Changes for page LDDS45 - LoRaWAN Distance Detection Sensor User Manual
Last modified by Mengting Qiu on 2025/02/26 15:04
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -4,7 +4,6 @@ 4 4 5 5 **Contents:** 6 6 7 -{{toc/}} 8 8 9 9 10 10 ... ... @@ -11,7 +11,6 @@ 11 11 12 12 13 13 14 - 15 15 = 1. Introduction = 16 16 17 17 == 1.1 What is LoRaWAN LiDAR ToF Distance Sensor == ... ... @@ -19,30 +19,18 @@ 19 19 ((( 20 20 21 21 22 -((( 23 23 The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 24 -))) 25 25 26 -((( 27 27 The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 28 -))) 29 29 30 -((( 31 31 It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 32 -))) 33 33 34 -((( 35 35 The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 36 -))) 37 37 38 -((( 39 39 LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years. 40 -))) 41 41 42 -((( 43 43 Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 44 44 ))) 45 -))) 46 46 47 47 48 48 [[image:1654826306458-414.png]] ... ... @@ -63,8 +63,6 @@ 63 63 * Downlink to change configure 64 64 * 8500mAh Battery for long term use 65 65 66 - 67 - 68 68 == 1.3 Probe Specification == 69 69 70 70 * Storage temperature :-20℃~~75℃ ... ... @@ -80,8 +80,6 @@ 80 80 * Material of enclosure - ABS+PC 81 81 * Wire length - 25cm 82 82 83 - 84 - 85 85 == 1.4 Probe Dimension == 86 86 87 87 ... ... @@ -88,6 +88,7 @@ 88 88 [[image:1654827224480-952.png]] 89 89 90 90 73 + 91 91 == 1.5 Applications == 92 92 93 93 * Horizontal distance measurement ... ... @@ -98,8 +98,6 @@ 98 98 * Automatic control 99 99 * Sewer 100 100 101 - 102 - 103 103 == 1.6 Pin mapping and power on == 104 104 105 105 ... ... @@ -107,6 +107,7 @@ 107 107 108 108 109 109 91 + 110 110 = 2. Configure LLDS12 to connect to LoRaWAN network = 111 111 112 112 == 2.1 How it works == ... ... @@ -232,7 +232,7 @@ 232 232 233 233 234 234 235 -=== 2.3.2 217 +=== 2.3.2 DS18B20 Temperature sensor === 236 236 237 237 This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 238 238 ... ... @@ -245,35 +245,33 @@ 245 245 246 246 247 247 248 -=== 2.3.3 Distance===230 +=== 2.3.3 Soil pH === 249 249 250 -R epresents the distance value of the measurement output, the default unit is cm, and the value rangeparsedasa decimal number is 0-1200.In actual use, when the signal strength value Strength.232 +Range: 0 ~~ 14 pH 251 251 234 +**Example:** 252 252 253 -** Example**:236 +(% style="color:#037691" %)** 0x02B7(H) = 695(D) = 6.95pH** 254 254 255 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 256 256 257 257 240 +=== 2.3.4 Soil Temperature === 258 258 259 - === 2.3.4 Distancesignalstrength===242 +Get Soil Temperature 260 260 261 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 262 262 263 - 264 264 **Example**: 265 265 266 -If payload is: 01 D7(H)=471(D),distancesignalstrength=471,471>100,471≠65535,theeasuredvalueofDistisconsidered credible.247 +If payload is: **0105H**: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 267 267 268 - Customerscanjudgewhethertheyneedtoadjusttheenvironmentbasedonthesignalstrength.249 +If payload is: **FF3FH** : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 269 269 270 270 271 271 272 -=== 2.3.5 253 +=== 2.3.5 Interrupt Pin === 273 273 274 274 This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. 275 275 276 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]]. 277 277 278 278 **Example:** 279 279 ... ... @@ -283,18 +283,8 @@ 283 283 284 284 285 285 286 -=== 2.3.6 LiDAR temp ===266 +=== 2.3.6 Message Type === 287 287 288 -Characterize the internal temperature value of the sensor. 289 - 290 -**Example: ** 291 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 292 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 293 - 294 - 295 - 296 -=== 2.3.7 Message Type === 297 - 298 298 ((( 299 299 For a normal uplink payload, the message type is always 0x01. 300 300 ))) ... ... @@ -308,8 +308,9 @@ 308 308 |=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload** 309 309 |(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 310 310 |(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]] 281 +|(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]] 311 311 312 -=== 2.3. 8Decode payload in The Things Network ===283 +=== 2.3.7 Decode payload in The Things Network === 313 313 314 314 While using TTN network, you can add the payload format to decode the payload. 315 315 ... ... @@ -477,7 +477,7 @@ 477 477 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 478 478 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 479 479 480 -=== 2.6.3 451 +=== 2.6.3 CN470-510 (CN470) === 481 481 482 482 ((( 483 483 Used in China, Default use CHE=1 ... ... @@ -566,7 +566,7 @@ 566 566 567 567 568 568 569 -=== 2.6.4 540 +=== 2.6.4 AU915-928(AU915) === 570 570 571 571 ((( 572 572 Frequency band as per definition in LoRaWAN 1.0.3 Regional document. ... ... @@ -587,7 +587,7 @@ 587 587 * Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 588 588 * Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 589 589 590 -=== 2.6.5 561 +=== 2.6.5 AS920-923 & AS923-925 (AS923) === 591 591 592 592 ((( 593 593 (% style="color:blue" %)**Default Uplink channel:** ... ... @@ -696,7 +696,7 @@ 696 696 697 697 698 698 699 -=== 2.6.6 670 +=== 2.6.6 KR920-923 (KR920) === 700 700 701 701 ((( 702 702 (% style="color:blue" %)**Default channel:** ... ... @@ -769,7 +769,7 @@ 769 769 770 770 771 771 772 -=== 2.6.7 743 +=== 2.6.7 IN865-867 (IN865) === 773 773 774 774 ((( 775 775 (% style="color:blue" %)**Uplink:**