Changes for page LDDS45 - LoRaWAN Distance Detection Sensor User Manual
Last modified by Xiaoling on 2025/04/27 13:54
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 28 added, 0 removed)
- 1654846127817-788.png
- 1654847051249-359.png
- 1654847583902-256.png
- 1654848616367-242.png
- 1654849068701-275.png
- 1654850511545-399.png
- 1654850829385-439.png
- 1654851029373-510.png
- 1654852175653-550.png
- 1654852253176-749.png
- image-20220610154839-1.png
- image-20220610155021-2.png
- image-20220610155021-3.png
- image-20220610161353-4.png
- image-20220610161353-5.png
- image-20220610161353-6.png
- image-20220610161353-7.png
- image-20220610161538-8.png
- image-20220610161538-9.png
- image-20220610161724-10.png
- image-20220610165129-11.png
- image-20220610172003-1.png
- image-20220610172003-2.png
- image-20220610172400-3.png
- image-20220610172924-4.png
- image-20220610172924-5.png
- image-20220610172924-6.png
- image-20220610173409-7.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -L LDS12-LoRaWANLiDAR ToF Distance Sensor User Manual1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual - Content
-
... ... @@ -1,7 +1,6 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220610095606-1.png]]2 +[[image:1654846127817-788.png]] 3 3 4 - 5 5 **Contents:** 6 6 7 7 ... ... @@ -10,28 +10,36 @@ 10 10 11 11 12 12 12 + 13 13 = 1. Introduction = 14 14 15 -== 1.1 What is LoRaWAN LiDAR ToF Distance Sensor ==15 +== 1.1 What is LoRaWAN Distance Detection Sensor == 16 16 17 17 ((( 18 18 19 19 20 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement. 20 +((( 21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 21 21 22 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc. 23 23 24 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server. 24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server. 25 25 26 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 27 27 28 - LLDS12is powered by (%style="color:blue"%)**8500mAhLi-SOCI2battery**(%%),itis designedforlong term use upto5years.27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 29 30 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 29 + 30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*. 31 + 32 + 33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on. 34 + 35 + 36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors 31 31 ))) 38 +))) 32 32 33 33 34 -[[image:16548 26306458-414.png]]41 +[[image:1654847051249-359.png]] 35 35 36 36 37 37 ... ... @@ -38,42 +38,50 @@ 38 38 == 1.2 Features == 39 39 40 40 * LoRaWAN 1.0.3 Class A 41 -* Ultra -low power consumption42 -* Lasertechnologyfor distancedetection43 -* OperatingRange - 0.1m~~12m①44 -* Accuracy -±5cm@(0.1-6m),±1%@(6m-12m)45 -* Monitor BatteryLevel48 +* Ultra low power consumption 49 +* Distance Detection by Ultrasonic technology 50 +* Flat object range 280mm - 7500mm 51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 52 +* Cable Length : 25cm 46 46 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 47 47 * AT Commands to change parameters 48 48 * Uplink on periodically 49 49 * Downlink to change configure 50 -* 8500mAh Battery for long term use 57 +* IP66 Waterproof Enclosure 58 +* 4000mAh or 8500mAh Battery for long term use 51 51 52 -== 1.3 ProbeSpecification ==60 +== 1.3 Specification == 53 53 54 -* Storage temperature :-20℃~~75℃ 55 -* Operating temperature - -20℃~~60℃ 56 -* Operating Range - 0.1m~~12m① 57 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m) 58 -* Distance resolution - 5mm 59 -* Ambient light immunity - 70klux 60 -* Enclosure rating - IP65 61 -* Light source - LED 62 -* Central wavelength - 850nm 63 -* FOV - 3.6° 64 -* Material of enclosure - ABS+PC 65 -* Wire length - 25cm 62 +=== 1.3.1 Rated environmental conditions === 66 66 67 - == 1.4 ProbeDimension ==64 +[[image:image-20220610154839-1.png]] 68 68 66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);** 69 69 70 - [[image:1654827224480-952.png]]68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)** 71 71 72 72 73 73 72 +=== 1.3.2 Effective measurement range Reference beam pattern === 73 + 74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.** 75 + 76 + 77 + 78 +[[image:1654852253176-749.png]] 79 + 80 + 81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.** 82 + 83 + 84 +[[image:1654852175653-550.png]](% style="display:none" %) ** ** 85 + 86 + 87 + 74 74 == 1.5 Applications == 75 75 76 76 * Horizontal distance measurement 91 +* Liquid level measurement 77 77 * Parking management system 78 78 * Object proximity and presence detection 79 79 * Intelligent trash can management system ... ... @@ -80,28 +80,29 @@ 80 80 * Robot obstacle avoidance 81 81 * Automatic control 82 82 * Sewer 98 +* Bottom water level monitoring 83 83 84 84 == 1.6 Pin mapping and power on == 85 85 86 86 87 -[[image:16548 27332142-133.png]]103 +[[image:1654847583902-256.png]] 88 88 89 89 90 90 107 += 2. Configure LDDS75 to connect to LoRaWAN network = 91 91 92 -= 2. Configure LLDS12 to connect to LoRaWAN network = 93 - 94 94 == 2.1 How it works == 95 95 96 96 ((( 97 -The L LDS12is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect alocalLoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value 98 98 ))) 99 99 100 100 ((( 101 -In case you can ’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75. 102 102 ))) 103 103 104 104 120 + 105 105 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 106 106 107 107 ((( ... ... @@ -109,7 +109,7 @@ 109 109 ))) 110 110 111 111 ((( 112 -[[image:16548 27857527-556.png]]128 +[[image:1654848616367-242.png]] 113 113 ))) 114 114 115 115 ((( ... ... @@ -117,57 +117,57 @@ 117 117 ))) 118 118 119 119 ((( 120 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LS PH01.136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75. 121 121 ))) 122 122 123 123 ((( 124 -Each LS PH01is shipped with a sticker with the default deviceEUIas below:140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below. 125 125 ))) 126 126 127 127 [[image:image-20220607170145-1.jpeg]] 128 128 129 129 146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI. 130 130 131 - You canenter this key in the LoRaWAN Server portal. Below is TTN screen shot:148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot: 132 132 150 +**Add APP EUI in the application** 133 133 134 - **Register the device**152 +[[image:image-20220610161353-4.png]] 135 135 154 +[[image:image-20220610161353-5.png]] 136 136 137 -[[image: 1654592600093-601.png]]156 +[[image:image-20220610161353-6.png]] 138 138 139 139 159 +[[image:image-20220610161353-7.png]] 140 140 141 -**Add APP EUI and DEV EUI** 142 142 143 - [[image:1654592619856-881.png]]162 +You can also choose to create the device manually. 144 144 164 + [[image:image-20220610161538-8.png]] 145 145 146 146 147 -**Add APP EUI in the application** 148 148 149 - [[image:1654592632656-512.png]]168 +**Add APP KEY and DEV EUI** 150 150 170 +[[image:image-20220610161538-9.png]] 151 151 152 152 153 -**Add APP KEY** 154 154 155 - [[image:1654592653453-934.png]]174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75 156 156 157 157 158 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12 159 - 160 - 161 161 Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position). 162 162 163 -[[image:image-2022060 7170442-2.png]]179 +[[image:image-20220610161724-10.png]] 164 164 165 165 166 166 ((( 167 -(% style="color:blue" %)**Step 3**(%%)**:** The L LDS12will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 168 168 ))) 169 169 170 -[[image:16548 33501679-968.png]]186 +[[image:1654849068701-275.png]] 171 171 172 172 173 173 ... ... @@ -174,11 +174,10 @@ 174 174 == 2.3 Uplink Payload == 175 175 176 176 ((( 177 -LLDS12 will uplink payload via LoRaWAN with below payload format: 178 -))) 193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 179 179 180 - (((181 - Uplink payload includesintotal11bytes.195 +Uplink payload includes in total 4 bytes. 196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance 182 182 ))) 183 183 184 184 ((( ... ... @@ -188,18 +188,16 @@ 188 188 (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %) 189 189 |=(% style="width: 62.5px;" %)((( 190 190 **Size (bytes)** 191 -)))|=(% style="width: 62.5px;" %)**2**|= (% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**192 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|( % style="width:62.5px" %)(((193 -[[ Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1** 207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|((( 208 +[[Distance>>||anchor="H2.3.3A0Distance"]] 194 194 195 -[[DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]] 196 -)))|[[Distance>>||anchor="H"]]|[[Distance signal strength>>||anchor="H2.3.4SoilTemperature"]]|((( 197 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]] 198 -)))|[[LiDAR temp>>||anchor="H"]]|((( 199 -[[Message Type>>||anchor="H2.3.6MessageType"]] 200 -))) 210 +(unit: mm) 211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|((( 212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]] 213 +)))|[[Sensor Flag>>path:#Sensor_Flag]] 201 201 202 -[[image:16548 33689380-972.png]]215 +[[image:1654850511545-399.png]] 203 203 204 204 205 205 ... ... @@ -206,7 +206,7 @@ 206 206 === 2.3.1 Battery Info === 207 207 208 208 209 -Check the battery voltage for L LDS12.222 +Check the battery voltage for LDDS75. 210 210 211 211 Ex1: 0x0B45 = 2885mV 212 212 ... ... @@ -214,49 +214,20 @@ 214 214 215 215 216 216 217 -=== 2.3.2 D S18B20 Temperaturesensor===230 +=== 2.3.2 Distance === 218 218 219 - Thisisoptional, usercanconnectexternalDS18B20sensor to the +3.3v, 1-wireand GND pin . and this field will report temperature.232 +Get the distance. Flat object range 280mm - 7500mm. 220 220 234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.** 221 221 222 -**Example**: 223 223 224 -If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor. 238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid. 225 225 226 - If payload is: FF3FH : (FF3F & FC00==1) , temp=(FF3FH - 65536)/10 = -19.3degrees.240 +=== 2.3.3 Interrupt Pin === 227 227 242 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up. 228 228 229 - 230 -=== 2.3.3 Distance === 231 - 232 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength. 233 - 234 - 235 -**Example**: 236 - 237 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm. 238 - 239 - 240 - 241 -=== 2.3.4 Distance signal strength === 242 - 243 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible. 244 - 245 - 246 -**Example**: 247 - 248 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible. 249 - 250 -Customers can judge whether they need to adjust the environment based on the signal strength. 251 - 252 - 253 - 254 -=== 2.3.5 Interrupt Pin === 255 - 256 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up. 257 - 258 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]]. 259 - 260 260 **Example:** 261 261 262 262 0x00: Normal uplink packet. ... ... @@ -265,55 +265,44 @@ 265 265 266 266 267 267 268 -=== 2.3. 6LiDARtemp ===252 +=== 2.3.4 DS18B20 Temperature sensor === 269 269 270 - Characterizetheinternaltemperature valueofthesensor.254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature. 271 271 272 -**Example: ** 273 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃. 274 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃. 256 +**Example**: 275 275 258 +If payload is: 0105H: (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree 276 276 260 +If payload is: FF3FH : (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 277 277 278 -= ==2.3.7MessageType===262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021. 279 279 280 -((( 281 -For a normal uplink payload, the message type is always 0x01. 282 -))) 283 283 284 -((( 285 -Valid Message Type: 286 -))) 287 287 266 +=== 2.3.5 Sensor Flag === 288 288 289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %) 290 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload** 291 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]] 292 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]] 268 +0x01: Detect Ultrasonic Sensor 293 293 270 +0x00: No Ultrasonic Sensor 294 294 295 295 273 +=== 274 +(% style="color:inherit; font-family:inherit" %)2.3.6 Decode payload in The Things Network(%%) === 296 296 297 -=== 2.3.8 Decode payload in The Things Network === 298 - 299 299 While using TTN network, you can add the payload format to decode the payload. 300 300 301 301 302 -[[image:16545 92762713-715.png]]279 +[[image:1654850829385-439.png]] 303 303 304 -((( 305 -The payload decoder function for TTN is here: 306 -))) 281 +The payload decoder function for TTN V3 is here: 307 307 308 -((( 309 -LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]] 310 -))) 283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 311 311 312 312 313 313 314 314 == 2.4 Uplink Interval == 315 315 316 -The L LDS12by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 317 317 318 318 319 319 ... ... @@ -344,47 +344,25 @@ 344 344 345 345 (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.** 346 346 347 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12product.**320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.** 348 348 349 -[[image:16548 32691989-514.png]]322 +[[image:1654851029373-510.png]] 350 350 351 351 352 - [[image:1654592833877-762.png]]325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake. 353 353 327 +[[image:image-20220610165129-11.png||height="595" width="1088"]] 354 354 355 -[[image:1654832740634-933.png]] 356 356 357 357 358 - 359 -((( 360 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode** 361 -))) 362 - 363 -((( 364 - 365 -))) 366 - 367 -[[image:1654833065139-942.png]] 368 - 369 - 370 - 371 -[[image:1654833092678-390.png]] 372 - 373 - 374 - 375 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake. 376 - 377 -[[image:1654833163048-332.png]] 378 - 379 - 380 - 381 381 == 2.6 Frequency Plans == 382 382 383 383 ((( 384 -The L LDS12uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 385 385 ))) 386 386 387 387 338 + 388 388 === 2.6.1 EU863-870 (EU868) === 389 389 390 390 ((( ... ... @@ -448,22 +448,53 @@ 448 448 === 2.6.2 US902-928(US915) === 449 449 450 450 ((( 451 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 452 -))) 402 +Used in USA, Canada and South America. Default use CHE=2 453 453 454 -((( 455 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 456 -))) 404 +(% style="color:blue" %)**Uplink:** 457 457 458 -((( 459 -After Join success, the end node will switch to the correct sub band by: 460 -))) 406 +903.9 - SF7BW125 to SF10BW125 461 461 462 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 463 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 408 +904.1 - SF7BW125 to SF10BW125 464 464 465 - === 2.6.3CN470-510(CN470)===410 +904.3 - SF7BW125 to SF10BW125 466 466 412 +904.5 - SF7BW125 to SF10BW125 413 + 414 +904.7 - SF7BW125 to SF10BW125 415 + 416 +904.9 - SF7BW125 to SF10BW125 417 + 418 +905.1 - SF7BW125 to SF10BW125 419 + 420 +905.3 - SF7BW125 to SF10BW125 421 + 422 + 423 +(% style="color:blue" %)**Downlink:** 424 + 425 +923.3 - SF7BW500 to SF12BW500 426 + 427 +923.9 - SF7BW500 to SF12BW500 428 + 429 +924.5 - SF7BW500 to SF12BW500 430 + 431 +925.1 - SF7BW500 to SF12BW500 432 + 433 +925.7 - SF7BW500 to SF12BW500 434 + 435 +926.3 - SF7BW500 to SF12BW500 436 + 437 +926.9 - SF7BW500 to SF12BW500 438 + 439 +927.5 - SF7BW500 to SF12BW500 440 + 441 +923.3 - SF12BW500(RX2 downlink only) 442 + 443 + 444 + 445 +))) 446 + 447 +=== 2.6.3 CN470-510 (CN470) === 448 + 467 467 ((( 468 468 Used in China, Default use CHE=1 469 469 ))) ... ... @@ -550,30 +550,56 @@ 550 550 551 551 552 552 535 +=== 2.6.4 AU915-928(AU915) === 553 553 554 -=== 2.6.4 AU915-928(AU915) === 555 - 556 556 ((( 557 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document. 558 -))) 538 +Default use CHE=2 559 559 560 -((( 561 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join. 562 -))) 540 +(% style="color:blue" %)**Uplink:** 563 563 564 -((( 565 - 566 -))) 542 +916.8 - SF7BW125 to SF12BW125 567 567 568 -((( 569 -After Join success, the end node will switch to the correct sub band by: 570 -))) 544 +917.0 - SF7BW125 to SF12BW125 571 571 572 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band 573 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include) 546 +917.2 - SF7BW125 to SF12BW125 574 574 575 - === 2.6.5AS920-923& AS923-925(AS923) ===548 +917.4 - SF7BW125 to SF12BW125 576 576 550 +917.6 - SF7BW125 to SF12BW125 551 + 552 +917.8 - SF7BW125 to SF12BW125 553 + 554 +918.0 - SF7BW125 to SF12BW125 555 + 556 +918.2 - SF7BW125 to SF12BW125 557 + 558 + 559 +(% style="color:blue" %)**Downlink:** 560 + 561 +923.3 - SF7BW500 to SF12BW500 562 + 563 +923.9 - SF7BW500 to SF12BW500 564 + 565 +924.5 - SF7BW500 to SF12BW500 566 + 567 +925.1 - SF7BW500 to SF12BW500 568 + 569 +925.7 - SF7BW500 to SF12BW500 570 + 571 +926.3 - SF7BW500 to SF12BW500 572 + 573 +926.9 - SF7BW500 to SF12BW500 574 + 575 +927.5 - SF7BW500 to SF12BW500 576 + 577 +923.3 - SF12BW500(RX2 downlink only) 578 + 579 + 580 + 581 +))) 582 + 583 +=== 2.6.5 AS920-923 & AS923-925 (AS923) === 584 + 577 577 ((( 578 578 (% style="color:blue" %)**Default Uplink channel:** 579 579 ))) ... ... @@ -680,9 +680,8 @@ 680 680 681 681 682 682 691 +=== 2.6.6 KR920-923 (KR920) === 683 683 684 -=== 2.6.6 KR920-923 (KR920) === 685 - 686 686 ((( 687 687 (% style="color:blue" %)**Default channel:** 688 688 ))) ... ... @@ -753,9 +753,8 @@ 753 753 754 754 755 755 763 +=== 2.6.7 IN865-867 (IN865) === 756 756 757 -=== 2.6.7 IN865-867 (IN865) === 758 - 759 759 ((( 760 760 (% style="color:blue" %)**Uplink:** 761 761 ))) ... ... @@ -790,361 +790,216 @@ 790 790 791 791 792 792 793 - 794 794 == 2.7 LED Indicator == 795 795 796 -The L LDS12has an internal LED which is to show the status of different state.801 +The LDDS75 has an internal LED which is to show the status of different state. 797 797 798 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected. 803 + 804 +* Blink once when device power on. 805 +* The device detects the sensor and flashes 5 times. 806 +* Solid ON for 5 seconds once device successful Join the network. 799 799 * Blink once when device transmit a packet. 800 800 801 801 == 2.8 Firmware Change Log == 802 802 803 803 804 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/L LDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 805 805 806 806 807 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>> path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]815 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 808 808 809 809 810 810 811 -= 3.LiDAR ToFMeasurement=819 +== 2.9 Mechanical == 812 812 813 -== 3.1 Principle of Distance Measurement == 814 814 815 - The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contactingobject.Theproduct obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.822 +[[image:image-20220610172003-1.png]] 816 816 817 -[[image: 1654831757579-263.png]]824 +[[image:image-20220610172003-2.png]] 818 818 819 819 827 +== 2.10 Battery Analysis == 820 820 821 -== 3.2Distance MeasurementCharacteristics==829 +=== 2.10.1 Battery Type === 822 822 823 - Withoptimization oflight pathand algorithm,TheLiDARprobehas minimizedinfluence fromexternalenvironmentondistancemeasurementperformance.Despite that,the rangeofdistancemeasurementmaystillbeaffectedbytheenvironment illuminationintensityandthe reflectivityofdetection object. As showninbelow:831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 824 824 825 -[[image:1654831774373-275.png]] 826 826 834 +The battery related documents as below: 827 827 828 -①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable. 836 +* ((( 837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 838 +))) 839 +* ((( 840 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 841 +))) 842 +* ((( 843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 844 +))) 829 829 830 - ②Representsthe operating rangeof The LiDAR probe detecting black target with 10% reflectivity,0.1-5m.846 + [[image:image-20220610172400-3.png]] 831 831 832 -③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m. 833 833 834 834 835 - VerticalCoordinates:Represents the radius oflight spot for The LiDAR probeat the different distances.The diameter of light spot dependson the FOV of The LiDAR probe (theterm of FOV generallyrefers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:850 +=== 2.10.2 Replace the battery === 836 836 852 +((( 853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 854 +))) 837 837 838 -[[image:1654831797521-720.png]] 856 +((( 857 + 858 +))) 839 839 860 +((( 861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 862 +))) 840 840 841 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below. 842 842 843 -[[image:1654831810009-716.png]] 844 844 866 += 3. Configure LLDS12 via AT Command or LoRaWAN Downlink = 845 845 846 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error. 847 - 848 - 849 - 850 -== 3.3 Notice of usage: == 851 - 852 -Possible invalid /wrong reading for LiDAR ToF tech: 853 - 854 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings. 855 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong. 856 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe. 857 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window. 858 - 859 -= 4. Configure LLDS12 via AT Command or LoRaWAN Downlink = 860 - 861 861 ((( 862 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink. 869 +((( 870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink. 863 863 ))) 872 +))) 864 864 865 865 * ((( 866 -AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]]. 875 +((( 876 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]]. 867 867 ))) 878 +))) 868 868 * ((( 869 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]] 880 +((( 881 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]] 870 870 ))) 883 +))) 871 871 872 872 ((( 886 +((( 873 873 888 +))) 874 874 875 -There are two kinds of commands to configure LLDS12, they are: 890 +((( 891 +There are two kinds of commands to configure LDDS75, they are: 876 876 ))) 893 +))) 877 877 878 878 * ((( 896 +((( 879 879 (% style="color:#4f81bd" %)** General Commands**. 880 880 ))) 899 +))) 881 881 882 882 ((( 902 +((( 883 883 These commands are to configure: 884 884 ))) 905 +))) 885 885 886 886 * ((( 908 +((( 887 887 General system settings like: uplink interval. 888 888 ))) 911 +))) 889 889 * ((( 913 +((( 890 890 LoRaWAN protocol & radio related command. 891 891 ))) 892 - 893 -((( 894 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 895 895 ))) 896 896 897 897 ((( 898 - 919 +((( 920 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]] 899 899 ))) 900 - 901 -* ((( 902 -(% style="color:#4f81bd" %)** Commands special design for LLDS12** 903 903 ))) 904 904 905 905 ((( 906 -These commands only valid for LLDS12, as below: 907 -))) 908 - 909 - 910 - 911 -== 4.1 Set Transmit Interval Time == 912 - 913 -Feature: Change LoRaWAN End Node Transmit Interval. 914 - 915 -(% style="color:#037691" %)**AT Command: AT+TDC** 916 - 917 -[[image:image-20220607171554-8.png]] 918 - 919 - 920 - 921 921 ((( 922 - (%style="color:#037691" %)**Downlink Command: 0x01**926 + 923 923 ))) 924 - 925 -((( 926 -Format: Command Code (0x01) followed by 3 bytes time value. 927 927 ))) 928 928 930 +* ((( 929 929 ((( 930 - Ifthedownlink payload=0100003C,itmeans setthe END Node’sTransmit Intervalto0x00003C=60(S), while type code is 01.932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75** 931 931 ))) 932 - 933 -* ((( 934 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 935 935 ))) 936 -* ((( 937 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 938 938 939 - 940 - 941 -))) 942 - 943 -== 4.2 Set Interrupt Mode == 944 - 945 -Feature, Set Interrupt mode for GPIO_EXIT. 946 - 947 -(% style="color:#037691" %)**AT Command: AT+INTMOD** 948 - 949 -[[image:image-20220610105806-2.png]] 950 - 951 - 952 - 953 - 954 954 ((( 955 -(% style="color:#037691" %)**Downlink Command: 0x06** 956 -))) 957 - 958 958 ((( 959 - Format:CommandCode(0x06)followedby3bytes.938 +These commands only valid for LDDS75, as below: 960 960 ))) 961 - 962 -((( 963 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 964 964 ))) 965 965 966 -* ((( 967 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 968 -))) 969 -* ((( 970 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 971 -))) 972 972 973 -== 4.3 Get Firmware Version Info == 974 974 975 - Feature:usedownlinktoget firmware version.944 +== 3.1 Access AT Commands == 976 976 977 - (%style="color:#037691"%)**DownlinkCommand:0x26**946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below. 978 978 979 -[[image:image-2022060 7171917-10.png]]948 +[[image:image-20220610172924-4.png||height="483" width="988"]] 980 980 981 -* Reply to the confirmation package: 26 01 982 -* Reply to non-confirmed packet: 26 00 983 983 984 - Devicewillsend anuplinkaftergot this downlinkcommand.Withbelowpayload:951 +Or if you have below board, use below connection: 985 985 986 -Configures info payload: 987 987 988 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 989 -|=((( 990 -**Size(bytes)** 991 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1** 992 -|**Value**|Software Type|((( 993 -Frequency 954 +[[image:image-20220610172924-5.png]] 994 994 995 -Band 996 -)))|Sub-band|((( 997 -Firmware 998 998 999 -Version 1000 -)))|Sensor Type|Reserve|((( 1001 -[[Message Type>>||anchor="H2.3.6MessageType"]] 1002 -Always 0x02 1003 -))) 957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below: 1004 1004 1005 -**Software Type**: Always 0x03 for LLDS12 1006 1006 960 + [[image:image-20220610172924-6.png||height="601" width="860"]] 1007 1007 1008 -**Frequency Band**: 1009 1009 1010 -*0x01: EU868 1011 1011 1012 - *0x02:US915964 +== 3.2 Set Transmit Interval Time == 1013 1013 1014 - *0x03:IN865966 +Feature: Change LoRaWAN End Node Transmit Interval. 1015 1015 1016 - *0x04: AU915968 +(% style="color:#037691" %)**AT Command: AT+TDC** 1017 1017 1018 - *0x05: KZ865970 +[[image:image-20220610173409-7.png]] 1019 1019 1020 -*0x06: RU864 1021 1021 1022 -*0x07: AS923 1023 - 1024 -*0x08: AS923-1 1025 - 1026 -*0x09: AS923-2 1027 - 1028 -*0xa0: AS923-3 1029 - 1030 - 1031 -**Sub-Band**: value 0x00 ~~ 0x08 1032 - 1033 - 1034 -**Firmware Version**: 0x0100, Means: v1.0.0 version 1035 - 1036 - 1037 -**Sensor Type**: 1038 - 1039 -0x01: LSE01 1040 - 1041 -0x02: LDDS75 1042 - 1043 -0x03: LDDS20 1044 - 1045 -0x04: LLMS01 1046 - 1047 -0x05: LSPH01 1048 - 1049 -0x06: LSNPK01 1050 - 1051 -0x07: LLDS12 1052 - 1053 - 1054 - 1055 -= 5. Battery & How to replace = 1056 - 1057 -== 5.1 Battery Type == 1058 - 1059 1059 ((( 1060 - LLDS12isequipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]].The battery is un-rechargeable battery with low discharge rate targetingfor 8~~10 years use. This type of battery is commonly usedin IoT target for long-term running, such as water meter.974 +(% style="color:#037691" %)**Downlink Command: 0x01** 1061 1061 ))) 1062 1062 1063 1063 ((( 1064 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance. 1065 -))) 1066 - 1067 -[[image:1654593587246-335.png]] 1068 - 1069 - 1070 -Minimum Working Voltage for the LLDS12: 1071 - 1072 -LLDS12: 2.45v ~~ 3.6v 1073 - 1074 - 1075 - 1076 -== 5.2 Replace Battery == 1077 - 1078 1078 ((( 1079 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery. 1080 -))) 979 +Format: Command Code (0x01) followed by 3 bytes time value. 1081 1081 1082 -((( 1083 -And make sure the positive and negative pins match. 1084 -))) 981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01. 1085 1085 1086 - 1087 - 1088 -== 5.3 Power Consumption Analyze == 1089 - 1090 -((( 1091 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1092 1092 ))) 1093 1093 1094 -((( 1095 -Instruction to use as below: 1096 -))) 1097 1097 1098 - 1099 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 1100 - 1101 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 1102 - 1103 - 1104 -**Step 2**: Open it and choose 1105 - 1106 -* Product Model 1107 -* Uplink Interval 1108 -* Working Mode 1109 - 1110 -And the Life expectation in difference case will be shown on the right. 1111 - 1112 -[[image:1654593605679-189.png]] 1113 - 1114 - 1115 -The battery related documents as below: 1116 - 1117 -* ((( 1118 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 988 + 1119 1119 ))) 1120 -* ((( 1121 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 1122 -))) 1123 -* ((( 1124 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 1125 -))) 1126 1126 1127 - [[image:image-20220607172042-11.png]]991 +== 3.3 Set Interrupt Mode == 1128 1128 993 +Feature, Set Interrupt mode for GPIO_EXIT. 1129 1129 995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD** 1130 1130 1131 - === 5.3.1 Battery Note===997 +[[image:image-20220610105907-1.png]] 1132 1132 1133 -((( 1134 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 1135 -))) 1136 1136 1000 +(% style="color:#037691" %)**Downlink Command: 0x06** 1137 1137 1002 +Format: Command Code (0x06) followed by 3 bytes. 1138 1138 1139 - ===5.3.2Replace thebattery===1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1140 1140 1141 -((( 1142 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 1143 -))) 1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1144 1144 1145 -((( 1146 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 1147 -))) 1148 1148 1149 1149 1150 1150 ... ... @@ -1166,32 +1166,40 @@ 1166 1166 1167 1167 1168 1168 ((( 1169 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below: 1030 +((( 1031 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12. 1170 1170 ))) 1171 1171 1034 +((( 1035 +LLDS12 will output system info once power on as below: 1036 +))) 1037 +))) 1172 1172 1039 + 1173 1173 [[image:1654593712276-618.png]] 1174 1174 1175 -Valid AT Command please check [[Configure Device>>||anchor="H 3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].1042 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]]. 1176 1176 1177 1177 1178 -= 7. FAQ =1045 += 4. FAQ = 1179 1179 1180 -== 7.1 How to change the LoRa Frequency Bands/Region ==1047 +== 4.1 How to change the LoRa Frequency Bands/Region == 1181 1181 1182 -You can follow the instructions for [[how to upgrade image>>||anchor="H2. 10200BFirmwareChangeLog"]].1049 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]]. 1183 1183 When downloading the images, choose the required image file for download. 1184 1184 1185 1185 1186 -= 8. Trouble Shooting =1053 += 5. Trouble Shooting = 1187 1187 1188 -== 8.1 AT Commands input doesn’t work ==1055 +== 5.1 AT Commands input doesn’t work == 1189 1189 1190 1190 1058 +((( 1191 1191 In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1060 +))) 1192 1192 1193 1193 1194 -== 8.2 Significant error between the output distant value of LiDAR and actual distance ==1063 +== 5.2 Significant error between the output distant value of LiDAR and actual distance == 1195 1195 1196 1196 1197 1197 ((( ... ... @@ -1216,10 +1216,10 @@ 1216 1216 1217 1217 1218 1218 1219 -= 9. Order Info =1088 += 6. Order Info = 1220 1220 1221 1221 1222 -Part Number: (% style="color:blue" %)**L LDS12-XX**1091 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY** 1223 1223 1224 1224 1225 1225 (% style="color:blue" %)**XX**(%%): The default frequency band ... ... @@ -1233,12 +1233,18 @@ 1233 1233 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1234 1234 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1235 1235 1236 -= 10. PackingInfo=1105 +(% style="color:blue" %)**YY**(%%): Battery Option 1237 1237 1107 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1108 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1238 1238 1110 + 1111 += 7. Packing Info = 1112 + 1113 + 1239 1239 **Package Includes**: 1240 1240 1241 -* L LDS12LoRaWANLiDAR Distance Sensor x 11116 +* LDDS75 LoRaWAN Distance Detection Sensor x 1 1242 1242 1243 1243 **Dimension and weight**: 1244 1244 ... ... @@ -1247,7 +1247,8 @@ 1247 1247 * Package Size / pcs : cm 1248 1248 * Weight / pcs : g 1249 1249 1250 -= 11. Support = 1251 1251 1126 += 8. Support = 1127 + 1252 1252 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1253 1253 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
- 1654846127817-788.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +107.3 KB - Content
- 1654847051249-359.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654847583902-256.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1654848616367-242.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +76.8 KB - Content
- 1654849068701-275.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850511545-399.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +88.3 KB - Content
- 1654850829385-439.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +59.2 KB - Content
- 1654851029373-510.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +92.0 KB - Content
- 1654852175653-550.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.2 KB - Content
- 1654852253176-749.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +106.6 KB - Content
- image-20220610154839-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.3 KB - Content
- image-20220610155021-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +164.8 KB - Content
- image-20220610155021-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +181.8 KB - Content
- image-20220610161353-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +32.2 KB - Content
- image-20220610161353-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.7 KB - Content
- image-20220610161353-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20220610161353-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.1 KB - Content
- image-20220610161538-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.2 KB - Content
- image-20220610161538-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +28.7 KB - Content
- image-20220610161724-10.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +180.0 KB - Content
- image-20220610165129-11.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +50.5 KB - Content
- image-20220610172003-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +5.9 KB - Content
- image-20220610172003-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +18.6 KB - Content
- image-20220610172400-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +370.3 KB - Content
- image-20220610172924-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20220610172924-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +901.4 KB - Content
- image-20220610172924-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.6 KB - Content
- image-20220610173409-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +11.8 KB - Content