Last modified by Xiaoling on 2025/04/27 13:54

From version 109.8
edited by Xiaoling
on 2022/06/10 13:55
Change comment: There is no comment for this version
To version 147.10
edited by Xiaoling
on 2022/06/10 17:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,7 +1,6 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 7  
... ... @@ -10,28 +10,36 @@
10 10  
11 11  
12 12  
12 +
13 13  = 1.  Introduction =
14 14  
15 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16 16  
17 17  (((
18 18  
19 19  
20 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
20 +(((
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
21 21  
22 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23 23  
24 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25 25  
26 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27 27  
28 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 29  
30 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
31 31  )))
38 +)))
32 32  
33 33  
34 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
35 35  
36 36  
37 37  
... ... @@ -38,42 +38,50 @@
38 38  == ​1.2  Features ==
39 39  
40 40  * LoRaWAN 1.0.3 Class A
41 -* Ultra-low power consumption
42 -* Laser technology for distance detection
43 -* Operating Range - 0.1m~~12m
44 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * AT Commands to change parameters
48 48  * Uplink on periodically
49 49  * Downlink to change configure
50 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
51 51  
52 -== 1.3  Probe Specification ==
60 +== 1.3  Specification ==
53 53  
54 -* Storage temperature :-20℃~~75℃
55 -* Operating temperature - -20℃~~60℃
56 -* Operating Range - 0.1m~~12m①
57 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 -* Distance resolution - 5mm
59 -* Ambient light immunity - 70klux
60 -* Enclosure rating - IP65
61 -* Light source - LED
62 -* Central wavelength - 850nm
63 -* FOV - 3.6°
64 -* Material of enclosure - ABS+PC
65 -* Wire length - 25cm
62 +=== 1.3.1  Rated environmental conditions ===
66 66  
67 -== 1.4  Probe Dimension ==
64 +[[image:image-20220610154839-1.png]]
68 68  
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69 69  
70 -[[image:1654827224480-952.png]]
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 71  
72 72  
73 73  
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
73 +
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
75 +
76 +
77 +
78 +[[image:1654852253176-749.png]]
79 +
80 +
81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
82 +
83 +
84 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
85 +
86 +
87 +
74 74  == 1.5 ​ Applications ==
75 75  
76 76  * Horizontal distance measurement
91 +* Liquid level measurement
77 77  * Parking management system
78 78  * Object proximity and presence detection
79 79  * Intelligent trash can management system
... ... @@ -80,28 +80,29 @@
80 80  * Robot obstacle avoidance
81 81  * Automatic control
82 82  * Sewer
98 +* Bottom water level monitoring
83 83  
84 84  == 1.6  Pin mapping and power on ==
85 85  
86 86  
87 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
88 88  
89 89  
90 90  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
91 91  
92 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
93 -
94 94  == 2.1  How it works ==
95 95  
96 96  (((
97 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
98 98  )))
99 99  
100 100  (((
101 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
102 102  )))
103 103  
104 104  
120 +
105 105  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
106 106  
107 107  (((
... ... @@ -109,7 +109,7 @@
109 109  )))
110 110  
111 111  (((
112 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
113 113  )))
114 114  
115 115  (((
... ... @@ -117,57 +117,57 @@
117 117  )))
118 118  
119 119  (((
120 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
121 121  )))
122 122  
123 123  (((
124 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
125 125  )))
126 126  
127 127  [[image:image-20220607170145-1.jpeg]]
128 128  
129 129  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
130 130  
131 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
132 132  
150 +**Add APP EUI in the application**
133 133  
134 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
135 135  
154 +[[image:image-20220610161353-5.png]]
136 136  
137 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
138 138  
139 139  
159 +[[image:image-20220610161353-7.png]]
140 140  
141 -**Add APP EUI and DEV EUI**
142 142  
143 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
144 144  
164 + [[image:image-20220610161538-8.png]]
145 145  
146 146  
147 -**Add APP EUI in the application**
148 148  
149 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
150 150  
170 +[[image:image-20220610161538-9.png]]
151 151  
152 152  
153 -**Add APP KEY**
154 154  
155 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
156 156  
157 157  
158 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
159 -
160 -
161 161  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
162 162  
163 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
164 164  
165 165  
166 166  (((
167 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 168  )))
169 169  
170 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
171 171  
172 172  
173 173  
... ... @@ -174,11 +174,10 @@
174 174  == 2.3  ​Uplink Payload ==
175 175  
176 176  (((
177 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
178 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
179 179  
180 -(((
181 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
182 182  )))
183 183  
184 184  (((
... ... @@ -188,18 +188,16 @@
188 188  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
189 189  |=(% style="width: 62.5px;" %)(((
190 190  **Size (bytes)**
191 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
192 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
193 -[[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
194 194  
195 -[[DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
196 -)))|[[Distance>>||anchor="H"]]|[[Distance signal strength>>||anchor="H2.3.4SoilTemperature"]]|(((
197 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
198 -)))|[[LiDAR temp>>||anchor="H"]]|(((
199 -[[Message Type>>||anchor="H2.3.6MessageType"]]
200 -)))
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
201 201  
202 -[[image:1654833689380-972.png]]
215 +[[image:1654850511545-399.png]]
203 203  
204 204  
205 205  
... ... @@ -206,7 +206,7 @@
206 206  === 2.3.1  Battery Info ===
207 207  
208 208  
209 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
210 210  
211 211  Ex1: 0x0B45 = 2885mV
212 212  
... ... @@ -214,49 +214,20 @@
214 214  
215 215  
216 216  
217 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
218 218  
219 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
220 220  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
221 221  
222 -**Example**:
223 223  
224 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
225 225  
226 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240 +=== 2.3.3  Interrupt Pin ===
227 227  
242 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
228 228  
229 -
230 -=== 2.3.3  Distance ===
231 -
232 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
233 -
234 -
235 -**Example**:
236 -
237 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
238 -
239 -
240 -
241 -=== 2.3.4  Distance signal strength ===
242 -
243 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
244 -
245 -
246 -**Example**:
247 -
248 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
249 -
250 -Customers can judge whether they need to adjust the environment based on the signal strength.
251 -
252 -
253 -
254 -=== 2.3.5  Interrupt Pin ===
255 -
256 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
257 -
258 -Note: The Internet Pin is a separate pin in the screw terminal. See [[pin mapping>>path:#pins]].
259 -
260 260  **Example:**
261 261  
262 262  0x00: Normal uplink packet.
... ... @@ -265,55 +265,44 @@
265 265  
266 266  
267 267  
268 -=== 2.3.6  LiDAR temp ===
252 +=== 2.3.4  DS18B20 Temperature sensor ===
269 269  
270 -Characterize the internal temperature value of the sensor.
254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
271 271  
272 -**Example: **
273 -If payload is: 1C(H) <<24>>24=28(D),LiDAR temp=28℃.
274 -If payload is: F2(H) <<24>>24=-14(D),LiDAR temp=-14℃.
256 +**Example**:
275 275  
258 +If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
276 276  
260 +If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
277 277  
278 -=== 2.3.7  Message Type ===
262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
279 279  
280 -(((
281 -For a normal uplink payload, the message type is always 0x01.
282 -)))
283 283  
284 -(((
285 -Valid Message Type:
286 -)))
287 287  
266 +=== 2.3.5  Sensor Flag ===
288 288  
289 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
290 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
291 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
292 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
268 +0x01: Detect Ultrasonic Sensor
293 293  
270 +0x00: No Ultrasonic Sensor
294 294  
295 295  
273 +===
274 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
296 296  
297 -=== 2.3.8  Decode payload in The Things Network ===
298 -
299 299  While using TTN network, you can add the payload format to decode the payload.
300 300  
301 301  
302 -[[image:1654592762713-715.png]]
279 +[[image:1654850829385-439.png]]
303 303  
304 -(((
305 -The payload decoder function for TTN is here:
306 -)))
281 +The payload decoder function for TTN V3 is here:
307 307  
308 -(((
309 -LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
310 -)))
283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
311 311  
312 312  
313 313  
314 314  == 2.4  Uplink Interval ==
315 315  
316 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
317 317  
318 318  
319 319  
... ... @@ -344,47 +344,25 @@
344 344  
345 345  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
346 346  
347 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
348 348  
349 -[[image:1654832691989-514.png]]
322 +[[image:1654851029373-510.png]]
350 350  
351 351  
352 -[[image:1654592833877-762.png]]
325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
353 353  
327 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
354 354  
355 -[[image:1654832740634-933.png]]
356 356  
357 357  
358 -
359 -(((
360 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
361 -)))
362 -
363 -(((
364 -
365 -)))
366 -
367 -[[image:1654833065139-942.png]]
368 -
369 -
370 -
371 -[[image:1654833092678-390.png]]
372 -
373 -
374 -
375 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
376 -
377 -[[image:1654833163048-332.png]]
378 -
379 -
380 -
381 381  == 2.6  Frequency Plans ==
382 382  
383 383  (((
384 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
385 385  )))
386 386  
387 387  
338 +
388 388  === 2.6.1  EU863-870 (EU868) ===
389 389  
390 390  (((
... ... @@ -448,22 +448,53 @@
448 448  === 2.6.2  US902-928(US915) ===
449 449  
450 450  (((
451 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
452 -)))
402 +Used in USA, Canada and South America. Default use CHE=2
453 453  
454 -(((
455 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
456 -)))
404 +(% style="color:blue" %)**Uplink:**
457 457  
458 -(((
459 -After Join success, the end node will switch to the correct sub band by:
460 -)))
406 +903.9 - SF7BW125 to SF10BW125
461 461  
462 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
463 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
408 +904.1 - SF7BW125 to SF10BW125
464 464  
465 -=== 2.6.3 CN470-510 (CN470) ===
410 +904.3 - SF7BW125 to SF10BW125
466 466  
412 +904.5 - SF7BW125 to SF10BW125
413 +
414 +904.7 - SF7BW125 to SF10BW125
415 +
416 +904.9 - SF7BW125 to SF10BW125
417 +
418 +905.1 - SF7BW125 to SF10BW125
419 +
420 +905.3 - SF7BW125 to SF10BW125
421 +
422 +
423 +(% style="color:blue" %)**Downlink:**
424 +
425 +923.3 - SF7BW500 to SF12BW500
426 +
427 +923.9 - SF7BW500 to SF12BW500
428 +
429 +924.5 - SF7BW500 to SF12BW500
430 +
431 +925.1 - SF7BW500 to SF12BW500
432 +
433 +925.7 - SF7BW500 to SF12BW500
434 +
435 +926.3 - SF7BW500 to SF12BW500
436 +
437 +926.9 - SF7BW500 to SF12BW500
438 +
439 +927.5 - SF7BW500 to SF12BW500
440 +
441 +923.3 - SF12BW500(RX2 downlink only)
442 +
443 +
444 +
445 +)))
446 +
447 +=== 2.6.3  CN470-510 (CN470) ===
448 +
467 467  (((
468 468  Used in China, Default use CHE=1
469 469  )))
... ... @@ -550,30 +550,56 @@
550 550  
551 551  
552 552  
535 +=== 2.6.4  AU915-928(AU915) ===
553 553  
554 -=== 2.6.4 AU915-928(AU915) ===
555 -
556 556  (((
557 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
558 -)))
538 +Default use CHE=2
559 559  
560 -(((
561 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
562 -)))
540 +(% style="color:blue" %)**Uplink:**
563 563  
564 -(((
565 -
566 -)))
542 +916.8 - SF7BW125 to SF12BW125
567 567  
568 -(((
569 -After Join success, the end node will switch to the correct sub band by:
570 -)))
544 +917.0 - SF7BW125 to SF12BW125
571 571  
572 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
573 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546 +917.2 - SF7BW125 to SF12BW125
574 574  
575 -=== 2.6.5 AS920-923 & AS923-925 (AS923) ===
548 +917.4 - SF7BW125 to SF12BW125
576 576  
550 +917.6 - SF7BW125 to SF12BW125
551 +
552 +917.8 - SF7BW125 to SF12BW125
553 +
554 +918.0 - SF7BW125 to SF12BW125
555 +
556 +918.2 - SF7BW125 to SF12BW125
557 +
558 +
559 +(% style="color:blue" %)**Downlink:**
560 +
561 +923.3 - SF7BW500 to SF12BW500
562 +
563 +923.9 - SF7BW500 to SF12BW500
564 +
565 +924.5 - SF7BW500 to SF12BW500
566 +
567 +925.1 - SF7BW500 to SF12BW500
568 +
569 +925.7 - SF7BW500 to SF12BW500
570 +
571 +926.3 - SF7BW500 to SF12BW500
572 +
573 +926.9 - SF7BW500 to SF12BW500
574 +
575 +927.5 - SF7BW500 to SF12BW500
576 +
577 +923.3 - SF12BW500(RX2 downlink only)
578 +
579 +
580 +
581 +)))
582 +
583 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
584 +
577 577  (((
578 578  (% style="color:blue" %)**Default Uplink channel:**
579 579  )))
... ... @@ -680,9 +680,8 @@
680 680  
681 681  
682 682  
691 +=== 2.6.6  KR920-923 (KR920) ===
683 683  
684 -=== 2.6.6 KR920-923 (KR920) ===
685 -
686 686  (((
687 687  (% style="color:blue" %)**Default channel:**
688 688  )))
... ... @@ -753,9 +753,8 @@
753 753  
754 754  
755 755  
763 +=== 2.6.7  IN865-867 (IN865) ===
756 756  
757 -=== 2.6.7 IN865-867 (IN865) ===
758 -
759 759  (((
760 760  (% style="color:blue" %)**Uplink:**
761 761  )))
... ... @@ -790,361 +790,216 @@
790 790  
791 791  
792 792  
793 -
794 794  == 2.7  LED Indicator ==
795 795  
796 -The LLDS12 has an internal LED which is to show the status of different state.
801 +The LDDS75 has an internal LED which is to show the status of different state.
797 797  
798 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 +
804 +* Blink once when device power on.
805 +* The device detects the sensor and flashes 5 times.
806 +* Solid ON for 5 seconds once device successful Join the network.
799 799  * Blink once when device transmit a packet.
800 800  
801 801  == 2.8  ​Firmware Change Log ==
802 802  
803 803  
804 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
805 805  
806 806  
807 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
815 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
808 808  
809 809  
810 810  
811 -= 3LiDAR ToF Measurement =
819 +== 2.9  Mechanical ==
812 812  
813 -== 3.1 Principle of Distance Measurement ==
814 814  
815 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
822 +[[image:image-20220610172003-1.png]]
816 816  
817 -[[image:1654831757579-263.png]]
824 +[[image:image-20220610172003-2.png]]
818 818  
819 819  
827 +== 2.10  Battery Analysis ==
820 820  
821 -== 3.2 Distance Measurement Characteristics ==
829 +=== 2.10.1  Battery Type ===
822 822  
823 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
824 824  
825 -[[image:1654831774373-275.png]]
826 826  
834 +The battery related documents as below:
827 827  
828 -①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 +* (((
837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
838 +)))
839 +* (((
840 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
841 +)))
842 +* (((
843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
844 +)))
829 829  
830 -②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
846 + [[image:image-20220610172400-3.png]]
831 831  
832 -③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
833 833  
834 834  
835 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
850 +=== 2.10.2  Replace the battery ===
836 836  
852 +(((
853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
854 +)))
837 837  
838 -[[image:1654831797521-720.png]]
856 +(((
857 +
858 +)))
839 839  
860 +(((
861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
862 +)))
840 840  
841 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
842 842  
843 -[[image:1654831810009-716.png]]
844 844  
866 += 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
845 845  
846 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
847 -
848 -
849 -
850 -== 3.3 Notice of usage: ==
851 -
852 -Possible invalid /wrong reading for LiDAR ToF tech:
853 -
854 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
855 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
856 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
857 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
858 -
859 -= 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
860 -
861 861  (((
862 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
869 +(((
870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
863 863  )))
872 +)))
864 864  
865 865  * (((
866 -AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
875 +(((
876 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
867 867  )))
878 +)))
868 868  * (((
869 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
880 +(((
881 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
870 870  )))
883 +)))
871 871  
872 872  (((
886 +(((
873 873  
888 +)))
874 874  
875 -There are two kinds of commands to configure LLDS12, they are:
890 +(((
891 +There are two kinds of commands to configure LDDS75, they are:
876 876  )))
893 +)))
877 877  
878 878  * (((
896 +(((
879 879  (% style="color:#4f81bd" %)** General Commands**.
880 880  )))
899 +)))
881 881  
882 882  (((
902 +(((
883 883  These commands are to configure:
884 884  )))
905 +)))
885 885  
886 886  * (((
908 +(((
887 887  General system settings like: uplink interval.
888 888  )))
911 +)))
889 889  * (((
913 +(((
890 890  LoRaWAN protocol & radio related command.
891 891  )))
892 -
893 -(((
894 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
895 895  )))
896 896  
897 897  (((
898 -
919 +(((
920 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
899 899  )))
900 -
901 -* (((
902 -(% style="color:#4f81bd" %)** Commands special design for LLDS12**
903 903  )))
904 904  
905 905  (((
906 -These commands only valid for LLDS12, as below:
907 -)))
908 -
909 -
910 -
911 -== 4.1  Set Transmit Interval Time ==
912 -
913 -Feature: Change LoRaWAN End Node Transmit Interval.
914 -
915 -(% style="color:#037691" %)**AT Command: AT+TDC**
916 -
917 -[[image:image-20220607171554-8.png]]
918 -
919 -
920 -
921 921  (((
922 -(% style="color:#037691" %)**Downlink Command: 0x01**
926 +
923 923  )))
924 -
925 -(((
926 -Format: Command Code (0x01) followed by 3 bytes time value.
927 927  )))
928 928  
930 +* (((
929 929  (((
930 -If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
931 931  )))
932 -
933 -* (((
934 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
935 935  )))
936 -* (((
937 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
938 938  
939 -
940 -
941 -)))
942 -
943 -== 4.2  Set Interrupt Mode ==
944 -
945 -Feature, Set Interrupt mode for GPIO_EXIT.
946 -
947 -(% style="color:#037691" %)**AT Command: AT+INTMOD**
948 -
949 -[[image:image-20220610105806-2.png]]
950 -
951 -
952 -
953 -
954 954  (((
955 -(% style="color:#037691" %)**Downlink Command: 0x06**
956 -)))
957 -
958 958  (((
959 -Format: Command Code (0x06) followed by 3 bytes.
938 +These commands only valid for LDDS75, as below:
960 960  )))
961 -
962 -(((
963 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
964 964  )))
965 965  
966 -* (((
967 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
968 -)))
969 -* (((
970 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
971 -)))
972 972  
973 -== 4.3  Get Firmware Version Info ==
974 974  
975 -Feature: use downlink to get firmware version.
944 +== 3.1  Access AT Commands ==
976 976  
977 -(% style="color:#037691" %)**Downlink Command: 0x26**
946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
978 978  
979 -[[image:image-20220607171917-10.png]]
948 +[[image:image-20220610172924-4.png||height="483" width="988"]]
980 980  
981 -* Reply to the confirmation package: 26 01
982 -* Reply to non-confirmed packet: 26 00
983 983  
984 -Device will send an uplink after got this downlink command. With below payload:
951 +Or if you have below board, use below connection:
985 985  
986 -Configures info payload:
987 987  
988 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
989 -|=(((
990 -**Size(bytes)**
991 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
992 -|**Value**|Software Type|(((
993 -Frequency
954 +[[image:image-20220610172924-5.png]]
994 994  
995 -Band
996 -)))|Sub-band|(((
997 -Firmware
998 998  
999 -Version
1000 -)))|Sensor Type|Reserve|(((
1001 -[[Message Type>>||anchor="H2.3.6MessageType"]]
1002 -Always 0x02
1003 -)))
957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
1004 1004  
1005 -**Software Type**: Always 0x03 for LLDS12
1006 1006  
960 + [[image:image-20220610172924-6.png||height="601" width="860"]]
1007 1007  
1008 -**Frequency Band**:
1009 1009  
1010 -*0x01: EU868
1011 1011  
1012 -*0x02: US915
964 +== 3.2  Set Transmit Interval Time ==
1013 1013  
1014 -*0x03: IN865
966 +Feature: Change LoRaWAN End Node Transmit Interval.
1015 1015  
1016 -*0x04: AU915
968 +(% style="color:#037691" %)**AT Command: AT+TDC**
1017 1017  
1018 -*0x05: KZ865
970 +[[image:image-20220610173409-7.png]]
1019 1019  
1020 -*0x06: RU864
1021 1021  
1022 -*0x07: AS923
1023 -
1024 -*0x08: AS923-1
1025 -
1026 -*0x09: AS923-2
1027 -
1028 -*0xa0: AS923-3
1029 -
1030 -
1031 -**Sub-Band**: value 0x00 ~~ 0x08
1032 -
1033 -
1034 -**Firmware Version**: 0x0100, Means: v1.0.0 version
1035 -
1036 -
1037 -**Sensor Type**:
1038 -
1039 -0x01: LSE01
1040 -
1041 -0x02: LDDS75
1042 -
1043 -0x03: LDDS20
1044 -
1045 -0x04: LLMS01
1046 -
1047 -0x05: LSPH01
1048 -
1049 -0x06: LSNPK01
1050 -
1051 -0x07: LLDS12
1052 -
1053 -
1054 -
1055 -= 5.  Battery & How to replace =
1056 -
1057 -== 5.1  Battery Type ==
1058 -
1059 1059  (((
1060 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
974 +(% style="color:#037691" %)**Downlink Command: 0x01**
1061 1061  )))
1062 1062  
1063 1063  (((
1064 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1065 -)))
1066 -
1067 -[[image:1654593587246-335.png]]
1068 -
1069 -
1070 -Minimum Working Voltage for the LLDS12:
1071 -
1072 -LLDS12:  2.45v ~~ 3.6v
1073 -
1074 -
1075 -
1076 -== 5.2  Replace Battery ==
1077 -
1078 1078  (((
1079 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1080 -)))
979 +Format: Command Code (0x01) followed by 3 bytes time value.
1081 1081  
1082 -(((
1083 -And make sure the positive and negative pins match.
1084 -)))
981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1085 1085  
1086 -
1087 -
1088 -== 5.3  Power Consumption Analyze ==
1089 -
1090 -(((
1091 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1092 1092  )))
1093 1093  
1094 -(((
1095 -Instruction to use as below:
1096 -)))
1097 1097  
1098 -
1099 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1100 -
1101 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1102 -
1103 -
1104 -**Step 2**: Open it and choose
1105 -
1106 -* Product Model
1107 -* Uplink Interval
1108 -* Working Mode
1109 -
1110 -And the Life expectation in difference case will be shown on the right.
1111 -
1112 -[[image:1654593605679-189.png]]
1113 -
1114 -
1115 -The battery related documents as below:
1116 -
1117 -* (((
1118 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
988 +
1119 1119  )))
1120 -* (((
1121 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1122 -)))
1123 -* (((
1124 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1125 -)))
1126 1126  
1127 -[[image:image-20220607172042-11.png]]
991 +== 3.3  Set Interrupt Mode ==
1128 1128  
993 +Feature, Set Interrupt mode for GPIO_EXIT.
1129 1129  
995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1130 1130  
1131 -=== 5.3.1  ​Battery Note ===
997 +[[image:image-20220610105907-1.png]]
1132 1132  
1133 -(((
1134 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1135 -)))
1136 1136  
1000 +(% style="color:#037691" %)**Downlink Command: 0x06**
1137 1137  
1002 +Format: Command Code (0x06) followed by 3 bytes.
1138 1138  
1139 -=== ​5.3.2  Replace the battery ===
1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1140 1140  
1141 -(((
1142 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1143 -)))
1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1144 1144  
1145 -(((
1146 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1147 -)))
1148 1148  
1149 1149  
1150 1150  
... ... @@ -1166,32 +1166,40 @@
1166 1166  
1167 1167  
1168 1168  (((
1169 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1030 +(((
1031 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1170 1170  )))
1171 1171  
1034 +(((
1035 +LLDS12 will output system info once power on as below:
1036 +)))
1037 +)))
1172 1172  
1039 +
1173 1173   [[image:1654593712276-618.png]]
1174 1174  
1175 -Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1042 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1176 1176  
1177 1177  
1178 -= 7.  FAQ =
1045 += 4.  FAQ =
1179 1179  
1180 -== 7.1  How to change the LoRa Frequency Bands/Region ==
1047 +== 4.1  How to change the LoRa Frequency Bands/Region ==
1181 1181  
1182 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1049 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1183 1183  When downloading the images, choose the required image file for download. ​
1184 1184  
1185 1185  
1186 -= 8.  Trouble Shooting =
1053 += 5.  Trouble Shooting =
1187 1187  
1188 -== 8.1  AT Commands input doesn’t work ==
1055 +== 5.1  AT Commands input doesn’t work ==
1189 1189  
1190 1190  
1058 +(((
1191 1191  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1060 +)))
1192 1192  
1193 1193  
1194 -== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1063 +== 5.2  Significant error between the output distant value of LiDAR and actual distance ==
1195 1195  
1196 1196  
1197 1197  (((
... ... @@ -1216,10 +1216,10 @@
1216 1216  
1217 1217  
1218 1218  
1219 -= 9.  Order Info =
1088 += 6.  Order Info =
1220 1220  
1221 1221  
1222 -Part Number: (% style="color:blue" %)**LLDS12-XX**
1091 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY**
1223 1223  
1224 1224  
1225 1225  (% style="color:blue" %)**XX**(%%): The default frequency band
... ... @@ -1233,12 +1233,18 @@
1233 1233  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1234 1234  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1235 1235  
1236 -= 10. ​ Packing Info =
1105 +(% style="color:blue" %)**YY**(%%): Battery Option
1237 1237  
1107 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1108 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1238 1238  
1110 +
1111 += 7. ​ Packing Info =
1112 +
1113 +
1239 1239  **Package Includes**:
1240 1240  
1241 -* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1116 +* LDDS75 LoRaWAN Distance Detection Sensor x 1
1242 1242  
1243 1243  **Dimension and weight**:
1244 1244  
... ... @@ -1247,7 +1247,8 @@
1247 1247  * Package Size / pcs : cm
1248 1248  * Weight / pcs : g
1249 1249  
1250 -= 11.  ​Support =
1251 1251  
1126 += 8.  ​Support =
1127 +
1252 1252  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1253 1253  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654846127817-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content