<
From version < 93.2 >
edited by Xiaoling
on 2022/07/15 14:35
To version < 45.1 >
edited by Herong Lu
on 2022/06/02 14:37
>
Change comment: Uploaded new attachment "image-20220602143744-2.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Lu
Content
... ... @@ -1,502 +1,204 @@
1 -
2 -
3 -**Table of Contents:**
4 -
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
5 5  {{toc/}}
3 +{{/box}}
6 6  
5 += LA66 LoRaWAN Module =
7 7  
7 +== What is LA66 LoRaWAN Module ==
8 8  
9 -= 1.  LA66 LoRaWAN Module =
9 +**Dragino LA66** is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRa and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
10 10  
11 +**LA66 **is a ready-to-use module which includes the LoRaWAN v1.0.4 protocol. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
11 11  
12 -== 1.1  What is LA66 LoRaWAN Module ==
13 +**Each LA66 **module includes a world unique OTAA key for LoRaWAN registration.
13 13  
14 14  
15 -(((
16 -[[image:image-20220715000242-1.png||height="110" width="132"]]
17 17  
18 -(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 -)))
17 +== Specification ==
20 20  
21 -(((
22 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 -)))
19 +[[image:image-20220517072526-1.png]]
24 24  
25 -(((
26 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 -)))
21 +Input Power Range: 1.8v ~~ 3.7v
28 28  
29 -(((
30 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 -)))
23 +Power Consumption: < 4uA.
32 32  
33 -(((
34 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 -)))
25 +Frequency Range: 150 MHz ~~ 960 MHz
36 36  
27 +Maximum Power +22 dBm constant RF output
37 37  
38 -== 1.2  Features ==
29 +High sensitivity: -148 dBm
39 39  
40 -* Support LoRaWAN v1.0.4 protocol
41 -* Support peer-to-peer protocol
42 -* TCXO crystal to ensure RF performance on low temperature
43 -* SMD Antenna pad and i-pex antenna connector
44 -* Available in different frequency LoRaWAN frequency bands.
45 -* World-wide unique OTAA keys.
46 -* AT Command via UART-TTL interface
47 -* Firmware upgradable via UART interface
48 -* Ultra-long RF range
31 +Temperature:
49 49  
33 +* Storage: -55 ~~ +125℃
34 +* Operating: -40 ~~ +85℃
50 50  
36 +Humidity:
51 51  
52 -== 1.3  Specification ==
38 +* Storage: 5 ~~ 95% (Non-Condensing)
39 +* Operating: 10 ~~ 95% (Non-Condensing)
53 53  
54 -* CPU: 32-bit 48 MHz
55 -* Flash: 256KB
56 -* RAM: 64KB
57 -* Input Power Range: 1.8v ~~ 3.7v
58 -* Power Consumption: < 4uA.
59 -* Frequency Range: 150 MHz ~~ 960 MHz
60 -* Maximum Power +22 dBm constant RF output
61 -* High sensitivity: -148 dBm
62 -* Temperature:
63 -** Storage: -55 ~~ +125℃
64 -** Operating: -40 ~~ +85℃
65 -* Humidity:
66 -** Storage: 5 ~~ 95% (Non-Condensing)
67 -** Operating: 10 ~~ 95% (Non-Condensing)
68 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
69 -* LoRa Rx current: <9 mA
70 -* I/O Voltage: 3.3v
41 +LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
71 71  
43 +LoRa Rx current: <9 mA
72 72  
45 +I/O Voltage: 3.3v
73 73  
74 -== 1.4  AT Command ==
75 75  
48 +== AT Command ==
49 +
76 76  AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
77 77  
78 78  
79 -== 1.5  Dimension ==
53 +== Pin Mapping ==
80 80  
81 -[[image:image-20220517072526-1.png]]
82 -
83 -
84 -
85 -== 1.6  Pin Mapping ==
86 -
87 -
88 88  [[image:image-20220523101537-1.png]]
89 89  
57 +== Land Pattern ==
90 90  
91 -
92 -== 1.7  Land Pattern ==
93 -
94 94  [[image:image-20220517072821-2.png]]
95 95  
96 96  
62 +== Part Number ==
97 97  
98 -= 2.  LA66 LoRaWAN Shield =
64 +Part Number: **LA66-XXX**
99 99  
66 +**XX**: The default frequency band
100 100  
101 -== 2.1  Overview ==
68 +* **AS923**: LoRaWAN AS923 band
69 +* **AU915**: LoRaWAN AU915 band
70 +* **EU433**: LoRaWAN EU433 band
71 +* **EU868**: LoRaWAN EU868 band
72 +* **KR920**: LoRaWAN KR920 band
73 +* **US915**: LoRaWAN US915 band
74 +* **IN865**: LoRaWAN IN865 band
75 +* **CN470**: LoRaWAN CN470 band
102 102  
77 += LA66 LoRaWAN Shield =
103 103  
104 -[[image:image-20220715000826-2.png||height="386" width="449"]]
79 +LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
105 105  
81 +== Pin Mapping & LED ==
106 106  
107 -LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
83 +== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
108 108  
109 -(((
110 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
111 -)))
85 +== Example: Join TTN network and send an uplink message, get downlink message. ==
112 112  
113 -(((
114 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
115 -)))
87 +== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
116 116  
117 -(((
118 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
119 -)))
89 +== Upgrade Firmware of LA66 LoRaWAN Shield ==
120 120  
121 -(((
122 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
123 -)))
91 +=== what needs to be used ===
124 124  
93 +1.LA66 LoRaWAN Shield that needs to be upgraded
125 125  
126 -== 2.2  Features ==
95 +2.Arduino
127 127  
128 -* Arduino Shield base on LA66 LoRaWAN module
129 -* Support LoRaWAN v1.0.4 protocol
130 -* Support peer-to-peer protocol
131 -* TCXO crystal to ensure RF performance on low temperature
132 -* SMA connector
133 -* Available in different frequency LoRaWAN frequency bands.
134 -* World-wide unique OTAA keys.
135 -* AT Command via UART-TTL interface
136 -* Firmware upgradable via UART interface
137 -* Ultra-long RF range
97 +3.USB TO TTL
138 138  
99 +[[image:image-20220602100052-2.png]]
139 139  
101 +=== Wiring Schematic ===
140 140  
141 -== 2.3  Specification ==
103 +[[image:image-20220602101311-3.png]]
142 142  
143 -* CPU: 32-bit 48 MHz
144 -* Flash: 256KB
145 -* RAM: 64KB
146 -* Input Power Range: 1.8v ~~ 3.7v
147 -* Power Consumption: < 4uA.
148 -* Frequency Range: 150 MHz ~~ 960 MHz
149 -* Maximum Power +22 dBm constant RF output
150 -* High sensitivity: -148 dBm
151 -* Temperature:
152 -** Storage: -55 ~~ +125℃
153 -** Operating: -40 ~~ +85℃
154 -* Humidity:
155 -** Storage: 5 ~~ 95% (Non-Condensing)
156 -** Operating: 10 ~~ 95% (Non-Condensing)
157 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
158 -* LoRa Rx current: <9 mA
159 -* I/O Voltage: 3.3v
105 +LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
160 160  
107 +GND  >>>>>>>>>>>>GND
161 161  
109 +TXD  >>>>>>>>>>>>TXD
162 162  
163 -== 2.4  Pin Mapping & LED ==
111 +RXD  >>>>>>>>>>>>RXD
164 164  
113 +JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
165 165  
115 +Connect to the PC after connecting the wires
166 166  
167 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
117 +[[image:image-20220602102240-4.png]]
168 168  
119 +=== Upgrade steps ===
169 169  
121 +==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
170 170  
171 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
123 +[[image:image-20220602102824-5.png]]
172 172  
125 +==== Press the RST switch on the LA66 LoRaWAN Shield once ====
173 173  
127 +[[image:image-20220602104701-12.png]]
174 174  
175 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
129 +==== Open the upgrade application software ====
176 176  
131 +Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
177 177  
178 -
179 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
180 -
181 -
182 -=== 2.8.1  Items needed for update ===
183 -
184 -1. LA66 LoRaWAN Shield
185 -1. Arduino
186 -1. USB TO TTL Adapter
187 -
188 -[[image:image-20220602100052-2.png||height="385" width="600"]]
189 -
190 -
191 -=== 2.8.2  Connection ===
192 -
193 -
194 -[[image:image-20220602101311-3.png||height="276" width="600"]]
195 -
196 -
197 -(((
198 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
199 -)))
200 -
201 -(((
202 -(% style="background-color:yellow" %)**GND  <-> GND
203 -TXD  <->  TXD
204 -RXD  <->  RXD**
205 -)))
206 -
207 -
208 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
209 -
210 -Connect USB TTL Adapter to PC after connecting the wires
211 -
212 -
213 -[[image:image-20220602102240-4.png||height="304" width="600"]]
214 -
215 -
216 -=== 2.8.3  Upgrade steps ===
217 -
218 -
219 -==== 1.  Switch SW1 to put in ISP position ====
220 -
221 -
222 -[[image:image-20220602102824-5.png||height="306" width="600"]]
223 -
224 -
225 -
226 -==== 2.  Press the RST switch once ====
227 -
228 -
229 -[[image:image-20220602104701-12.png||height="285" width="600"]]
230 -
231 -
232 -
233 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
234 -
235 -
236 -(((
237 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
238 -)))
239 -
240 -
241 241  [[image:image-20220602103227-6.png]]
242 242  
243 -
244 244  [[image:image-20220602103357-7.png]]
245 245  
137 +===== Select the COM port corresponding to USB TTL =====
246 246  
247 -
248 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
249 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
250 -
251 -
252 252  [[image:image-20220602103844-8.png]]
253 253  
141 +===== Select the bin file to burn =====
254 254  
255 -
256 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
257 -(% style="color:blue" %)**3. Select the bin file to burn**
258 -
259 -
260 260  [[image:image-20220602104144-9.png]]
261 261  
262 -
263 263  [[image:image-20220602104251-10.png]]
264 264  
265 -
266 266  [[image:image-20220602104402-11.png]]
267 267  
149 +===== Click to start the download =====
268 268  
269 -
270 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
271 -(% style="color:blue" %)**4. Click to start the download**
272 -
273 273  [[image:image-20220602104923-13.png]]
274 274  
153 +===== The following figure appears to prove that the burning is in progress =====
275 275  
276 -
277 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
278 -(% style="color:blue" %)**5. Check update process**
279 -
280 -
281 281  [[image:image-20220602104948-14.png]]
282 282  
157 +===== The following picture appears to prove that the burning is successful =====
283 283  
284 -
285 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
286 -(% style="color:blue" %)**The following picture shows that the burning is successful**
287 -
288 288  [[image:image-20220602105251-15.png]]
289 289  
161 += LA66 USB LoRaWAN Adapter =
290 290  
163 +LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
291 291  
292 -= 3.  LA66 USB LoRaWAN Adapter =
165 +== Pin Mapping & LED ==
293 293  
167 +== Example Send & Get Messages via LoRaWAN in PC ==
294 294  
295 -== 3.1  Overview ==
169 +== Example Send & Get Messages via LoRaWAN in RPi ==
296 296  
297 -[[image:image-20220715001142-3.png||height="145" width="220"]]
171 +=== Install USB Driver ===
298 298  
299 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
173 +Download Link:[[click here>>attach:CP210x_Universal_Windows_Driver.zip]]
300 300  
301 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
175 +=== Install Minicom ===
302 302  
303 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
177 +=== Use AT Command to send an uplink message. ===
304 304  
305 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
179 +=== Send PC's CPU/RAM usage to TTN via script. ===
306 306  
307 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
181 +==== Take python as an example: ====
308 308  
183 +===== Preconditions: =====
309 309  
310 -== 3. Features ==
185 +1.LA66 LoRa Shield works fine
311 311  
312 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
313 -* Ultra-long RF range
314 -* Support LoRaWAN v1.0.4 protocol
315 -* Support peer-to-peer protocol
316 -* TCXO crystal to ensure RF performance on low temperature
317 -* Spring RF antenna
318 -* Available in different frequency LoRaWAN frequency bands.
319 -* World-wide unique OTAA keys.
320 -* AT Command via UART-TTL interface
321 -* Firmware upgradable via UART interface
187 +2.LA66 LoRa Shield is registered with TTN
322 322  
189 +===== Steps for usage =====
323 323  
191 +1.After connecting the line, connect it to the PC, turn SW1 to FLASH, and press the RST switch. As shown in the figure below
324 324  
325 -== 3.3  Specification ==
193 +[[image:image-20220602114148-1.png]]
326 326  
327 -* CPU: 32-bit 48 MHz
328 -* Flash: 256KB
329 -* RAM: 64KB
330 -* Input Power Range: 5v
331 -* Frequency Range: 150 MHz ~~ 960 MHz
332 -* Maximum Power +22 dBm constant RF output
333 -* High sensitivity: -148 dBm
334 -* Temperature:
335 -** Storage: -55 ~~ +125℃
336 -** Operating: -40 ~~ +85℃
337 -* Humidity:
338 -** Storage: 5 ~~ 95% (Non-Condensing)
339 -** Operating: 10 ~~ 95% (Non-Condensing)
340 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
341 -* LoRa Rx current: <9 mA
195 +2.Run the script and see the TTN
342 342  
197 +[[image:image-20220602115852-3.png]]
343 343  
344 344  
345 -== 3.4  Pin Mapping & LED ==
346 346  
201 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
347 347  
348 348  
349 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
350 -
351 -
352 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
353 -
354 -
355 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
356 -
357 -
358 -[[image:image-20220602171217-1.png||height="538" width="800"]]
359 -
360 -
361 -Open the serial port tool
362 -
363 -[[image:image-20220602161617-8.png]]
364 -
365 -[[image:image-20220602161718-9.png||height="457" width="800"]]
366 -
367 -
368 -
369 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
370 -
371 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
372 -
373 -
374 -[[image:image-20220602161935-10.png||height="498" width="800"]]
375 -
376 -
377 -
378 -(% style="color:blue" %)**3. See Uplink Command**
379 -
380 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
381 -
382 -example: AT+SENDB=01,02,8,05820802581ea0a5
383 -
384 -[[image:image-20220602162157-11.png||height="497" width="800"]]
385 -
386 -
387 -
388 -(% style="color:blue" %)**4. Check to see if TTN received the message**
389 -
390 -[[image:image-20220602162331-12.png||height="420" width="800"]]
391 -
392 -
393 -
394 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
395 -
396 -
397 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
398 -
399 -
400 -(% style="color:red" %)**Preconditions:**
401 -
402 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
403 -
404 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
405 -
406 -
407 -
408 -(% style="color:blue" %)**Steps for usage:**
409 -
410 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
411 -
412 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
413 -
414 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
415 -
416 -
417 -
418 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
419 -
420 -
421 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
422 -
423 -
424 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
425 -
426 -[[image:image-20220602171233-2.png||height="538" width="800"]]
427 -
428 -
429 -
430 -(% style="color:blue" %)**2. Install Minicom in RPi.**
431 -
432 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
433 -
434 - (% style="background-color:yellow" %)**apt update**
435 -
436 - (% style="background-color:yellow" %)**apt install minicom**
437 -
438 -
439 -Use minicom to connect to the RPI's terminal
440 -
441 -[[image:image-20220602153146-3.png||height="439" width="500"]]
442 -
443 -
444 -
445 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
446 -
447 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
448 -
449 -
450 -[[image:image-20220602154928-5.png||height="436" width="500"]]
451 -
452 -
453 -
454 -(% style="color:blue" %)**4. Send Uplink message**
455 -
456 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
457 -
458 -example: AT+SENDB=01,02,8,05820802581ea0a5
459 -
460 -
461 -[[image:image-20220602160339-6.png||height="517" width="600"]]
462 -
463 -
464 -
465 -Check to see if TTN received the message
466 -
467 -[[image:image-20220602160627-7.png||height="369" width="800"]]
468 -
469 -
470 -
471 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
472 -
473 -
474 -
475 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
476 -
477 -
478 -
479 -
480 -= 4.  Order Info =
481 -
482 -
483 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
484 -
485 -
486 -(% style="color:blue" %)**XXX**(%%): The default frequency band
487 -
488 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
489 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
490 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
491 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
492 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
493 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
494 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
495 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
496 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
497 -
498 -= 5.  Reference =
499 -
500 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
501 -
502 -
204 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
image-20220602153146-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -23.4 KB
Content
image-20220602153333-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -684.3 KB
Content
image-20220602154928-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -39.1 KB
Content
image-20220602160339-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -48.3 KB
Content
image-20220602160627-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -150.3 KB
Content
image-20220602161617-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -7.7 KB
Content
image-20220602161718-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -23.9 KB
Content
image-20220602161935-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -29.7 KB
Content
image-20220602162157-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -30.3 KB
Content
image-20220602162331-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -162.4 KB
Content
image-20220602171217-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -650.5 KB
Content
image-20220602171233-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -650.5 KB
Content
image-20220715000242-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -820.7 KB
Content
image-20220715001142-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -508.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0