Last modified by Xiaoling on 2025/04/27 13:54

From version 111.27
edited by Xiaoling
on 2022/06/10 14:38
Change comment: There is no comment for this version
To version 148.2
edited by Xiaoling
on 2022/06/10 17:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,8 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 -{{toc/}}
8 8  
9 9  
10 10  
... ... @@ -14,38 +14,33 @@
14 14  
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 25  
26 -(((
27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 -)))
29 29  
30 -(((
31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 33  
34 -(((
35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 -)))
37 37  
38 -(((
39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  
42 -(((
43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
44 44  )))
45 45  )))
46 46  
47 47  
48 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
49 49  
50 50  
51 51  
... ... @@ -52,41 +52,50 @@
52 52  == ​1.2  Features ==
53 53  
54 54  * LoRaWAN 1.0.3 Class A
55 -* Ultra-low power consumption
56 -* Laser technology for distance detection
57 -* Operating Range - 0.1m~~12m
58 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
60 60  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 61  * AT Commands to change parameters
62 62  * Uplink on periodically
63 63  * Downlink to change configure
64 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
65 65  
66 -== 1.3  Probe Specification ==
60 +== 1.3  Specification ==
67 67  
68 -* Storage temperature :-20℃~~75℃
69 -* Operating temperature - -20℃~~60℃
70 -* Operating Range - 0.1m~~12m①
71 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
72 -* Distance resolution - 5mm
73 -* Ambient light immunity - 70klux
74 -* Enclosure rating - IP65
75 -* Light source - LED
76 -* Central wavelength - 850nm
77 -* FOV - 3.6°
78 -* Material of enclosure - ABS+PC
79 -* Wire length - 25cm
62 +=== 1.3.1  Rated environmental conditions ===
80 80  
81 -== 1.4  Probe Dimension ==
64 +[[image:image-20220610154839-1.png]]
82 82  
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
83 83  
84 -[[image:1654827224480-952.png]]
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
85 85  
86 86  
71 +
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
73 +
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
75 +
76 +
77 +
78 +[[image:1654852253176-749.png]]
79 +
80 +
81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
82 +
83 +
84 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
85 +
86 +
87 +
87 87  == 1.5 ​ Applications ==
88 88  
89 89  * Horizontal distance measurement
91 +* Liquid level measurement
90 90  * Parking management system
91 91  * Object proximity and presence detection
92 92  * Intelligent trash can management system
... ... @@ -93,26 +93,29 @@
93 93  * Robot obstacle avoidance
94 94  * Automatic control
95 95  * Sewer
98 +* Bottom water level monitoring
96 96  
97 97  == 1.6  Pin mapping and power on ==
98 98  
99 99  
100 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
101 101  
102 102  
103 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
104 104  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
108 +
105 105  == 2.1  How it works ==
106 106  
107 107  (((
108 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
109 109  )))
110 110  
111 111  (((
112 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.A0UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
113 113  )))
114 114  
115 115  
120 +
116 116  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
117 117  
118 118  (((
... ... @@ -120,7 +120,7 @@
120 120  )))
121 121  
122 122  (((
123 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
124 124  )))
125 125  
126 126  (((
... ... @@ -128,57 +128,57 @@
128 128  )))
129 129  
130 130  (((
131 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
132 132  )))
133 133  
134 134  (((
135 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
136 136  )))
137 137  
138 138  [[image:image-20220607170145-1.jpeg]]
139 139  
140 140  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
141 141  
142 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
143 143  
150 +**Add APP EUI in the application**
144 144  
145 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
146 146  
154 +[[image:image-20220610161353-5.png]]
147 147  
148 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
149 149  
150 150  
159 +[[image:image-20220610161353-7.png]]
151 151  
152 -**Add APP EUI and DEV EUI**
153 153  
154 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
155 155  
164 + [[image:image-20220610161538-8.png]]
156 156  
157 157  
158 -**Add APP EUI in the application**
159 159  
160 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
161 161  
170 +[[image:image-20220610161538-9.png]]
162 162  
163 163  
164 -**Add APP KEY**
165 165  
166 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
167 167  
168 168  
169 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
170 -
171 -
172 172  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
173 173  
174 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
175 175  
176 176  
177 177  (((
178 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
179 179  )))
180 180  
181 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
182 182  
183 183  
184 184  
... ... @@ -185,11 +185,10 @@
185 185  == 2.3  ​Uplink Payload ==
186 186  
187 187  (((
188 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
189 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
190 190  
191 -(((
192 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
193 193  )))
194 194  
195 195  (((
... ... @@ -199,23 +199,23 @@
199 199  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
200 200  |=(% style="width: 62.5px;" %)(((
201 201  **Size (bytes)**
202 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
203 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(% style="width:62.5px" %)(((
204 -[[Temperature DS18B20>>||anchor="H2.3.2A0DS18B20Temperaturesensor"]]
205 -)))|[[Distance>>||anchor="H2.3.3A0Distance"]]|[[Distance signal strength>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
206 -[[Interrupt flag>>||anchor="H2.3.5A0InterruptPin"]]
207 -)))|[[LiDAR temp>>||anchor="H2.3.6A0LiDARtemp"]]|(((
208 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
209 -)))
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
210 210  
211 -[[image:1654833689380-972.png]]
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
212 212  
215 +[[image:1654850511545-399.png]]
213 213  
214 214  
218 +
215 215  === 2.3.1  Battery Info ===
216 216  
217 217  
218 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
219 219  
220 220  Ex1: 0x0B45 = 2885mV
221 221  
... ... @@ -223,49 +223,20 @@
223 223  
224 224  
225 225  
226 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
227 227  
228 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
229 229  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
230 230  
231 -**Example**:
232 232  
233 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
234 234  
235 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240 +=== 2.3.3  Interrupt Pin ===
236 236  
237 -
238 -
239 -=== 2.3.3  Distance ===
240 -
241 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
242 -
243 -
244 -**Example**:
245 -
246 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
247 -
248 -
249 -
250 -=== 2.3.4  Distance signal strength ===
251 -
252 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
253 -
254 -
255 -**Example**:
256 -
257 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
258 -
259 -Customers can judge whether they need to adjust the environment based on the signal strength.
260 -
261 -
262 -
263 -=== 2.3.5  Interrupt Pin ===
264 -
265 265  This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
266 266  
267 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>||anchor="H1.6A0Pinmappingandpoweron"]].
268 -
269 269  **Example:**
270 270  
271 271  0x00: Normal uplink packet.
... ... @@ -274,52 +274,44 @@
274 274  
275 275  
276 276  
277 -=== 2.3.6  LiDAR temp ===
252 +=== 2.3.4  DS18B20 Temperature sensor ===
278 278  
279 -Characterize the internal temperature value of the sensor.
254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
280 280  
281 -**Example: **
282 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
283 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
256 +**Example**:
284 284  
258 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
285 285  
260 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
286 286  
287 -=== 2.3.7  Message Type ===
262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
288 288  
289 -(((
290 -For a normal uplink payload, the message type is always 0x01.
291 -)))
292 292  
293 -(((
294 -Valid Message Type:
295 -)))
296 296  
266 +=== 2.3.5  Sensor Flag ===
297 297  
298 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
299 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
300 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3A0200BUplinkPayload"]]
301 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H4.3A0GetFirmwareVersionInfo"]]
268 +0x01: Detect Ultrasonic Sensor
302 302  
303 -=== 2.3.8  Decode payload in The Things Network ===
270 +0x00: No Ultrasonic Sensor
304 304  
272 +
273 +===
274 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
275 +
305 305  While using TTN network, you can add the payload format to decode the payload.
306 306  
307 307  
308 -[[image:1654592762713-715.png]]
279 +[[image:1654850829385-439.png]]
309 309  
310 -(((
311 -The payload decoder function for TTN is here:
312 -)))
281 +The payload decoder function for TTN V3 is here:
313 313  
314 -(((
315 -LLDS12 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Decoder/]]
316 -)))
283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
317 317  
318 318  
319 319  
320 320  == 2.4  Uplink Interval ==
321 321  
322 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
323 323  
324 324  
325 325  
... ... @@ -350,47 +350,25 @@
350 350  
351 351  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
352 352  
353 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
354 354  
355 -[[image:1654832691989-514.png]]
322 +[[image:1654851029373-510.png]]
356 356  
357 357  
358 -[[image:1654592833877-762.png]]
325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
359 359  
327 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
360 360  
361 -[[image:1654832740634-933.png]]
362 362  
363 363  
364 -
365 -(((
366 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
367 -)))
368 -
369 -(((
370 -
371 -)))
372 -
373 -[[image:1654833065139-942.png]]
374 -
375 -
376 -
377 -[[image:1654833092678-390.png]]
378 -
379 -
380 -
381 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
382 -
383 -[[image:1654833163048-332.png]]
384 -
385 -
386 -
387 387  == 2.6  Frequency Plans ==
388 388  
389 389  (((
390 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
391 391  )))
392 392  
393 393  
338 +
394 394  === 2.6.1  EU863-870 (EU868) ===
395 395  
396 396  (((
... ... @@ -454,21 +454,51 @@
454 454  === 2.6.2  US902-928(US915) ===
455 455  
456 456  (((
457 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
458 -)))
402 +Used in USA, Canada and South America. Default use CHE=2
459 459  
460 -(((
461 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
462 -)))
404 +(% style="color:blue" %)**Uplink:**
463 463  
464 -(((
465 -After Join success, the end node will switch to the correct sub band by:
466 -)))
406 +903.9 - SF7BW125 to SF10BW125
467 467  
468 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
469 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
408 +904.1 - SF7BW125 to SF10BW125
470 470  
410 +904.3 - SF7BW125 to SF10BW125
471 471  
412 +904.5 - SF7BW125 to SF10BW125
413 +
414 +904.7 - SF7BW125 to SF10BW125
415 +
416 +904.9 - SF7BW125 to SF10BW125
417 +
418 +905.1 - SF7BW125 to SF10BW125
419 +
420 +905.3 - SF7BW125 to SF10BW125
421 +
422 +
423 +(% style="color:blue" %)**Downlink:**
424 +
425 +923.3 - SF7BW500 to SF12BW500
426 +
427 +923.9 - SF7BW500 to SF12BW500
428 +
429 +924.5 - SF7BW500 to SF12BW500
430 +
431 +925.1 - SF7BW500 to SF12BW500
432 +
433 +925.7 - SF7BW500 to SF12BW500
434 +
435 +926.3 - SF7BW500 to SF12BW500
436 +
437 +926.9 - SF7BW500 to SF12BW500
438 +
439 +927.5 - SF7BW500 to SF12BW500
440 +
441 +923.3 - SF12BW500(RX2 downlink only)
442 +
443 +
444 +
445 +)))
446 +
472 472  === 2.6.3  CN470-510 (CN470) ===
473 473  
474 474  (((
... ... @@ -557,29 +557,54 @@
557 557  
558 558  
559 559  
560 -
561 561  === 2.6.4  AU915-928(AU915) ===
562 562  
563 563  (((
564 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
565 -)))
538 +Default use CHE=2
566 566  
567 -(((
568 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
569 -)))
540 +(% style="color:blue" %)**Uplink:**
570 570  
571 -(((
572 -
573 -)))
542 +916.8 - SF7BW125 to SF12BW125
574 574  
575 -(((
576 -After Join success, the end node will switch to the correct sub band by:
577 -)))
544 +917.0 - SF7BW125 to SF12BW125
578 578  
579 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
580 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546 +917.2 - SF7BW125 to SF12BW125
581 581  
548 +917.4 - SF7BW125 to SF12BW125
582 582  
550 +917.6 - SF7BW125 to SF12BW125
551 +
552 +917.8 - SF7BW125 to SF12BW125
553 +
554 +918.0 - SF7BW125 to SF12BW125
555 +
556 +918.2 - SF7BW125 to SF12BW125
557 +
558 +
559 +(% style="color:blue" %)**Downlink:**
560 +
561 +923.3 - SF7BW500 to SF12BW500
562 +
563 +923.9 - SF7BW500 to SF12BW500
564 +
565 +924.5 - SF7BW500 to SF12BW500
566 +
567 +925.1 - SF7BW500 to SF12BW500
568 +
569 +925.7 - SF7BW500 to SF12BW500
570 +
571 +926.3 - SF7BW500 to SF12BW500
572 +
573 +926.9 - SF7BW500 to SF12BW500
574 +
575 +927.5 - SF7BW500 to SF12BW500
576 +
577 +923.3 - SF12BW500(RX2 downlink only)
578 +
579 +
580 +
581 +)))
582 +
583 583  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
584 584  
585 585  (((
... ... @@ -688,7 +688,6 @@
688 688  
689 689  
690 690  
691 -
692 692  === 2.6.6  KR920-923 (KR920) ===
693 693  
694 694  (((
... ... @@ -761,7 +761,6 @@
761 761  
762 762  
763 763  
764 -
765 765  === 2.6.7  IN865-867 (IN865) ===
766 766  
767 767  (((
... ... @@ -798,18 +798,20 @@
798 798  
799 799  
800 800  
801 -
802 802  == 2.7  LED Indicator ==
803 803  
804 -The LLDS12 has an internal LED which is to show the status of different state.
801 +The LDDS75 has an internal LED which is to show the status of different state.
805 805  
806 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 +
804 +* Blink once when device power on.
805 +* The device detects the sensor and flashes 5 times.
806 +* Solid ON for 5 seconds once device successful Join the network.
807 807  * Blink once when device transmit a packet.
808 808  
809 809  == 2.8  ​Firmware Change Log ==
810 810  
811 811  
812 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
813 813  
814 814  
815 815  **Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
... ... @@ -816,393 +816,217 @@
816 816  
817 817  
818 818  
819 -= 3LiDAR ToF Measurement =
819 +== 2.9  Mechanical ==
820 820  
821 -== 3.1 Principle of Distance Measurement ==
822 822  
823 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
822 +[[image:image-20220610172003-1.png]]
824 824  
825 -[[image:1654831757579-263.png]]
824 +[[image:image-20220610172003-2.png]]
826 826  
827 827  
827 +== 2.10  Battery Analysis ==
828 828  
829 -== 3.2 Distance Measurement Characteristics ==
829 +=== 2.10.1  Battery Type ===
830 830  
831 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
832 832  
833 -[[image:1654831774373-275.png]]
834 834  
834 +The battery related documents as below:
835 835  
836 -①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 +* (((
837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
838 +)))
839 +* (((
840 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
841 +)))
842 +* (((
843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
844 +)))
837 837  
838 -②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
846 + [[image:image-20220610172400-3.png]]
839 839  
840 -③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
841 841  
842 842  
843 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
850 +=== 2.10.2  Replace the battery ===
844 844  
852 +(((
853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
854 +)))
845 845  
846 -[[image:1654831797521-720.png]]
856 +(((
857 +
858 +)))
847 847  
860 +(((
861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
862 +)))
848 848  
849 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
850 850  
851 -[[image:1654831810009-716.png]]
852 852  
866 += 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
853 853  
854 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
855 -
856 -
857 -
858 -== 3.3 Notice of usage: ==
859 -
860 -Possible invalid /wrong reading for LiDAR ToF tech:
861 -
862 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
863 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
864 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
865 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
866 -
867 -
868 -= 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
869 -
870 870  (((
871 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
869 +(((
870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
872 872  )))
872 +)))
873 873  
874 874  * (((
875 +(((
875 875  AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
876 876  )))
878 +)))
877 877  * (((
880 +(((
878 878  LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
879 879  )))
883 +)))
880 880  
881 881  (((
886 +(((
882 882  
888 +)))
883 883  
884 -There are two kinds of commands to configure LLDS12, they are:
890 +(((
891 +There are two kinds of commands to configure LDDS75, they are:
885 885  )))
893 +)))
886 886  
887 887  * (((
896 +(((
888 888  (% style="color:#4f81bd" %)** General Commands**.
889 889  )))
899 +)))
890 890  
891 891  (((
902 +(((
892 892  These commands are to configure:
893 893  )))
905 +)))
894 894  
895 895  * (((
908 +(((
896 896  General system settings like: uplink interval.
897 897  )))
911 +)))
898 898  * (((
913 +(((
899 899  LoRaWAN protocol & radio related command.
900 900  )))
916 +)))
901 901  
902 902  (((
919 +(((
903 903  They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
904 904  )))
905 -
906 -(((
907 -
908 908  )))
909 909  
910 -* (((
911 -(% style="color:#4f81bd" %)** Commands special design for LLDS12**
912 -)))
913 -
914 914  (((
915 -These commands only valid for LLDS12, as below:
916 -)))
917 -
918 -
919 -
920 -== 4.1  Set Transmit Interval Time ==
921 -
922 -Feature: Change LoRaWAN End Node Transmit Interval.
923 -
924 -(% style="color:#037691" %)**AT Command: AT+TDC**
925 -
926 -[[image:image-20220607171554-8.png]]
927 -
928 -
929 -
930 930  (((
931 -(% style="color:#037691" %)**Downlink Command: 0x01**
926 +
932 932  )))
933 -
934 -(((
935 -Format: Command Code (0x01) followed by 3 bytes time value.
936 936  )))
937 937  
930 +* (((
938 938  (((
939 -If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
940 940  )))
941 -
942 -* (((
943 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
944 944  )))
945 -* (((
946 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
947 947  
948 -
949 -
950 -)))
951 -
952 -== 4.2  Set Interrupt Mode ==
953 -
954 -Feature, Set Interrupt mode for GPIO_EXIT.
955 -
956 -(% style="color:#037691" %)**AT Command: AT+INTMOD**
957 -
958 -[[image:image-20220610105806-2.png]]
959 -
960 -
961 961  (((
962 -(% style="color:#037691" %)**Downlink Command: 0x06**
963 -)))
964 -
965 965  (((
966 -Format: Command Code (0x06) followed by 3 bytes.
938 +These commands only valid for LDDS75, as below:
967 967  )))
968 -
969 -(((
970 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
971 971  )))
972 972  
973 -* (((
974 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
975 -)))
976 -* (((
977 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
978 -)))
979 979  
980 980  
944 +== 3.1  Access AT Commands ==
981 981  
982 -== 4.3  Get Firmware Version Info ==
946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
983 983  
984 -Feature: use downlink to get firmware version.
948 +[[image:image-20220610172924-4.png||height="483" width="988"]]
985 985  
986 -(% style="color:#037691" %)**Downlink Command: 0x26**
987 987  
988 -[[image:image-20220607171917-10.png]]
951 +Or if you have below board, use below connection:
989 989  
990 -* Reply to the confirmation package: 26 01
991 -* Reply to non-confirmed packet: 26 00
992 992  
993 -Device will send an uplink after got this downlink command. With below payload:
954 +[[image:image-20220610172924-5.png]]
994 994  
995 -Configures info payload:
996 996  
997 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
998 -|=(((
999 -**Size(bytes)**
1000 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1001 -|**Value**|Software Type|(((
1002 -Frequency
957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1003 1003  
1004 -Band
1005 -)))|Sub-band|(((
1006 -Firmware
1007 1007  
1008 -Version
1009 -)))|Sensor Type|Reserve|(((
1010 -[[Message Type>>||anchor="H2.3.7A0MessageType"]]
1011 -Always 0x02
1012 -)))
960 + [[image:image-20220610172924-6.png||height="601" width="860"]]
1013 1013  
1014 -**Software Type**: Always 0x03 for LLDS12
1015 1015  
1016 1016  
1017 -**Frequency Band**:
964 +== 3.2  Set Transmit Interval Time ==
1018 1018  
1019 -*0x01: EU868
966 +Feature: Change LoRaWAN End Node Transmit Interval.
1020 1020  
1021 -*0x02: US915
968 +(% style="color:#037691" %)**AT Command: AT+TDC**
1022 1022  
1023 -*0x03: IN865
970 +[[image:image-20220610173409-7.png]]
1024 1024  
1025 -*0x04: AU915
1026 1026  
1027 -*0x05: KZ865
1028 -
1029 -*0x06: RU864
1030 -
1031 -*0x07: AS923
1032 -
1033 -*0x08: AS923-1
1034 -
1035 -*0x09: AS923-2
1036 -
1037 -*0xa0: AS923-3
1038 -
1039 -
1040 -**Sub-Band**: value 0x00 ~~ 0x08
1041 -
1042 -
1043 -**Firmware Version**: 0x0100, Means: v1.0.0 version
1044 -
1045 -
1046 -**Sensor Type**:
1047 -
1048 -0x01: LSE01
1049 -
1050 -0x02: LDDS75
1051 -
1052 -0x03: LDDS20
1053 -
1054 -0x04: LLMS01
1055 -
1056 -0x05: LSPH01
1057 -
1058 -0x06: LSNPK01
1059 -
1060 -0x07: LLDS12
1061 -
1062 -
1063 -
1064 -= 5.  Battery & How to replace =
1065 -
1066 -== 5.1  Battery Type ==
1067 -
1068 1068  (((
1069 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
974 +(% style="color:#037691" %)**Downlink Command: 0x01**
1070 1070  )))
1071 1071  
1072 1072  (((
1073 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1074 -)))
1075 -
1076 -[[image:1654593587246-335.png]]
1077 -
1078 -
1079 -Minimum Working Voltage for the LLDS12:
1080 -
1081 -LLDS12:  2.45v ~~ 3.6v
1082 -
1083 -
1084 -
1085 -== 5.2  Replace Battery ==
1086 -
1087 1087  (((
1088 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1089 -)))
979 +Format: Command Code (0x01) followed by 3 bytes time value.
1090 1090  
1091 -(((
1092 -And make sure the positive and negative pins match.
1093 -)))
981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1094 1094  
1095 -
1096 -
1097 -== 5.3  Power Consumption Analyze ==
1098 -
1099 -(((
1100 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1101 1101  )))
1102 1102  
1103 -(((
1104 -Instruction to use as below:
1105 -)))
1106 1106  
1107 -
1108 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1109 -
1110 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1111 -
1112 -
1113 -**Step 2**: Open it and choose
1114 -
1115 -* Product Model
1116 -* Uplink Interval
1117 -* Working Mode
1118 -
1119 -And the Life expectation in difference case will be shown on the right.
1120 -
1121 -[[image:1654593605679-189.png]]
1122 -
1123 -
1124 -The battery related documents as below:
1125 -
1126 -* (((
1127 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
988 +
1128 1128  )))
1129 -* (((
1130 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1131 -)))
1132 -* (((
1133 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1134 -)))
1135 1135  
1136 -[[image:image-20220607172042-11.png]]
991 +== 3.3  Set Interrupt Mode ==
1137 1137  
993 +Feature, Set Interrupt mode for GPIO_EXIT.
1138 1138  
995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1139 1139  
1140 -=== 5.3.1  ​Battery Note ===
997 +[[image:image-20220610174836-8.png]]
1141 1141  
1142 -(((
1143 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1144 -)))
1145 1145  
1000 +(% style="color:#037691" %)**Downlink Command: 0x06**
1146 1146  
1002 +Format: Command Code (0x06) followed by 3 bytes.
1147 1147  
1148 -=== ​5.3.2  Replace the battery ===
1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1149 1149  
1150 -(((
1151 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1152 -)))
1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1153 1153  
1154 -(((
1155 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1156 -)))
1157 1157  
1158 1158  
1011 += 4.  FAQ =
1159 1159  
1160 -= 6Use AT Command =
1013 +== 4.1  How to change the LoRa Frequency Bands/Region ==
1161 1161  
1162 -== 6.1  Access AT Commands ==
1163 -
1164 -LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
1165 -
1166 -[[image:1654593668970-604.png]]
1167 -
1168 -**Connection:**
1169 -
1170 -(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
1171 -
1172 -(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1173 -
1174 -(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1175 -
1176 -
1177 -(((
1178 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1179 -
1180 -LLDS12 will output system info once power on as below:
1181 -)))
1182 -
1183 -
1184 - [[image:1654593712276-618.png]]
1185 -
1186 -Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1187 -
1188 -
1189 -= 7.  FAQ =
1190 -
1191 -== 7.1  How to change the LoRa Frequency Bands/Region ==
1192 -
1193 1193  You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1194 1194  When downloading the images, choose the required image file for download. ​
1195 1195  
1196 1196  
1197 -= 8.  Trouble Shooting =
1019 += 5.  Trouble Shooting =
1198 1198  
1199 -== 8.1  AT Commands input doesn’t work ==
1021 +== 5.1  AT Commands input doesn’t work ==
1200 1200  
1201 1201  
1024 +(((
1202 1202  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 +)))
1203 1203  
1204 1204  
1205 -== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1029 +== 5.2  Significant error between the output distant value of LiDAR and actual distance ==
1206 1206  
1207 1207  
1208 1208  (((
... ... @@ -1227,10 +1227,10 @@
1227 1227  
1228 1228  
1229 1229  
1230 -= 9.  Order Info =
1054 += 6.  Order Info =
1231 1231  
1232 1232  
1233 -Part Number: (% style="color:blue" %)**LLDS12-XX**
1057 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY**
1234 1234  
1235 1235  
1236 1236  (% style="color:blue" %)**XX**(%%): The default frequency band
... ... @@ -1244,14 +1244,18 @@
1244 1244  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1245 1245  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1246 1246  
1071 +(% style="color:blue" %)**YY**(%%): Battery Option
1247 1247  
1073 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1074 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1248 1248  
1249 -= 10. ​ Packing Info =
1250 1250  
1077 += 7. ​ Packing Info =
1251 1251  
1079 +
1252 1252  **Package Includes**:
1253 1253  
1254 -* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1082 +* LDDS75 LoRaWAN Distance Detection Sensor x 1
1255 1255  
1256 1256  **Dimension and weight**:
1257 1257  
... ... @@ -1261,8 +1261,7 @@
1261 1261  * Weight / pcs : g
1262 1262  
1263 1263  
1092 += 8.  ​Support =
1264 1264  
1265 -= 11.  ​Support =
1266 -
1267 1267  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1268 1268  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654846127817-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content