Last modified by Xiaoling on 2025/04/27 13:54

From version 110.1
edited by Xiaoling
on 2022/06/10 13:57
Change comment: There is no comment for this version
To version 148.2
edited by Xiaoling
on 2022/06/10 17:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,10 +1,8 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 -{{toc/}}
8 8  
9 9  
10 10  
... ... @@ -14,38 +14,33 @@
14 14  
15 15  = 1.  Introduction =
16 16  
17 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 22  (((
23 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
24 -)))
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
25 25  
26 -(((
27 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
28 -)))
29 29  
30 -(((
31 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
32 -)))
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
33 33  
34 -(((
35 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 -)))
37 37  
38 -(((
39 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
40 -)))
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
41 41  
42 -(((
43 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
44 44  )))
45 45  )))
46 46  
47 47  
48 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
49 49  
50 50  
51 51  
... ... @@ -52,42 +52,50 @@
52 52  == ​1.2  Features ==
53 53  
54 54  * LoRaWAN 1.0.3 Class A
55 -* Ultra-low power consumption
56 -* Laser technology for distance detection
57 -* Operating Range - 0.1m~~12m
58 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
59 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
60 60  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
61 61  * AT Commands to change parameters
62 62  * Uplink on periodically
63 63  * Downlink to change configure
64 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
65 65  
66 -== 1.3  Probe Specification ==
60 +== 1.3  Specification ==
67 67  
68 -* Storage temperature :-20℃~~75℃
69 -* Operating temperature - -20℃~~60℃
70 -* Operating Range - 0.1m~~12m①
71 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
72 -* Distance resolution - 5mm
73 -* Ambient light immunity - 70klux
74 -* Enclosure rating - IP65
75 -* Light source - LED
76 -* Central wavelength - 850nm
77 -* FOV - 3.6°
78 -* Material of enclosure - ABS+PC
79 -* Wire length - 25cm
62 +=== 1.3.1  Rated environmental conditions ===
80 80  
81 -== 1.4  Probe Dimension ==
64 +[[image:image-20220610154839-1.png]]
82 82  
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
83 83  
84 -[[image:1654827224480-952.png]]
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
85 85  
86 86  
87 87  
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
73 +
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
75 +
76 +
77 +
78 +[[image:1654852253176-749.png]]
79 +
80 +
81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
82 +
83 +
84 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
85 +
86 +
87 +
88 88  == 1.5 ​ Applications ==
89 89  
90 90  * Horizontal distance measurement
91 +* Liquid level measurement
91 91  * Parking management system
92 92  * Object proximity and presence detection
93 93  * Intelligent trash can management system
... ... @@ -94,28 +94,29 @@
94 94  * Robot obstacle avoidance
95 95  * Automatic control
96 96  * Sewer
98 +* Bottom water level monitoring
97 97  
98 98  == 1.6  Pin mapping and power on ==
99 99  
100 100  
101 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
102 102  
103 103  
104 104  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
105 105  
106 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
107 -
108 108  == 2.1  How it works ==
109 109  
110 110  (((
111 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
112 112  )))
113 113  
114 114  (((
115 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
116 116  )))
117 117  
118 118  
120 +
119 119  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
120 120  
121 121  (((
... ... @@ -123,7 +123,7 @@
123 123  )))
124 124  
125 125  (((
126 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
127 127  )))
128 128  
129 129  (((
... ... @@ -131,57 +131,57 @@
131 131  )))
132 132  
133 133  (((
134 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
135 135  )))
136 136  
137 137  (((
138 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
139 139  )))
140 140  
141 141  [[image:image-20220607170145-1.jpeg]]
142 142  
143 143  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
144 144  
145 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
146 146  
150 +**Add APP EUI in the application**
147 147  
148 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
149 149  
154 +[[image:image-20220610161353-5.png]]
150 150  
151 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
152 152  
153 153  
159 +[[image:image-20220610161353-7.png]]
154 154  
155 -**Add APP EUI and DEV EUI**
156 156  
157 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
158 158  
164 + [[image:image-20220610161538-8.png]]
159 159  
160 160  
161 -**Add APP EUI in the application**
162 162  
163 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
164 164  
170 +[[image:image-20220610161538-9.png]]
165 165  
166 166  
167 -**Add APP KEY**
168 168  
169 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
170 170  
171 171  
172 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
173 -
174 -
175 175  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
176 176  
177 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
178 178  
179 179  
180 180  (((
181 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
182 182  )))
183 183  
184 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
185 185  
186 186  
187 187  
... ... @@ -188,11 +188,10 @@
188 188  == 2.3  ​Uplink Payload ==
189 189  
190 190  (((
191 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
192 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
193 193  
194 -(((
195 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
196 196  )))
197 197  
198 198  (((
... ... @@ -202,18 +202,16 @@
202 202  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
203 203  |=(% style="width: 62.5px;" %)(((
204 204  **Size (bytes)**
205 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
206 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
207 -[[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
208 208  
209 -[[DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
210 -)))|[[Distance>>||anchor="H"]]|[[Distance signal strength>>||anchor="H2.3.4SoilTemperature"]]|(((
211 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
212 -)))|[[LiDAR temp>>||anchor="H"]]|(((
213 -[[Message Type>>||anchor="H2.3.6MessageType"]]
214 -)))
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
215 215  
216 -[[image:1654833689380-972.png]]
215 +[[image:1654850511545-399.png]]
217 217  
218 218  
219 219  
... ... @@ -220,7 +220,7 @@
220 220  === 2.3.1  Battery Info ===
221 221  
222 222  
223 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
224 224  
225 225  Ex1: 0x0B45 = 2885mV
226 226  
... ... @@ -228,49 +228,20 @@
228 228  
229 229  
230 230  
231 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
232 232  
233 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
234 234  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
235 235  
236 -**Example**:
237 237  
238 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
239 239  
240 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240 +=== 2.3.3  Interrupt Pin ===
241 241  
242 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
242 242  
243 -
244 -=== 2.3.3  Distance ===
245 -
246 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
247 -
248 -
249 -**Example**:
250 -
251 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
252 -
253 -
254 -
255 -=== 2.3.4  Distance signal strength ===
256 -
257 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
258 -
259 -
260 -**Example**:
261 -
262 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
263 -
264 -Customers can judge whether they need to adjust the environment based on the signal strength.
265 -
266 -
267 -
268 -=== 2.3.5  Interrupt Pin ===
269 -
270 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
271 -
272 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]].
273 -
274 274  **Example:**
275 275  
276 276  0x00: Normal uplink packet.
... ... @@ -279,54 +279,44 @@
279 279  
280 280  
281 281  
282 -=== 2.3.6  LiDAR temp ===
252 +=== 2.3.4  DS18B20 Temperature sensor ===
283 283  
284 -Characterize the internal temperature value of the sensor.
254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
285 285  
286 -**Example: **
287 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
288 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
256 +**Example**:
289 289  
258 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
290 290  
260 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
291 291  
292 -=== 2.3.7  Message Type ===
262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
293 293  
294 -(((
295 -For a normal uplink payload, the message type is always 0x01.
296 -)))
297 297  
298 -(((
299 -Valid Message Type:
300 -)))
301 301  
266 +=== 2.3.5  Sensor Flag ===
302 302  
303 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
304 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
305 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
306 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
268 +0x01: Detect Ultrasonic Sensor
307 307  
270 +0x00: No Ultrasonic Sensor
308 308  
309 309  
310 -=== 2.3.8  Decode payload in The Things Network ===
273 +===
274 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
311 311  
312 312  While using TTN network, you can add the payload format to decode the payload.
313 313  
314 314  
315 -[[image:1654592762713-715.png]]
279 +[[image:1654850829385-439.png]]
316 316  
317 -(((
318 -The payload decoder function for TTN is here:
319 -)))
281 +The payload decoder function for TTN V3 is here:
320 320  
321 -(((
322 -LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
323 -)))
283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
324 324  
325 325  
326 326  
327 327  == 2.4  Uplink Interval ==
328 328  
329 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
330 330  
331 331  
332 332  
... ... @@ -357,47 +357,25 @@
357 357  
358 358  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
359 359  
360 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
361 361  
362 -[[image:1654832691989-514.png]]
322 +[[image:1654851029373-510.png]]
363 363  
364 364  
365 -[[image:1654592833877-762.png]]
325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
366 366  
327 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
367 367  
368 -[[image:1654832740634-933.png]]
369 369  
370 370  
371 -
372 -(((
373 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
374 -)))
375 -
376 -(((
377 -
378 -)))
379 -
380 -[[image:1654833065139-942.png]]
381 -
382 -
383 -
384 -[[image:1654833092678-390.png]]
385 -
386 -
387 -
388 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
389 -
390 -[[image:1654833163048-332.png]]
391 -
392 -
393 -
394 394  == 2.6  Frequency Plans ==
395 395  
396 396  (((
397 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
398 398  )))
399 399  
400 400  
338 +
401 401  === 2.6.1  EU863-870 (EU868) ===
402 402  
403 403  (((
... ... @@ -461,20 +461,51 @@
461 461  === 2.6.2  US902-928(US915) ===
462 462  
463 463  (((
464 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
465 -)))
402 +Used in USA, Canada and South America. Default use CHE=2
466 466  
467 -(((
468 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
469 -)))
404 +(% style="color:blue" %)**Uplink:**
470 470  
471 -(((
472 -After Join success, the end node will switch to the correct sub band by:
473 -)))
406 +903.9 - SF7BW125 to SF10BW125
474 474  
475 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
476 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
408 +904.1 - SF7BW125 to SF10BW125
477 477  
410 +904.3 - SF7BW125 to SF10BW125
411 +
412 +904.5 - SF7BW125 to SF10BW125
413 +
414 +904.7 - SF7BW125 to SF10BW125
415 +
416 +904.9 - SF7BW125 to SF10BW125
417 +
418 +905.1 - SF7BW125 to SF10BW125
419 +
420 +905.3 - SF7BW125 to SF10BW125
421 +
422 +
423 +(% style="color:blue" %)**Downlink:**
424 +
425 +923.3 - SF7BW500 to SF12BW500
426 +
427 +923.9 - SF7BW500 to SF12BW500
428 +
429 +924.5 - SF7BW500 to SF12BW500
430 +
431 +925.1 - SF7BW500 to SF12BW500
432 +
433 +925.7 - SF7BW500 to SF12BW500
434 +
435 +926.3 - SF7BW500 to SF12BW500
436 +
437 +926.9 - SF7BW500 to SF12BW500
438 +
439 +927.5 - SF7BW500 to SF12BW500
440 +
441 +923.3 - SF12BW500(RX2 downlink only)
442 +
443 +
444 +
445 +)))
446 +
478 478  === 2.6.3  CN470-510 (CN470) ===
479 479  
480 480  (((
... ... @@ -563,28 +563,54 @@
563 563  
564 564  
565 565  
566 -
567 567  === 2.6.4  AU915-928(AU915) ===
568 568  
569 569  (((
570 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
571 -)))
538 +Default use CHE=2
572 572  
573 -(((
574 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
575 -)))
540 +(% style="color:blue" %)**Uplink:**
576 576  
577 -(((
578 -
579 -)))
542 +916.8 - SF7BW125 to SF12BW125
580 580  
581 -(((
582 -After Join success, the end node will switch to the correct sub band by:
583 -)))
544 +917.0 - SF7BW125 to SF12BW125
584 584  
585 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
586 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546 +917.2 - SF7BW125 to SF12BW125
587 587  
548 +917.4 - SF7BW125 to SF12BW125
549 +
550 +917.6 - SF7BW125 to SF12BW125
551 +
552 +917.8 - SF7BW125 to SF12BW125
553 +
554 +918.0 - SF7BW125 to SF12BW125
555 +
556 +918.2 - SF7BW125 to SF12BW125
557 +
558 +
559 +(% style="color:blue" %)**Downlink:**
560 +
561 +923.3 - SF7BW500 to SF12BW500
562 +
563 +923.9 - SF7BW500 to SF12BW500
564 +
565 +924.5 - SF7BW500 to SF12BW500
566 +
567 +925.1 - SF7BW500 to SF12BW500
568 +
569 +925.7 - SF7BW500 to SF12BW500
570 +
571 +926.3 - SF7BW500 to SF12BW500
572 +
573 +926.9 - SF7BW500 to SF12BW500
574 +
575 +927.5 - SF7BW500 to SF12BW500
576 +
577 +923.3 - SF12BW500(RX2 downlink only)
578 +
579 +
580 +
581 +)))
582 +
588 588  === 2.6.5  AS920-923 & AS923-925 (AS923) ===
589 589  
590 590  (((
... ... @@ -693,7 +693,6 @@
693 693  
694 694  
695 695  
696 -
697 697  === 2.6.6  KR920-923 (KR920) ===
698 698  
699 699  (((
... ... @@ -766,7 +766,6 @@
766 766  
767 767  
768 768  
769 -
770 770  === 2.6.7  IN865-867 (IN865) ===
771 771  
772 772  (((
... ... @@ -803,108 +803,61 @@
803 803  
804 804  
805 805  
806 -
807 807  == 2.7  LED Indicator ==
808 808  
809 -The LLDS12 has an internal LED which is to show the status of different state.
801 +The LDDS75 has an internal LED which is to show the status of different state.
810 810  
811 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 +
804 +* Blink once when device power on.
805 +* The device detects the sensor and flashes 5 times.
806 +* Solid ON for 5 seconds once device successful Join the network.
812 812  * Blink once when device transmit a packet.
813 813  
814 814  == 2.8  ​Firmware Change Log ==
815 815  
816 816  
817 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
818 818  
819 819  
820 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
815 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
821 821  
822 822  
823 823  
824 -= 3LiDAR ToF Measurement =
819 +== 2.9  Mechanical ==
825 825  
826 -== 3.1 Principle of Distance Measurement ==
827 827  
828 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
822 +[[image:image-20220610172003-1.png]]
829 829  
830 -[[image:1654831757579-263.png]]
824 +[[image:image-20220610172003-2.png]]
831 831  
832 832  
827 +== 2.10  Battery Analysis ==
833 833  
834 -== 3.2 Distance Measurement Characteristics ==
829 +=== 2.10.1  Battery Type ===
835 835  
836 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
837 837  
838 -[[image:1654831774373-275.png]]
839 839  
834 +The battery related documents as below:
840 840  
841 -①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
842 -
843 -②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
844 -
845 -③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
846 -
847 -
848 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
849 -
850 -
851 -[[image:1654831797521-720.png]]
852 -
853 -
854 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
855 -
856 -[[image:1654831810009-716.png]]
857 -
858 -
859 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
860 -
861 -
862 -
863 -== 3.3 Notice of usage: ==
864 -
865 -Possible invalid /wrong reading for LiDAR ToF tech:
866 -
867 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
868 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
869 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
870 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
871 -
872 -= 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
873 -
874 -(((
875 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
836 +* (((
837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
876 876  )))
877 -
878 878  * (((
879 -AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
840 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
880 880  )))
881 881  * (((
882 -LoRaWAN Downlink instruction for different platforms[[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
883 883  )))
884 884  
885 -(((
886 -
846 + [[image:image-20220610172400-3.png]]
887 887  
888 -There are two kinds of commands to configure LLDS12, they are:
889 -)))
890 890  
891 -* (((
892 -(% style="color:#4f81bd" %)** General Commands**.
893 -)))
894 894  
895 -(((
896 -These commands are to configure:
897 -)))
850 +=== 2.10.2  Replace the battery ===
898 898  
899 -* (((
900 -General system settings like: uplink interval.
901 -)))
902 -* (((
903 -LoRaWAN protocol & radio related command.
904 -)))
905 -
906 906  (((
907 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
908 908  )))
909 909  
910 910  (((
... ... @@ -911,300 +911,176 @@
911 911  
912 912  )))
913 913  
914 -* (((
915 -(% style="color:#4f81bd" %)** Commands special design for LLDS12**
916 -)))
917 -
918 918  (((
919 -These commands only valid for LLDS12, as below:
861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
920 920  )))
921 921  
922 922  
923 923  
924 -== 4.1  Set Transmit Interval Time ==
866 += 3Configure LLDS12 via AT Command or LoRaWAN Downlink =
925 925  
926 -Feature: Change LoRaWAN End Node Transmit Interval.
927 -
928 -(% style="color:#037691" %)**AT Command: AT+TDC**
929 -
930 -[[image:image-20220607171554-8.png]]
931 -
932 -
933 -
934 934  (((
935 -(% style="color:#037691" %)**Downlink Command: 0x01**
936 -)))
937 -
938 938  (((
939 -Format: Command Code (0x01) followed by 3 bytes time value.
870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
940 940  )))
941 -
942 -(((
943 -If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
944 944  )))
945 945  
946 946  * (((
947 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
875 +(((
876 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
948 948  )))
878 +)))
949 949  * (((
950 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
880 +(((
881 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
882 +)))
883 +)))
951 951  
952 -
885 +(((
886 +(((
953 953  
954 954  )))
955 955  
956 -== 4.2  Set Interrupt Mode ==
957 -
958 -Feature, Set Interrupt mode for GPIO_EXIT.
959 -
960 -(% style="color:#037691" %)**AT Command: AT+INTMOD**
961 -
962 -[[image:image-20220610105806-2.png]]
963 -
964 -
965 -
966 -
967 967  (((
968 -(% style="color:#037691" %)**Downlink Command: 0x06**
891 +There are two kinds of commands to configure LDDS75, they are:
969 969  )))
893 +)))
970 970  
895 +* (((
971 971  (((
972 -Format: Command Code (0x06) followed by 3 bytes.
897 +(% style="color:#4f81bd" %)** General Commands**.
973 973  )))
899 +)))
974 974  
975 975  (((
976 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
902 +(((
903 +These commands are to configure:
977 977  )))
905 +)))
978 978  
979 979  * (((
980 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
908 +(((
909 +General system settings like: uplink interval.
981 981  )))
911 +)))
982 982  * (((
983 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
913 +(((
914 +LoRaWAN protocol & radio related command.
984 984  )))
985 -
986 -== 4.3  Get Firmware Version Info ==
987 -
988 -Feature: use downlink to get firmware version.
989 -
990 -(% style="color:#037691" %)**Downlink Command: 0x26**
991 -
992 -[[image:image-20220607171917-10.png]]
993 -
994 -* Reply to the confirmation package: 26 01
995 -* Reply to non-confirmed packet: 26 00
996 -
997 -Device will send an uplink after got this downlink command. With below payload:
998 -
999 -Configures info payload:
1000 -
1001 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
1002 -|=(((
1003 -**Size(bytes)**
1004 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
1005 -|**Value**|Software Type|(((
1006 -Frequency
1007 -
1008 -Band
1009 -)))|Sub-band|(((
1010 -Firmware
1011 -
1012 -Version
1013 -)))|Sensor Type|Reserve|(((
1014 -[[Message Type>>||anchor="H2.3.6MessageType"]]
1015 -Always 0x02
1016 1016  )))
1017 1017  
1018 -**Software Type**: Always 0x03 for LLDS12
1019 -
1020 -
1021 -**Frequency Band**:
1022 -
1023 -*0x01: EU868
1024 -
1025 -*0x02: US915
1026 -
1027 -*0x03: IN865
1028 -
1029 -*0x04: AU915
1030 -
1031 -*0x05: KZ865
1032 -
1033 -*0x06: RU864
1034 -
1035 -*0x07: AS923
1036 -
1037 -*0x08: AS923-1
1038 -
1039 -*0x09: AS923-2
1040 -
1041 -*0xa0: AS923-3
1042 -
1043 -
1044 -**Sub-Band**: value 0x00 ~~ 0x08
1045 -
1046 -
1047 -**Firmware Version**: 0x0100, Means: v1.0.0 version
1048 -
1049 -
1050 -**Sensor Type**:
1051 -
1052 -0x01: LSE01
1053 -
1054 -0x02: LDDS75
1055 -
1056 -0x03: LDDS20
1057 -
1058 -0x04: LLMS01
1059 -
1060 -0x05: LSPH01
1061 -
1062 -0x06: LSNPK01
1063 -
1064 -0x07: LLDS12
1065 -
1066 -
1067 -
1068 -= 5.  Battery & How to replace =
1069 -
1070 -== 5.1  Battery Type ==
1071 -
1072 1072  (((
1073 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
1074 -)))
1075 -
1076 1076  (((
1077 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
920 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
1078 1078  )))
1079 -
1080 -[[image:1654593587246-335.png]]
1081 -
1082 -
1083 -Minimum Working Voltage for the LLDS12:
1084 -
1085 -LLDS12:  2.45v ~~ 3.6v
1086 -
1087 -
1088 -
1089 -== 5.2  Replace Battery ==
1090 -
1091 -(((
1092 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1093 1093  )))
1094 1094  
1095 1095  (((
1096 -And make sure the positive and negative pins match.
925 +(((
926 +
1097 1097  )))
928 +)))
1098 1098  
1099 -
1100 -
1101 -== 5.3  Power Consumption Analyze ==
1102 -
930 +* (((
1103 1103  (((
1104 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
1105 1105  )))
934 +)))
1106 1106  
1107 1107  (((
1108 -Instruction to use as below:
937 +(((
938 +These commands only valid for LDDS75, as below:
1109 1109  )))
940 +)))
1110 1110  
1111 1111  
1112 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1113 1113  
1114 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
944 +== 3.1  Access AT Commands ==
1115 1115  
946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
1116 1116  
1117 -**Step 2**: Open it and choose
948 +[[image:image-20220610172924-4.png||height="483" width="988"]]
1118 1118  
1119 -* Product Model
1120 -* Uplink Interval
1121 -* Working Mode
1122 1122  
1123 -And the Life expectation in difference case will be shown on the right.
951 +Or if you have below board, use below connection:
1124 1124  
1125 -[[image:1654593605679-189.png]]
1126 1126  
954 +[[image:image-20220610172924-5.png]]
1127 1127  
1128 -The battery related documents as below:
1129 1129  
1130 -* (((
1131 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
1132 -)))
1133 -* (((
1134 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1135 -)))
1136 -* (((
1137 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1138 -)))
957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1139 1139  
1140 -[[image:image-20220607172042-11.png]]
1141 1141  
960 + [[image:image-20220610172924-6.png||height="601" width="860"]]
1142 1142  
1143 1143  
1144 -=== 5.3.1  ​Battery Note ===
1145 1145  
1146 -(((
1147 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1148 -)))
964 +== 3.2  Set Transmit Interval Time ==
1149 1149  
966 +Feature: Change LoRaWAN End Node Transmit Interval.
1150 1150  
968 +(% style="color:#037691" %)**AT Command: AT+TDC**
1151 1151  
1152 -=== ​5.3.2  Replace the battery ===
970 +[[image:image-20220610173409-7.png]]
1153 1153  
972 +
1154 1154  (((
1155 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
974 +(% style="color:#037691" %)**Downlink Command: 0x01**
1156 1156  )))
1157 1157  
1158 1158  (((
1159 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1160 -)))
978 +(((
979 +Format: Command Code (0x01) followed by 3 bytes time value.
1161 1161  
981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1162 1162  
983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
985 +)))
1163 1163  
1164 -= 6.  Use AT Command =
1165 1165  
1166 -== 6.1  Access AT Commands ==
988 +
989 +)))
1167 1167  
1168 -LLDS12 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LLDS12 for using AT command, as below.
991 +== 3.3  Set Interrupt Mode ==
1169 1169  
1170 -[[image:1654593668970-604.png]]
993 +Feature, Set Interrupt mode for GPIO_EXIT.
1171 1171  
1172 -**Connection:**
995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1173 1173  
1174 -(% style="background-color:yellow" %)** USB TTL GND <~-~-~-~-> GND**
997 +[[image:image-20220610174836-8.png]]
1175 1175  
1176 -(% style="background-color:yellow" %)** USB TTL TXD  <~-~-~-~-> UART_RXD**
1177 1177  
1178 -(% style="background-color:yellow" %)** USB TTL RXD  <~-~-~-~-> UART_TXD**
1000 +(% style="color:#037691" %)**Downlink Command: 0x06**
1179 1179  
1002 +Format: Command Code (0x06) followed by 3 bytes.
1180 1180  
1181 -(((
1182 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1183 -)))
1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1184 1184  
1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1185 1185  
1186 - [[image:1654593712276-618.png]]
1187 1187  
1188 -Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1189 1189  
1011 += 4.  FAQ =
1190 1190  
1191 -= 7.  FAQ =
1013 +== 4.1  How to change the LoRa Frequency Bands/Region ==
1192 1192  
1193 -== 7.1  How to change the LoRa Frequency Bands/Region ==
1194 -
1195 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1015 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1196 1196  When downloading the images, choose the required image file for download. ​
1197 1197  
1198 1198  
1199 -= 8.  Trouble Shooting =
1019 += 5.  Trouble Shooting =
1200 1200  
1201 -== 8.1  AT Commands input doesn’t work ==
1021 +== 5.1  AT Commands input doesn’t work ==
1202 1202  
1203 1203  
1024 +(((
1204 1204  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 +)))
1205 1205  
1206 1206  
1207 -== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1029 +== 5.2  Significant error between the output distant value of LiDAR and actual distance ==
1208 1208  
1209 1209  
1210 1210  (((
... ... @@ -1229,10 +1229,10 @@
1229 1229  
1230 1230  
1231 1231  
1232 -= 9.  Order Info =
1054 += 6.  Order Info =
1233 1233  
1234 1234  
1235 -Part Number: (% style="color:blue" %)**LLDS12-XX**
1057 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY**
1236 1236  
1237 1237  
1238 1238  (% style="color:blue" %)**XX**(%%): The default frequency band
... ... @@ -1246,12 +1246,18 @@
1246 1246  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1247 1247  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1248 1248  
1249 -= 10. ​ Packing Info =
1071 +(% style="color:blue" %)**YY**(%%): Battery Option
1250 1250  
1073 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1074 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1251 1251  
1076 +
1077 += 7. ​ Packing Info =
1078 +
1079 +
1252 1252  **Package Includes**:
1253 1253  
1254 -* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1082 +* LDDS75 LoRaWAN Distance Detection Sensor x 1
1255 1255  
1256 1256  **Dimension and weight**:
1257 1257  
... ... @@ -1260,7 +1260,8 @@
1260 1260  * Package Size / pcs : cm
1261 1261  * Weight / pcs : g
1262 1262  
1263 -= 11.  ​Support =
1264 1264  
1092 += 8.  ​Support =
1093 +
1265 1265  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1266 1266  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654846127817-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content
image-20220610174836-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +34.3 KB
Content