Last modified by Xiaoling on 2025/04/27 13:54

From version 109.6
edited by Xiaoling
on 2022/06/10 13:49
Change comment: There is no comment for this version
To version 147.10
edited by Xiaoling
on 2022/06/10 17:47
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LLDS12-LoRaWAN LiDAR ToF Distance Sensor User Manual
1 +LDDS75 - LoRaWAN Distance Detection Sensor User Manual
Content
... ... @@ -1,7 +1,6 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220610095606-1.png]]
2 +[[image:1654846127817-788.png]]
3 3  
4 -
5 5  **Contents:**
6 6  
7 7  
... ... @@ -10,28 +10,36 @@
10 10  
11 11  
12 12  
12 +
13 13  = 1.  Introduction =
14 14  
15 -== 1.1 ​ What is LoRaWAN LiDAR ToF Distance Sensor ==
15 +== 1.1 ​ What is LoRaWAN Distance Detection Sensor ==
16 16  
17 17  (((
18 18  
19 19  
20 -The Dragino LLDS12 is a (% style="color:blue" %)**LoRaWAN LiDAR ToF (Time of Flight) Distance Sensor**(%%) for Internet of Things solution. It is capable to measure the distance to an object as close as 10 centimeters (+/- 5cm up to 6m) and as far as 12 meters (+/-1% starting at 6m)!. The LiDAR probe uses laser induction technology for distance measurement.
20 +(((
21 +The Dragino LDDS75 is a (% style="color:#4472c4" %)** LoRaWAN Distance Detection Sensor**(%%) for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses (% style="color:#4472c4" %)** ultrasonic sensing** (%%)technology for distance measurement, and (% style="color:#4472c4" %)** temperature compensation**(%%) is performed internally to improve the reliability of data. The LDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
21 21  
22 -The LLDS12 can be applied to scenarios such as horizontal distance measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, etc.
23 23  
24 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to LoRaWAN IoT Server.
24 +It detects the distance** (% style="color:#4472c4" %) between the measured object and the sensor(%%)**, and uploads the value via wireless to LoRaWAN IoT Server.
25 25  
26 -The LoRa wireless technology used in LLDS12 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
27 27  
28 -LLDS12 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
27 +The LoRa wireless technology used in LDDS75 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 29  
30 -Each LLDS12 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
29 +
30 +LDDS75 is powered by (% style="color:#4472c4" %)** 4000mA or 8500mAh Li-SOCI2 battery**(%%); It is designed for long term use up to 10 years*.
31 +
32 +
33 +Each LDDS75 pre-loads with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect if there is network coverage, after power on.
34 +
35 +
36 +(% style="color:#4472c4" %) * (%%)Actually lifetime depends on network coverage and uplink interval and other factors
31 31  )))
38 +)))
32 32  
33 33  
34 -[[image:1654826306458-414.png]]
41 +[[image:1654847051249-359.png]]
35 35  
36 36  
37 37  
... ... @@ -38,42 +38,50 @@
38 38  == ​1.2  Features ==
39 39  
40 40  * LoRaWAN 1.0.3 Class A
41 -* Ultra-low power consumption
42 -* Laser technology for distance detection
43 -* Operating Range - 0.1m~~12m
44 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
45 -* Monitor Battery Level
48 +* Ultra low power consumption
49 +* Distance Detection by Ultrasonic technology
50 +* Flat object range 280mm - 7500mm
51 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
52 +* Cable Length : 25cm
46 46  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 47  * AT Commands to change parameters
48 48  * Uplink on periodically
49 49  * Downlink to change configure
50 -* 8500mAh Battery for long term use
57 +* IP66 Waterproof Enclosure
58 +* 4000mAh or 8500mAh Battery for long term use
51 51  
52 -== 1.3  Probe Specification ==
60 +== 1.3  Specification ==
53 53  
54 -* Storage temperature :-20℃~~75℃
55 -* Operating temperature - -20℃~~60℃
56 -* Operating Range - 0.1m~~12m①
57 -* Accuracy - ±5cm@(0.1-6m), ±1%@(6m-12m)
58 -* Distance resolution - 5mm
59 -* Ambient light immunity - 70klux
60 -* Enclosure rating - IP65
61 -* Light source - LED
62 -* Central wavelength - 850nm
63 -* FOV - 3.6°
64 -* Material of enclosure - ABS+PC
65 -* Wire length - 25cm
62 +=== 1.3.1  Rated environmental conditions ===
66 66  
67 -== 1.4  Probe Dimension ==
64 +[[image:image-20220610154839-1.png]]
68 68  
66 +**Remarks: (1) a. When the ambient temperature is 0-39 ℃, the maximum humidity is 90% (non-condensing);**
69 69  
70 -[[image:1654827224480-952.png]]
68 +**b. When the ambient temperature is 40-50 ℃, the highest humidity is the highest humidity in the natural world at the current temperature (no condensation)**
71 71  
72 72  
73 73  
72 +=== 1.3.2  Effective measurement range Reference beam pattern ===
73 +
74 +**(1) The tested object is a white cylindrical tube made of PVC, with a height of 100cm and a diameter of 7.5cm.**
75 +
76 +
77 +
78 +[[image:1654852253176-749.png]]
79 +
80 +
81 +**(2)** **The object to be tested is a "corrugated cardboard box" perpendicular to the central axis of 0 °, and the length * width is 60cm * 50cm.**
82 +
83 +
84 +[[image:1654852175653-550.png]](% style="display:none" %) ** **
85 +
86 +
87 +
74 74  == 1.5 ​ Applications ==
75 75  
76 76  * Horizontal distance measurement
91 +* Liquid level measurement
77 77  * Parking management system
78 78  * Object proximity and presence detection
79 79  * Intelligent trash can management system
... ... @@ -80,28 +80,29 @@
80 80  * Robot obstacle avoidance
81 81  * Automatic control
82 82  * Sewer
98 +* Bottom water level monitoring
83 83  
84 84  == 1.6  Pin mapping and power on ==
85 85  
86 86  
87 -[[image:1654827332142-133.png]]
103 +[[image:1654847583902-256.png]]
88 88  
89 89  
90 90  
107 += 2.  Configure LDDS75 to connect to LoRaWAN network =
91 91  
92 -= 2.  Configure LLDS12 to connect to LoRaWAN network =
93 -
94 94  == 2.1  How it works ==
95 95  
96 96  (((
97 -The LLDS12 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LLDS12. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
112 +The LDDS75 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LDDS75. If there is coverage of the LoRaWAN network, it will automatically join the network via OTAA and start to send the sensor value
98 98  )))
99 99  
100 100  (((
101 -In case you cant set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H6.UseATCommand"]]to set the keys in the LLDS12.
116 +In case you can't set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.A0ConfigureLDDS75viaATCommandorLoRaWANDownlink"]]to set the keys in the LDDS75.
102 102  )))
103 103  
104 104  
120 +
105 105  == 2.2  ​Quick guide to connect to LoRaWAN server (OTAA) ==
106 106  
107 107  (((
... ... @@ -109,7 +109,7 @@
109 109  )))
110 110  
111 111  (((
112 -[[image:1654827857527-556.png]]
128 +[[image:1654848616367-242.png]]
113 113  )))
114 114  
115 115  (((
... ... @@ -117,57 +117,57 @@
117 117  )))
118 118  
119 119  (((
120 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSPH01.
136 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LDDS75.
121 121  )))
122 122  
123 123  (((
124 -Each LSPH01 is shipped with a sticker with the default device EUI as below:
140 +Each LDDS75 is shipped with a sticker with the default device keys, user can find this sticker in the box. it looks like below.
125 125  )))
126 126  
127 127  [[image:image-20220607170145-1.jpeg]]
128 128  
129 129  
146 +For OTAA registration, we need to set **APP EUI/ APP KEY/ DEV EUI**. Some server might no need to set APP EUI.
130 130  
131 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
148 +Enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
132 132  
150 +**Add APP EUI in the application**
133 133  
134 -**Register the device**
152 +[[image:image-20220610161353-4.png]]
135 135  
154 +[[image:image-20220610161353-5.png]]
136 136  
137 -[[image:1654592600093-601.png]]
156 +[[image:image-20220610161353-6.png]]
138 138  
139 139  
159 +[[image:image-20220610161353-7.png]]
140 140  
141 -**Add APP EUI and DEV EUI**
142 142  
143 -[[image:1654592619856-881.png]]
162 +You can also choose to create the device manually.
144 144  
164 + [[image:image-20220610161538-8.png]]
145 145  
146 146  
147 -**Add APP EUI in the application**
148 148  
149 -[[image:1654592632656-512.png]]
168 +**Add APP KEY and DEV EUI**
150 150  
170 +[[image:image-20220610161538-9.png]]
151 151  
152 152  
153 -**Add APP KEY**
154 154  
155 -[[image:1654592653453-934.png]]
174 +(% style="color:blue" %)**Step 2**(%%): Power on LDDS75
156 156  
157 157  
158 -(% style="color:blue" %)**Step 2**(%%): Power on LLDS12
159 -
160 -
161 161  Put a Jumper on JP2 to power on the device. ( The Switch must be in FLASH position).
162 162  
163 -[[image:image-20220607170442-2.png]]
179 +[[image:image-20220610161724-10.png]]
164 164  
165 165  
166 166  (((
167 -(% style="color:blue" %)**Step 3**(%%)**:** The LLDS12 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
183 +(% style="color:blue" %)**Step 3**(%%)**:** The LDDS75 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 168  )))
169 169  
170 -[[image:1654833501679-968.png]]
186 +[[image:1654849068701-275.png]]
171 171  
172 172  
173 173  
... ... @@ -174,11 +174,10 @@
174 174  == 2.3  ​Uplink Payload ==
175 175  
176 176  (((
177 -LLDS12 will uplink payload via LoRaWAN with below payload format: 
178 -)))
193 +LDDS75 will uplink payload via LoRaWAN with below payload format: 
179 179  
180 -(((
181 -Uplink payload includes in total 11 bytes.
195 +Uplink payload includes in total 4 bytes.
196 +Payload for firmware version v1.1.4. . Before v1.1.3, there is on two fields: BAT and Distance
182 182  )))
183 183  
184 184  (((
... ... @@ -188,18 +188,16 @@
188 188  (% border="1" cellspacing="10" style="background-color:#ffffcc; width:510px" %)
189 189  |=(% style="width: 62.5px;" %)(((
190 190  **Size (bytes)**
191 -)))|=(% style="width: 62.5px;" %)**2**|=(% style="width: 62.5px;" %)**2**|=**2**|=**2**|=**1**|=**1**|=**1**
192 -|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1BatteryInfo"]]|(% style="width:62.5px" %)(((
193 -[[Temperature>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
206 +)))|=(% style="width: 62.5px;" %)**2**|=**2**|=1|=2|=**1**
207 +|(% style="width:62.5px" %)**Value**|(% style="width:62.5px" %)[[BAT>>||anchor="H2.3.1A0BatteryInfo"]]|(((
208 +[[Distance>>||anchor="H2.3.3A0Distance"]]
194 194  
195 -[[DS18B20>>||anchor="H2.3.2DS18B20Temperaturesensor"]]
196 -)))|[[Distance>>||anchor="H"]]|[[Distance signal strength>>||anchor="H2.3.4SoilTemperature"]]|(((
197 -[[Interrupt flag>>||anchor="H2.3.5InterruptPin"]]
198 -)))|[[LiDAR temp>>||anchor="H"]]|(((
199 -[[Message Type>>||anchor="H2.3.6MessageType"]]
200 -)))
210 +(unit: mm)
211 +)))|[[Digital Interrupt (Optional)>>||anchor="H2.3.4A0Distancesignalstrength"]]|(((
212 +[[Temperature (Optional )>>||anchor="H2.3.5A0InterruptPin"]]
213 +)))|[[Sensor Flag>>path:#Sensor_Flag]]
201 201  
202 -[[image:1654833689380-972.png]]
215 +[[image:1654850511545-399.png]]
203 203  
204 204  
205 205  
... ... @@ -206,7 +206,7 @@
206 206  === 2.3.1  Battery Info ===
207 207  
208 208  
209 -Check the battery voltage for LLDS12.
222 +Check the battery voltage for LDDS75.
210 210  
211 211  Ex1: 0x0B45 = 2885mV
212 212  
... ... @@ -214,93 +214,66 @@
214 214  
215 215  
216 216  
217 -=== 2.3.2  DS18B20 Temperature sensor ===
230 +=== 2.3.2  Distance ===
218 218  
219 -This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
232 +Get the distance. Flat object range 280mm - 7500mm.
220 220  
234 +For example, if the data you get from the register is 0x0B 0x05, the distance between the sensor and the measured object is(% style="color:#4472c4" %)** 0B05(H) = 2821 (D) = 2821 mm.**
221 221  
222 -**Example**:
223 223  
224 -If payload is: 0105H:  (0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
237 +* If the sensor value is 0x0000, it means system doesn’t detect ultrasonic sensor.
238 +* If the sensor value lower than 0x0118 (280mm), the sensor value will be invalid. Since v1.1.4, all value lower than 280mm will be set to 0x0014(20mm) which means the value is invalid.
225 225  
226 -If payload is: FF3FH :  (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
240 +=== 2.3.3  Interrupt Pin ===
227 227  
242 +This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H4.2A0SetInterruptMode"]] for the hardware and software set up.
228 228  
244 +**Example:**
229 229  
230 -=== 2.3.3  Distance ===
246 +0x00: Normal uplink packet.
231 231  
232 -Represents the distance value of the measurement output, the default unit is cm, and the value range parsed as a decimal number is 0-1200. In actual use, when the signal strength value Strength.
248 +0x01: Interrupt Uplink Packet.
233 233  
234 234  
235 -**Example**:
236 236  
237 -If the data you get from the register is 0x0B 0xEA, the distance between the sensor and the measured object is 0BEA(H) = 3050 (D)/10 = 305cm.
252 +=== 2.3.4  DS18B20 Temperature sensor ===
238 238  
254 +This is optional, user can connect external DS18B20 sensor to the +3.3v, 1-wire and GND pin . and this field will report temperature.
239 239  
240 -
241 -=== 2.3.4  Distance signal strength ===
242 -
243 -Refers to the signal strength, the default output value will be between 0-65535. When the distance measurement gear is fixed, the farther the distance measurement is, the lower the signal strength; the lower the target reflectivity, the lower the signal strength. When Strength is greater than 100 and not equal to 65535, the measured value of Dist is considered credible.
244 -
245 -
246 246  **Example**:
247 247  
248 -If payload is: 01D7(H)=471(D), distance signal strength=471, 471>100,471≠65535, the measured value of Dist is considered credible.
258 +If payload is: 0105H(0105 & FC00 == 0), temp = 0105H /10 = 26.1 degree
249 249  
250 -Customers can judge whether they need to adjust the environment based on the signal strength.
260 +If payload is: FF3FH (FF3F & FC00 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
251 251  
262 +(% style="color:red" %)Note: DS18B20 feature is supported in the hardware version > v1.3 which made since early of 2021.
252 252  
253 253  
254 -=== 2.3.5 Interrupt Pin ===
255 255  
256 -This data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H3.2SetInterruptMode"]] for the hardware and software set up.
266 +=== 2.3.Sensor Flag ===
257 257  
268 +0x01: Detect Ultrasonic Sensor
258 258  
259 -**Example:**
270 +0x00: No Ultrasonic Sensor
260 260  
261 -0x00: Normal uplink packet.
262 262  
263 -0x01: Interrupt Uplink Packet.
273 +===
274 +(% style="color:inherit; font-family:inherit" %)2.3.6  Decode payload in The Things Network(%%) ===
264 264  
265 -
266 -
267 -=== 2.3.6 Message Type ===
268 -
269 -(((
270 -For a normal uplink payload, the message type is always 0x01.
271 -)))
272 -
273 -(((
274 -Valid Message Type:
275 -)))
276 -
277 -
278 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:499px" %)
279 -|=(% style="width: 160px;" %)**Message Type Code**|=(% style="width: 163px;" %)**Description**|=(% style="width: 173px;" %)**Payload**
280 -|(% style="width:160px" %)0x01|(% style="width:163px" %)Normal Uplink|(% style="width:173px" %)[[Normal Uplink Payload>>||anchor="H2.3200BUplinkPayload"]]
281 -|(% style="width:160px" %)0x02|(% style="width:163px" %)Reply configures info|(% style="width:173px" %)[[Configure Info Payload>>||anchor="H3.4GetFirmwareVersionInfo"]]
282 -|(% style="width:160px" %)0x03|(% style="width:163px" %)Reply Calibration Info|(% style="width:173px" %)[[Calibration Payload>>||anchor="H2.7Calibration"]]
283 -
284 -=== 2.3.7 Decode payload in The Things Network ===
285 -
286 286  While using TTN network, you can add the payload format to decode the payload.
287 287  
288 288  
289 -[[image:1654592762713-715.png]]
279 +[[image:1654850829385-439.png]]
290 290  
291 -(((
292 -The payload decoder function for TTN is here:
293 -)))
281 +The payload decoder function for TTN V3 is here:
294 294  
295 -(((
296 -LSPH01 TTN Payload Decoder: [[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/LSPH01/Decoder/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSNPK01/Decoder/]]
297 -)))
283 +LDDS75 TTN V3 Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LDDS75/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
298 298  
299 299  
300 300  
301 301  == 2.4  Uplink Interval ==
302 302  
303 -The LLDS12 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
289 +The LDDS75 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
304 304  
305 305  
306 306  
... ... @@ -331,47 +331,25 @@
331 331  
332 332  (% style="color:blue" %)**Step 3**(%%)**: Create an account or log in Datacake.**
333 333  
334 -(% style="color:blue" %)**Step 4**(%%)**: Create LLDS12 product.**
320 +(% style="color:blue" %)**Step 4**(%%)**: Search the LDDS75 and add DevEUI.**
335 335  
336 -[[image:1654832691989-514.png]]
322 +[[image:1654851029373-510.png]]
337 337  
338 338  
339 -[[image:1654592833877-762.png]]
325 +After added, the sensor data arrive TTN V3, it will also arrive and show in Datacake.
340 340  
327 +[[image:image-20220610165129-11.png||height="595" width="1088"]]
341 341  
342 -[[image:1654832740634-933.png]]
343 343  
344 344  
345 -
346 -(((
347 -(% style="color:blue" %)**Step 5**(%%)**: add payload decode**
348 -)))
349 -
350 -(((
351 -
352 -)))
353 -
354 -[[image:1654833065139-942.png]]
355 -
356 -
357 -
358 -[[image:1654833092678-390.png]]
359 -
360 -
361 -
362 -After added, the sensor data arrive TTN, it will also arrive and show in Datacake.
363 -
364 -[[image:1654833163048-332.png]]
365 -
366 -
367 -
368 368  == 2.6  Frequency Plans ==
369 369  
370 370  (((
371 -The LLDS12 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 +The LDDS75 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
372 372  )))
373 373  
374 374  
338 +
375 375  === 2.6.1  EU863-870 (EU868) ===
376 376  
377 377  (((
... ... @@ -435,22 +435,53 @@
435 435  === 2.6.2  US902-928(US915) ===
436 436  
437 437  (((
438 -Used in USA, Canada and South America. Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
439 -)))
402 +Used in USA, Canada and South America. Default use CHE=2
440 440  
441 -(((
442 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
443 -)))
404 +(% style="color:blue" %)**Uplink:**
444 444  
445 -(((
446 -After Join success, the end node will switch to the correct sub band by:
447 -)))
406 +903.9 - SF7BW125 to SF10BW125
448 448  
449 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
450 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
408 +904.1 - SF7BW125 to SF10BW125
451 451  
452 -=== 2.6.3 CN470-510 (CN470) ===
410 +904.3 - SF7BW125 to SF10BW125
453 453  
412 +904.5 - SF7BW125 to SF10BW125
413 +
414 +904.7 - SF7BW125 to SF10BW125
415 +
416 +904.9 - SF7BW125 to SF10BW125
417 +
418 +905.1 - SF7BW125 to SF10BW125
419 +
420 +905.3 - SF7BW125 to SF10BW125
421 +
422 +
423 +(% style="color:blue" %)**Downlink:**
424 +
425 +923.3 - SF7BW500 to SF12BW500
426 +
427 +923.9 - SF7BW500 to SF12BW500
428 +
429 +924.5 - SF7BW500 to SF12BW500
430 +
431 +925.1 - SF7BW500 to SF12BW500
432 +
433 +925.7 - SF7BW500 to SF12BW500
434 +
435 +926.3 - SF7BW500 to SF12BW500
436 +
437 +926.9 - SF7BW500 to SF12BW500
438 +
439 +927.5 - SF7BW500 to SF12BW500
440 +
441 +923.3 - SF12BW500(RX2 downlink only)
442 +
443 +
444 +
445 +)))
446 +
447 +=== 2.6.3  CN470-510 (CN470) ===
448 +
454 454  (((
455 455  Used in China, Default use CHE=1
456 456  )))
... ... @@ -537,30 +537,56 @@
537 537  
538 538  
539 539  
535 +=== 2.6.4  AU915-928(AU915) ===
540 540  
541 -=== 2.6.4 AU915-928(AU915) ===
542 -
543 543  (((
544 -Frequency band as per definition in LoRaWAN 1.0.3 Regional document.
545 -)))
538 +Default use CHE=2
546 546  
547 -(((
548 -To make sure the end node supports all sub band by default. In the OTAA Join process, the end node will use frequency 1 from sub-band1, then frequency 1 from sub-band2, then frequency 1 from sub-band3, etc to process the OTAA join.
549 -)))
540 +(% style="color:blue" %)**Uplink:**
550 550  
551 -(((
552 -
553 -)))
542 +916.8 - SF7BW125 to SF12BW125
554 554  
555 -(((
556 -After Join success, the end node will switch to the correct sub band by:
557 -)))
544 +917.0 - SF7BW125 to SF12BW125
558 558  
559 -* Check what sub-band the LoRaWAN server ask from the OTAA Join Accept message and switch to that sub-band
560 -* Use the Join successful sub-band if the server doesn’t include sub-band info in the OTAA Join Accept message ( TTN v2 doesn't include)
546 +917.2 - SF7BW125 to SF12BW125
561 561  
562 -=== 2.6.5 AS920-923 & AS923-925 (AS923) ===
548 +917.4 - SF7BW125 to SF12BW125
563 563  
550 +917.6 - SF7BW125 to SF12BW125
551 +
552 +917.8 - SF7BW125 to SF12BW125
553 +
554 +918.0 - SF7BW125 to SF12BW125
555 +
556 +918.2 - SF7BW125 to SF12BW125
557 +
558 +
559 +(% style="color:blue" %)**Downlink:**
560 +
561 +923.3 - SF7BW500 to SF12BW500
562 +
563 +923.9 - SF7BW500 to SF12BW500
564 +
565 +924.5 - SF7BW500 to SF12BW500
566 +
567 +925.1 - SF7BW500 to SF12BW500
568 +
569 +925.7 - SF7BW500 to SF12BW500
570 +
571 +926.3 - SF7BW500 to SF12BW500
572 +
573 +926.9 - SF7BW500 to SF12BW500
574 +
575 +927.5 - SF7BW500 to SF12BW500
576 +
577 +923.3 - SF12BW500(RX2 downlink only)
578 +
579 +
580 +
581 +)))
582 +
583 +=== 2.6.5  AS920-923 & AS923-925 (AS923) ===
584 +
564 564  (((
565 565  (% style="color:blue" %)**Default Uplink channel:**
566 566  )))
... ... @@ -667,9 +667,8 @@
667 667  
668 668  
669 669  
691 +=== 2.6.6  KR920-923 (KR920) ===
670 670  
671 -=== 2.6.6 KR920-923 (KR920) ===
672 -
673 673  (((
674 674  (% style="color:blue" %)**Default channel:**
675 675  )))
... ... @@ -740,9 +740,8 @@
740 740  
741 741  
742 742  
763 +=== 2.6.7  IN865-867 (IN865) ===
743 743  
744 -=== 2.6.7 IN865-867 (IN865) ===
745 -
746 746  (((
747 747  (% style="color:blue" %)**Uplink:**
748 748  )))
... ... @@ -777,361 +777,216 @@
777 777  
778 778  
779 779  
780 -
781 781  == 2.7  LED Indicator ==
782 782  
783 -The LLDS12 has an internal LED which is to show the status of different state.
801 +The LDDS75 has an internal LED which is to show the status of different state.
784 784  
785 -* The sensor is detected when the device is turned on, and it will flash 4 times quickly when it is detected.
803 +
804 +* Blink once when device power on.
805 +* The device detects the sensor and flashes 5 times.
806 +* Solid ON for 5 seconds once device successful Join the network.
786 786  * Blink once when device transmit a packet.
787 787  
788 788  == 2.8  ​Firmware Change Log ==
789 789  
790 790  
791 -**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LLDS12/Firmware/]]
812 +**Firmware download link: **[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
792 792  
793 793  
794 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>path:/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/]]
815 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
795 795  
796 796  
797 797  
798 -= 3LiDAR ToF Measurement =
819 +== 2.9  Mechanical ==
799 799  
800 -== 3.1 Principle of Distance Measurement ==
801 801  
802 -The LiDAR probe is based on TOF, namely, Time of Flight principle. To be specific, the product emits modulation wave of near infrared ray on a periodic basis, which will be reflected after contacting object. The product obtains the time of flight by measuring round-trip phase difference and then calculates relative range between the product and the detection object, as shown below.
822 +[[image:image-20220610172003-1.png]]
803 803  
804 -[[image:1654831757579-263.png]]
824 +[[image:image-20220610172003-2.png]]
805 805  
806 806  
827 +== 2.10  Battery Analysis ==
807 807  
808 -== 3.2 Distance Measurement Characteristics ==
829 +=== 2.10.1  Battery Type ===
809 809  
810 -With optimization of light path and algorithm, The LiDAR probe has minimized influence from external environment on distance measurement performance. Despite that, the range of distance measurement may still be affected by the environment illumination intensity and the reflectivity of detection object. As shown in below:
831 +The LDDS75 battery is a combination of a 4000mAh or 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
811 811  
812 -[[image:1654831774373-275.png]]
813 813  
834 +The battery related documents as below:
814 814  
815 -①Represents the detection blind zone of The LiDAR probe, 0-10cm, within which the output data is unreliable.
836 +* (((
837 +[[ Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
838 +)))
839 +* (((
840 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
841 +)))
842 +* (((
843 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
844 +)))
816 816  
817 -②Represents the operating range of The LiDAR probe detecting black target with 10% reflectivity, 0.1-5m.
846 + [[image:image-20220610172400-3.png]]
818 818  
819 -③Represents the operating range of The LiDAR probe detecting white target with 90% reflectivity, 0.1-12m.
820 820  
821 821  
822 -Vertical Coordinates: Represents the radius of light spot for The LiDAR probe at the different distances. The diameter of light spot depends on the FOV of The LiDAR probe (the term of FOV generally refers to the smaller value between the receiving angle and the transmitting angle), which is calculated as follows:
850 +=== 2.10.2  Replace the battery ===
823 823  
852 +(((
853 +You can change the battery in the LDDS75.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
854 +)))
824 824  
825 -[[image:1654831797521-720.png]]
856 +(((
857 +
858 +)))
826 826  
860 +(((
861 +The default battery pack of LDDS75 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
862 +)))
827 827  
828 -In the formula above, d is the diameter of light spot; D is detecting range; β is the value of the receiving angle of The LiDAR probe, 3.6°. Correspondence between the diameter of light spot and detecting range is given in Table below.
829 829  
830 -[[image:1654831810009-716.png]]
831 831  
866 += 3.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
832 832  
833 -If the light spot reaches two objects with different distances, as shown in Figure 3, the output distance value will be a value between the actual distance values of the two objects. For a high accuracy requirement in practice, the above situation should be noticed to avoid the measurement error.
834 -
835 -
836 -
837 -== 3.3 Notice of usage: ==
838 -
839 -Possible invalid /wrong reading for LiDAR ToF tech:
840 -
841 -* Measure high reflectivity object such as: Mirror, Smooth ceramic tile, static milk surface, will have possible wrong readings.
842 -* While there is transparent object such as glass, water drop between the measured object and the LiDAR sensor, the reading might wrong.
843 -* The LiDAR probe is cover by dirty things; the reading might be wrong. In this case, need to clean the probe.
844 -* The sensor window is made by Acrylic. Don’t touch it with alcohol material. This will destroy the sensor window.
845 -
846 -= 4.  Configure LLDS12 via AT Command or LoRaWAN Downlink =
847 -
848 848  (((
849 -Use can configure LLDS12 via AT Command or LoRaWAN Downlink.
869 +(((
870 +Use can configure LDDS75 via AT Command or LoRaWAN Downlink.
850 850  )))
872 +)))
851 851  
852 852  * (((
853 -AT Command Connection: See [[FAQ>>||anchor="H6.FAQ"]].
875 +(((
876 +AT Command Connection: See [[FAQ>>||anchor="H7.A0FAQ"]].
854 854  )))
878 +)))
855 855  * (((
856 -LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>path:/xwiki/bin/view/Main/]]
880 +(((
881 +LoRaWAN Downlink instruction for different platforms: [[IoT LoRaWAN Server>>doc:Main.WebHome]]
857 857  )))
883 +)))
858 858  
859 859  (((
886 +(((
860 860  
888 +)))
861 861  
862 -There are two kinds of commands to configure LLDS12, they are:
890 +(((
891 +There are two kinds of commands to configure LDDS75, they are:
863 863  )))
893 +)))
864 864  
865 865  * (((
896 +(((
866 866  (% style="color:#4f81bd" %)** General Commands**.
867 867  )))
899 +)))
868 868  
869 869  (((
902 +(((
870 870  These commands are to configure:
871 871  )))
905 +)))
872 872  
873 873  * (((
908 +(((
874 874  General system settings like: uplink interval.
875 875  )))
911 +)))
876 876  * (((
913 +(((
877 877  LoRaWAN protocol & radio related command.
878 878  )))
879 -
880 -(((
881 -They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>path:/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
882 882  )))
883 883  
884 884  (((
885 -
919 +(((
920 +They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
886 886  )))
887 -
888 -* (((
889 -(% style="color:#4f81bd" %)** Commands special design for LLDS12**
890 890  )))
891 891  
892 892  (((
893 -These commands only valid for LLDS12, as below:
894 -)))
895 -
896 -
897 -
898 -== 4.1  Set Transmit Interval Time ==
899 -
900 -Feature: Change LoRaWAN End Node Transmit Interval.
901 -
902 -(% style="color:#037691" %)**AT Command: AT+TDC**
903 -
904 -[[image:image-20220607171554-8.png]]
905 -
906 -
907 -
908 908  (((
909 -(% style="color:#037691" %)**Downlink Command: 0x01**
926 +
910 910  )))
911 -
912 -(((
913 -Format: Command Code (0x01) followed by 3 bytes time value.
914 914  )))
915 915  
930 +* (((
916 916  (((
917 -If the downlink payload=0100003C, it means set the END Nodes Transmit Interval to 0x00003C=60(S), while type code is 01.
932 +(% style="color:#4f81bd" %)** Commands special design for LDDS75**
918 918  )))
919 -
920 -* (((
921 -Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
922 922  )))
923 -* (((
924 -Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
925 925  
926 -
927 -
928 -)))
929 -
930 -== 4.2  Set Interrupt Mode ==
931 -
932 -Feature, Set Interrupt mode for GPIO_EXIT.
933 -
934 -(% style="color:#037691" %)**AT Command: AT+INTMOD**
935 -
936 -[[image:image-20220610105806-2.png]]
937 -
938 -
939 -
940 -
941 941  (((
942 -(% style="color:#037691" %)**Downlink Command: 0x06**
943 -)))
944 -
945 945  (((
946 -Format: Command Code (0x06) followed by 3 bytes.
938 +These commands only valid for LDDS75, as below:
947 947  )))
948 -
949 -(((
950 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
951 951  )))
952 952  
953 -* (((
954 -Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
955 -)))
956 -* (((
957 -Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
958 -)))
959 959  
960 -== 4.3  Get Firmware Version Info ==
961 961  
962 -Feature: use downlink to get firmware version.
944 +== 3.1  Access AT Commands ==
963 963  
964 -(% style="color:#037691" %)**Downlink Command: 0x26**
946 +LDDS75 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LDDS75 for using AT command, as below.
965 965  
966 -[[image:image-20220607171917-10.png]]
948 +[[image:image-20220610172924-4.png||height="483" width="988"]]
967 967  
968 -* Reply to the confirmation package: 26 01
969 -* Reply to non-confirmed packet: 26 00
970 970  
971 -Device will send an uplink after got this downlink command. With below payload:
951 +Or if you have below board, use below connection:
972 972  
973 -Configures info payload:
974 974  
975 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
976 -|=(((
977 -**Size(bytes)**
978 -)))|=**1**|=**1**|=**1**|=**1**|=**1**|=**5**|=**1**
979 -|**Value**|Software Type|(((
980 -Frequency
954 +[[image:image-20220610172924-5.png]]
981 981  
982 -Band
983 -)))|Sub-band|(((
984 -Firmware
985 985  
986 -Version
987 -)))|Sensor Type|Reserve|(((
988 -[[Message Type>>||anchor="H2.3.6MessageType"]]
989 -Always 0x02
990 -)))
957 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LDDS75. LDDS75 will output system info once power on as below:
991 991  
992 -**Software Type**: Always 0x03 for LLDS12
993 993  
960 + [[image:image-20220610172924-6.png||height="601" width="860"]]
994 994  
995 -**Frequency Band**:
996 996  
997 -*0x01: EU868
998 998  
999 -*0x02: US915
964 +== 3.2  Set Transmit Interval Time ==
1000 1000  
1001 -*0x03: IN865
966 +Feature: Change LoRaWAN End Node Transmit Interval.
1002 1002  
1003 -*0x04: AU915
968 +(% style="color:#037691" %)**AT Command: AT+TDC**
1004 1004  
1005 -*0x05: KZ865
970 +[[image:image-20220610173409-7.png]]
1006 1006  
1007 -*0x06: RU864
1008 1008  
1009 -*0x07: AS923
1010 -
1011 -*0x08: AS923-1
1012 -
1013 -*0x09: AS923-2
1014 -
1015 -*0xa0: AS923-3
1016 -
1017 -
1018 -**Sub-Band**: value 0x00 ~~ 0x08
1019 -
1020 -
1021 -**Firmware Version**: 0x0100, Means: v1.0.0 version
1022 -
1023 -
1024 -**Sensor Type**:
1025 -
1026 -0x01: LSE01
1027 -
1028 -0x02: LDDS75
1029 -
1030 -0x03: LDDS20
1031 -
1032 -0x04: LLMS01
1033 -
1034 -0x05: LSPH01
1035 -
1036 -0x06: LSNPK01
1037 -
1038 -0x07: LLDS12
1039 -
1040 -
1041 -
1042 -= 5.  Battery & How to replace =
1043 -
1044 -== 5.1  Battery Type ==
1045 -
1046 1046  (((
1047 -LLDS12 is equipped with a [[8500mAH ER26500 Li-SOCI2 battery>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]. The battery is un-rechargeable battery with low discharge rate targeting for 8~~10 years use. This type of battery is commonly used in IoT target for long-term running, such as water meter.
974 +(% style="color:#037691" %)**Downlink Command: 0x01**
1048 1048  )))
1049 1049  
1050 1050  (((
1051 -The discharge curve is not linear so can’t simply use percentage to show the battery level. Below is the battery performance.
1052 -)))
1053 -
1054 -[[image:1654593587246-335.png]]
1055 -
1056 -
1057 -Minimum Working Voltage for the LLDS12:
1058 -
1059 -LLDS12:  2.45v ~~ 3.6v
1060 -
1061 -
1062 -
1063 -== 5.2  Replace Battery ==
1064 -
1065 1065  (((
1066 -Any battery with range 2.45 ~~ 3.6v can be a replacement. We recommend to use Li-SOCl2 Battery.
1067 -)))
979 +Format: Command Code (0x01) followed by 3 bytes time value.
1068 1068  
1069 -(((
1070 -And make sure the positive and negative pins match.
1071 -)))
981 +If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
1072 1072  
1073 -
1074 -
1075 -== 5.3  Power Consumption Analyze ==
1076 -
1077 -(((
1078 -Dragino Battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
983 +* Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
984 +* Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
1079 1079  )))
1080 1080  
1081 -(((
1082 -Instruction to use as below:
1083 -)))
1084 1084  
1085 -
1086 -**Step 1**: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
1087 -
1088 -[[https:~~/~~/www.dragino.com/downloads/index.pHp?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
1089 -
1090 -
1091 -**Step 2**: Open it and choose
1092 -
1093 -* Product Model
1094 -* Uplink Interval
1095 -* Working Mode
1096 -
1097 -And the Life expectation in difference case will be shown on the right.
1098 -
1099 -[[image:1654593605679-189.png]]
1100 -
1101 -
1102 -The battery related documents as below:
1103 -
1104 -* (((
1105 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
988 +
1106 1106  )))
1107 -* (((
1108 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
1109 -)))
1110 -* (((
1111 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
1112 -)))
1113 1113  
1114 -[[image:image-20220607172042-11.png]]
991 +== 3.3  Set Interrupt Mode ==
1115 1115  
993 +Feature, Set Interrupt mode for GPIO_EXIT.
1116 1116  
995 +(% style="color:#037691" %)**Downlink Command: AT+INTMOD**
1117 1117  
1118 -=== 5.3.1  ​Battery Note ===
997 +[[image:image-20220610105907-1.png]]
1119 1119  
1120 -(((
1121 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
1122 -)))
1123 1123  
1000 +(% style="color:#037691" %)**Downlink Command: 0x06**
1124 1124  
1002 +Format: Command Code (0x06) followed by 3 bytes.
1125 1125  
1126 -=== ​5.3.2  Replace the battery ===
1004 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1127 1127  
1128 -(((
1129 -You can change the battery in the LLDS12.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
1130 -)))
1006 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode
1007 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger
1131 1131  
1132 -(((
1133 -The default battery pack of LLDS12 includes a ER26500 plus super capacitor. If user can’t find this pack locally, they can find ER26500 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
1134 -)))
1135 1135  
1136 1136  
1137 1137  
... ... @@ -1153,32 +1153,40 @@
1153 1153  
1154 1154  
1155 1155  (((
1156 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSPH01. LSPH01 will output system info once power on as below:
1030 +(((
1031 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LLDS12.
1157 1157  )))
1158 1158  
1034 +(((
1035 +LLDS12 will output system info once power on as below:
1036 +)))
1037 +)))
1159 1159  
1039 +
1160 1160   [[image:1654593712276-618.png]]
1161 1161  
1162 -Valid AT Command please check [[Configure Device>>||anchor="H3.ConfigureLSPH01viaATCommandorLoRaWANDownlink"]].
1042 +Valid AT Command please check [[Configure Device>>||anchor="H4.A0ConfigureLLDS12viaATCommandorLoRaWANDownlink"]].
1163 1163  
1164 1164  
1165 -= 7.  FAQ =
1045 += 4.  FAQ =
1166 1166  
1167 -== 7.1  How to change the LoRa Frequency Bands/Region ==
1047 +== 4.1  How to change the LoRa Frequency Bands/Region ==
1168 1168  
1169 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1049 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.8A0200BFirmwareChangeLog"]].
1170 1170  When downloading the images, choose the required image file for download. ​
1171 1171  
1172 1172  
1173 -= 8.  Trouble Shooting =
1053 += 5.  Trouble Shooting =
1174 1174  
1175 -== 8.1  AT Commands input doesn’t work ==
1055 +== 5.1  AT Commands input doesn’t work ==
1176 1176  
1177 1177  
1058 +(((
1178 1178  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1060 +)))
1179 1179  
1180 1180  
1181 -== 8.2  Significant error between the output distant value of LiDAR and actual distance ==
1063 +== 5.2  Significant error between the output distant value of LiDAR and actual distance ==
1182 1182  
1183 1183  
1184 1184  (((
... ... @@ -1203,10 +1203,10 @@
1203 1203  
1204 1204  
1205 1205  
1206 -= 9.  Order Info =
1088 += 6.  Order Info =
1207 1207  
1208 1208  
1209 -Part Number: (% style="color:blue" %)**LLDS12-XX**
1091 +Part Number: (% style="color:blue" %)**LDDS75-XX-YY**
1210 1210  
1211 1211  
1212 1212  (% style="color:blue" %)**XX**(%%): The default frequency band
... ... @@ -1220,12 +1220,18 @@
1220 1220  * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1221 1221  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1222 1222  
1223 -= 10. ​ Packing Info =
1105 +(% style="color:blue" %)**YY**(%%): Battery Option
1224 1224  
1107 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1108 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1225 1225  
1110 +
1111 += 7. ​ Packing Info =
1112 +
1113 +
1226 1226  **Package Includes**:
1227 1227  
1228 -* LLDS12 LoRaWAN LiDAR Distance Sensor x 1
1116 +* LDDS75 LoRaWAN Distance Detection Sensor x 1
1229 1229  
1230 1230  **Dimension and weight**:
1231 1231  
... ... @@ -1234,7 +1234,8 @@
1234 1234  * Package Size / pcs : cm
1235 1235  * Weight / pcs : g
1236 1236  
1237 -= 11.  ​Support =
1238 1238  
1126 += 8.  ​Support =
1127 +
1239 1239  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1240 1240  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]].
1654846127817-788.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +107.3 KB
Content
1654847051249-359.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654847583902-256.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1654848616367-242.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +76.8 KB
Content
1654849068701-275.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850511545-399.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +88.3 KB
Content
1654850829385-439.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +59.2 KB
Content
1654851029373-510.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +92.0 KB
Content
1654852175653-550.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.2 KB
Content
1654852253176-749.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +106.6 KB
Content
image-20220610154839-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.3 KB
Content
image-20220610155021-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +164.8 KB
Content
image-20220610155021-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +181.8 KB
Content
image-20220610161353-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +32.2 KB
Content
image-20220610161353-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.7 KB
Content
image-20220610161353-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20220610161353-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +19.1 KB
Content
image-20220610161538-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +27.2 KB
Content
image-20220610161538-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220610161724-10.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +180.0 KB
Content
image-20220610165129-11.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +50.5 KB
Content
image-20220610172003-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +5.9 KB
Content
image-20220610172003-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +18.6 KB
Content
image-20220610172400-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +370.3 KB
Content
image-20220610172924-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20220610172924-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +901.4 KB
Content
image-20220610172924-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.6 KB
Content
image-20220610173409-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +11.8 KB
Content