  
1237 1237  
1238 -= 8.  Trouble Shooting =
1019 += 5.  Trouble Shooting =
1239 1239  
1240 -== 8.1  AT Commands input doesn’t work ==
1021 +== 5.1  AT Commands input doesn’t work ==
1241 1241  
1242 1242  
1243 1243  (((
... ... @@ -1245,7 +1245,7 @@
1245 1245  )))
1246 1246  
1247 1247  
1248 -== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1029 +== 5.2  Significant error between the output distant value of LiDAR and actual distance ==
1249 1249  
1250 1250  
1251 1251  (((
... ... @@ -1270,10 +1270,10 @@
1270 1270  
1271 1271  
1272 1272  
1273 -= 9.  Order Info =
1054 += 6.  Order Info =
1274 1274  
1275 1275  
1276 -Part Number: (% style="color:blue" %)**LLDS12-XX**
1057 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY**
1277 1277  
1278 1278  
1279 1279  (% style="color:blue" %)**XX**(%%): The default frequency band
... ... @@ -1287,12 +1287,18 @@
1287 1287  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1288 1288  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1289 1289  
1290 -= 10. ​ Packing Info =
1071 +(% style="color:blue" %)**YY**(%%): Battery Option
1291 1291  
1073 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1074 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1292 1292  
1076 +
1077 += 7. ​ Packing Info =
1078 +
1079 +
1293 1293  **Package Includes**:
1294 1294  
1295 -* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1082 +* LDDS75 LoRaWAN Distance Detection Sensor x 1
1296 1296  
1297 1297  **Dimension and weight**:
1298 1298  
... ... @@ -1301,7 +1301,8 @@
1301 1301  * Package Size / pcs : cm
1302 1302  * Weight / pcs : g
1303 1303  
1304 -= 11.  ​Support =
1305 1305  
1092 += 8.  ​Support =
1093 +
1306 1306  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1307 1307  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654846127817-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content
image-20220610174917-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content