Show last authors
1
2
3 **Table of Contents:**
4
5 {{toc/}}
6
7
8
9 = 1.  LA66 LoRaWAN Module =
10
11
12 == 1.1  What is LA66 LoRaWAN Module ==
13
14
15 (((
16 (((
17 [[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 )))
19
20 (((
21
22 )))
23
24 (((
25 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 )))
27 )))
28
29 (((
30 (((
31 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 )))
33 )))
34
35 (((
36 (((
37 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 )))
39
40 (((
41 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 )))
43 )))
44
45 (((
46 (((
47 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 )))
49 )))
50
51
52
53 == 1.2  Features ==
54
55 * Support LoRaWAN v1.0.4 protocol
56 * Support peer-to-peer protocol
57 * TCXO crystal to ensure RF performance on low temperature
58 * SMD Antenna pad and i-pex antenna connector
59 * Available in different frequency LoRaWAN frequency bands.
60 * World-wide unique OTAA keys.
61 * AT Command via UART-TTL interface
62 * Firmware upgradable via UART interface
63 * Ultra-long RF range
64
65
66
67 == 1.3  Specification ==
68
69 * CPU: 32-bit 48 MHz
70 * Flash: 256KB
71 * RAM: 64KB
72 * Input Power Range: 1.8v ~~ 3.7v
73 * Power Consumption: < 4uA.
74 * Frequency Range: 150 MHz ~~ 960 MHz
75 * Maximum Power +22 dBm constant RF output
76 * High sensitivity: -148 dBm
77 * Temperature:
78 ** Storage: -55 ~~ +125℃
79 ** Operating: -40 ~~ +85℃
80 * Humidity:
81 ** Storage: 5 ~~ 95% (Non-Condensing)
82 ** Operating: 10 ~~ 95% (Non-Condensing)
83 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
84 * LoRa Rx current: <9 mA
85 * I/O Voltage: 3.3v
86
87
88
89 == 1.4  AT Command ==
90
91
92 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
93
94
95
96 == 1.5  Dimension ==
97
98 [[image:image-20220718094750-3.png]]
99
100
101
102
103 == 1.6  Pin Mapping ==
104
105
106 [[image:image-20220719093156-1.png]]
107
108
109
110 == 1.7  Land Pattern ==
111
112 [[image:image-20220517072821-2.png]]
113
114
115
116 = 2.  LA66 LoRaWAN Shield =
117
118
119 == 2.1  Overview ==
120
121
122 (((
123 [[image:image-20220715000826-2.png||height="145" width="220"]]
124 )))
125
126 (((
127
128 )))
129
130 (((
131 LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
132 )))
133
134 (((
135 (((
136 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
137 )))
138 )))
139
140 (((
141 (((
142 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
143 )))
144 )))
145
146 (((
147 (((
148 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
149 )))
150 )))
151
152 (((
153 (((
154 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
155 )))
156 )))
157
158
159
160 == 2.2  Features ==
161
162 * Arduino Shield base on LA66 LoRaWAN module
163 * Support LoRaWAN v1.0.4 protocol
164 * Support peer-to-peer protocol
165 * TCXO crystal to ensure RF performance on low temperature
166 * SMA connector
167 * Available in different frequency LoRaWAN frequency bands.
168 * World-wide unique OTAA keys.
169 * AT Command via UART-TTL interface
170 * Firmware upgradable via UART interface
171 * Ultra-long RF range
172
173
174
175 == 2.3  Specification ==
176
177 * CPU: 32-bit 48 MHz
178 * Flash: 256KB
179 * RAM: 64KB
180 * Input Power Range: 1.8v ~~ 3.7v
181 * Power Consumption: < 4uA.
182 * Frequency Range: 150 MHz ~~ 960 MHz
183 * Maximum Power +22 dBm constant RF output
184 * High sensitivity: -148 dBm
185 * Temperature:
186 ** Storage: -55 ~~ +125℃
187 ** Operating: -40 ~~ +85℃
188 * Humidity:
189 ** Storage: 5 ~~ 95% (Non-Condensing)
190 ** Operating: 10 ~~ 95% (Non-Condensing)
191 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
192 * LoRa Rx current: <9 mA
193 * I/O Voltage: 3.3v
194
195
196
197 == 2.4  Pin Mapping & LED ==
198
199
200
201 == 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
202
203
204
205 == 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
206
207
208
209 == 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
210
211
212
213 == 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
214
215
216 === 2.8.1  Items needed for update ===
217
218 1. LA66 LoRaWAN Shield
219 1. Arduino
220 1. USB TO TTL Adapter
221
222
223
224 [[image:image-20220602100052-2.png||height="385" width="600"]]
225
226
227 === 2.8.2  Connection ===
228
229
230 [[image:image-20220602101311-3.png||height="276" width="600"]]
231
232
233 (((
234 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
235 )))
236
237 (((
238 (% style="background-color:yellow" %)**GND  <-> GND
239 TXD  <->  TXD
240 RXD  <->  RXD**
241 )))
242
243
244 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
245
246 Connect USB TTL Adapter to PC after connecting the wires
247
248
249 [[image:image-20220602102240-4.png||height="304" width="600"]]
250
251
252 === 2.8.3  Upgrade steps ===
253
254
255 ==== 1.  Switch SW1 to put in ISP position ====
256
257
258 [[image:image-20220602102824-5.png||height="306" width="600"]]
259
260
261
262 ==== 2.  Press the RST switch once ====
263
264
265 [[image:image-20220602104701-12.png||height="285" width="600"]]
266
267
268
269 ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
270
271
272 (((
273 (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
274 )))
275
276
277 [[image:image-20220602103227-6.png]]
278
279
280 [[image:image-20220602103357-7.png]]
281
282
283
284 (% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
285 (% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
286
287
288 [[image:image-20220602103844-8.png]]
289
290
291
292 (% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
293 (% style="color:blue" %)**3. Select the bin file to burn**
294
295
296 [[image:image-20220602104144-9.png]]
297
298
299 [[image:image-20220602104251-10.png]]
300
301
302 [[image:image-20220602104402-11.png]]
303
304
305
306 (% class="wikigeneratedid" id="HClicktostartthedownload" %)
307 (% style="color:blue" %)**4. Click to start the download**
308
309 [[image:image-20220602104923-13.png]]
310
311
312
313 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
314 (% style="color:blue" %)**5. Check update process**
315
316
317 [[image:image-20220602104948-14.png]]
318
319
320
321 (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
322 (% style="color:blue" %)**The following picture shows that the burning is successful**
323
324 [[image:image-20220602105251-15.png]]
325
326
327
328 = 3.  LA66 USB LoRaWAN Adapter =
329
330
331 == 3.1  Overview ==
332
333
334 [[image:image-20220715001142-3.png||height="145" width="220"]]
335
336
337 (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
338
339 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
340
341 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
342
343 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
344
345 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
346
347
348
349 == 3.2  Features ==
350
351 * LoRaWAN USB adapter base on LA66 LoRaWAN module
352 * Ultra-long RF range
353 * Support LoRaWAN v1.0.4 protocol
354 * Support peer-to-peer protocol
355 * TCXO crystal to ensure RF performance on low temperature
356 * Spring RF antenna
357 * Available in different frequency LoRaWAN frequency bands.
358 * World-wide unique OTAA keys.
359 * AT Command via UART-TTL interface
360 * Firmware upgradable via UART interface
361 * Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
362
363
364
365 == 3.3  Specification ==
366
367 * CPU: 32-bit 48 MHz
368 * Flash: 256KB
369 * RAM: 64KB
370 * Input Power Range: 5v
371 * Frequency Range: 150 MHz ~~ 960 MHz
372 * Maximum Power +22 dBm constant RF output
373 * High sensitivity: -148 dBm
374 * Temperature:
375 ** Storage: -55 ~~ +125℃
376 ** Operating: -40 ~~ +85℃
377 * Humidity:
378 ** Storage: 5 ~~ 95% (Non-Condensing)
379 ** Operating: 10 ~~ 95% (Non-Condensing)
380 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
381 * LoRa Rx current: <9 mA
382
383
384
385 == 3.4  Pin Mapping & LED ==
386
387
388
389 == 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
390
391
392 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
393
394
395 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
396
397
398 [[image:image-20220602171217-1.png||height="538" width="800"]]
399
400
401 Open the serial port tool
402
403 [[image:image-20220602161617-8.png]]
404
405 [[image:image-20220602161718-9.png||height="457" width="800"]]
406
407
408
409 (% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
410
411 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
412
413
414 [[image:image-20220602161935-10.png||height="498" width="800"]]
415
416
417
418 (% style="color:blue" %)**3. See Uplink Command**
419
420 Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
421
422 example: AT+SENDB=01,02,8,05820802581ea0a5
423
424 [[image:image-20220602162157-11.png||height="497" width="800"]]
425
426
427
428 (% style="color:blue" %)**4. Check to see if TTN received the message**
429
430 [[image:image-20220602162331-12.png||height="420" width="800"]]
431
432
433
434 == 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
435
436
437 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
438
439
440 (% style="color:red" %)**Preconditions:**
441
442 (% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
443
444 (% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
445
446
447
448 (% style="color:blue" %)**Steps for usage:**
449
450 (% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
451
452 (% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
453
454 [[image:image-20220602115852-3.png||height="450" width="1187"]]
455
456
457
458 == 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
459
460
461 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
462
463
464 (% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
465
466 [[image:image-20220602171233-2.png||height="538" width="800"]]
467
468
469
470 (% style="color:blue" %)**2. Install Minicom in RPi.**
471
472 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
473
474 (% style="background-color:yellow" %)**apt update**
475
476 (% style="background-color:yellow" %)**apt install minicom**
477
478
479 Use minicom to connect to the RPI's terminal
480
481 [[image:image-20220602153146-3.png||height="439" width="500"]]
482
483
484
485 (% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
486
487 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
488
489
490 [[image:image-20220602154928-5.png||height="436" width="500"]]
491
492
493
494 (% style="color:blue" %)**4. Send Uplink message**
495
496 Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
497
498 example: AT+SENDB=01,02,8,05820802581ea0a5
499
500
501 [[image:image-20220602160339-6.png||height="517" width="600"]]
502
503
504
505 Check to see if TTN received the message
506
507 [[image:image-20220602160627-7.png||height="369" width="800"]]
508
509
510
511 == 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
512
513
514
515 == 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
516
517
518
519
520 = 4.  Order Info =
521
522
523 **Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
524
525
526 (% style="color:blue" %)**XXX**(%%): The default frequency band
527
528 * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
529 * (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
530 * (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
531 * (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
532 * (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
533 * (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
534 * (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
535 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
536 * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
537
538
539
540 = 5.  Reference =
541
542 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0