<
From version < 93.1 >
edited by Edwin Chen
on 2022/07/15 00:12
To version < 87.2 >
edited by Xiaoling
on 2022/07/13 09:34
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,6 +1,8 @@
1 1  
2 2  
3 -**Table of Contents:**
3 +{{box cssClass="floatinginfobox" title="**Contents**"}}
4 +{{toc/}}
5 +{{/box}}
4 4  
5 5  {{toc/}}
6 6  
... ... @@ -12,27 +12,15 @@
12 12  == 1.1  What is LA66 LoRaWAN Module ==
13 13  
14 14  
15 -(((
16 -[[image:image-20220715000242-1.png||height="110" width="132"]]
17 -
18 18  (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 -)))
20 20  
21 -(((
22 22  (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 -)))
24 24  
25 -(((
26 26  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 -)))
28 28  
29 -(((
30 30  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 -)))
32 32  
33 -(((
34 34  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 -)))
36 36  
37 37  
38 38  == 1.2  Features ==
... ... @@ -47,6 +47,7 @@
47 47  * Firmware upgradable via UART interface
48 48  * Ultra-long RF range
49 49  
40 +
50 50  == 1.3  Specification ==
51 51  
52 52  * CPU: 32-bit 48 MHz
... ... @@ -67,6 +67,7 @@
67 67  * LoRa Rx current: <9 mA
68 68  * I/O Voltage: 3.3v
69 69  
61 +
70 70  == 1.4  AT Command ==
71 71  
72 72  AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
... ... @@ -96,29 +96,9 @@
96 96  
97 97  == 2.1  Overview ==
98 98  
99 -
100 -[[image:image-20220715000826-2.png||height="386" width="449"]]
101 -
102 -
103 103  LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
104 104  
105 -(((
106 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
107 -)))
108 108  
109 -(((
110 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
111 -)))
112 -
113 -(((
114 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
115 -)))
116 -
117 -(((
118 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
119 -)))
120 -
121 -
122 122  == 2.2  Features ==
123 123  
124 124  * Arduino Shield base on LA66 LoRaWAN module
... ... @@ -132,6 +132,7 @@
132 132  * Firmware upgradable via UART interface
133 133  * Ultra-long RF range
134 134  
107 +
135 135  == 2.3  Specification ==
136 136  
137 137  * CPU: 32-bit 48 MHz
... ... @@ -152,6 +152,7 @@
152 152  * LoRa Rx current: <9 mA
153 153  * I/O Voltage: 3.3v
154 154  
128 +
155 155  == 2.4  Pin Mapping & LED ==
156 156  
157 157  
... ... @@ -186,15 +186,12 @@
186 186  [[image:image-20220602101311-3.png||height="276" width="600"]]
187 187  
188 188  
189 -(((
190 190  (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
191 -)))
192 192  
193 -(((
165 +
194 194  (% style="background-color:yellow" %)**GND  <-> GND
195 -TXD  <->  TXD
196 -RXD  <->  RXD**
197 -)))
167 +TXD  <->  TXD
168 +RXD  <->  RXD**
198 198  
199 199  
200 200  Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
... ... @@ -214,20 +214,15 @@
214 214  [[image:image-20220602102824-5.png||height="306" width="600"]]
215 215  
216 216  
217 -
218 218  ==== 2.  Press the RST switch once ====
219 219  
220 -
221 221  [[image:image-20220602104701-12.png||height="285" width="600"]]
222 222  
223 223  
224 -
225 225  ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
226 226  
227 227  
228 -(((
229 229  (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
230 -)))
231 231  
232 232  
233 233  [[image:image-20220602103227-6.png]]
... ... @@ -265,7 +265,6 @@
265 265  [[image:image-20220602104923-13.png]]
266 266  
267 267  
268 -
269 269  (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
270 270  (% style="color:blue" %)**5. Check update process**
271 271  
... ... @@ -286,19 +286,9 @@
286 286  
287 287  == 3.1  Overview ==
288 288  
289 -[[image:image-20220715001142-3.png||height="145" width="220"]]
254 +LA66 USB LoRaWAN Adapter is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
290 290  
291 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
292 292  
293 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
294 -
295 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
296 -
297 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
298 -
299 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
300 -
301 -
302 302  == 3.2  Features ==
303 303  
304 304  * LoRaWAN USB adapter base on LA66 LoRaWAN module
... ... @@ -312,7 +312,7 @@
312 312  * AT Command via UART-TTL interface
313 313  * Firmware upgradable via UART interface
314 314  
315 -== 3.3  Specification ==
270 +== Specification ==
316 316  
317 317  * CPU: 32-bit 48 MHz
318 318  * Flash: 256KB
... ... @@ -330,22 +330,16 @@
330 330  * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
331 331  * LoRa Rx current: <9 mA
332 332  
333 -== 3.4  Pin Mapping & LED ==
288 +== Pin Mapping & LED ==
334 334  
290 +== Example Send & Get Messages via LoRaWAN in PC ==
335 335  
336 -
337 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
338 -
339 -
340 340  Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
341 341  
294 +~1. Connect the LA66 USB LoRaWAN adapter to PC
342 342  
343 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
344 -
345 -
346 346  [[image:image-20220602171217-1.png||height="538" width="800"]]
347 347  
348 -
349 349  Open the serial port tool
350 350  
351 351  [[image:image-20220602161617-8.png]]
... ... @@ -353,75 +353,67 @@
353 353  [[image:image-20220602161718-9.png||height="457" width="800"]]
354 354  
355 355  
305 +2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.
356 356  
357 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
358 -
359 359  The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
360 360  
361 -
362 362  [[image:image-20220602161935-10.png||height="498" width="800"]]
363 363  
364 364  
312 +3. See Uplink Command
365 365  
366 -(% style="color:blue" %)**3. See Uplink Command**
314 +Command format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
367 367  
368 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
369 -
370 370  example: AT+SENDB=01,02,8,05820802581ea0a5
371 371  
372 372  [[image:image-20220602162157-11.png||height="497" width="800"]]
373 373  
374 374  
321 +4. Check to see if TTN received the message
375 375  
376 -(% style="color:blue" %)**4. Check to see if TTN received the message**
377 -
378 378  [[image:image-20220602162331-12.png||height="420" width="800"]]
379 379  
380 380  
381 381  
382 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
327 +== Example:Send PC's CPU/RAM usage to TTN via python ==
383 383  
384 -
329 +(% class="wikigeneratedid" id="HUsepythonasanexampleFF1A" %)
385 385  **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
386 386  
332 +(% class="wikigeneratedid" id="HPreconditions:" %)
333 +**Preconditions:**
387 387  
388 -(% style="color:red" %)**Preconditions:**
335 +1.LA66 USB LoRaWAN Adapter works fine
389 389  
390 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
337 +2.LA66 USB LoRaWAN Adapter  is registered with TTN
391 391  
392 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
339 +(% class="wikigeneratedid" id="HStepsforusage" %)
340 +**Steps for usage**
393 393  
342 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
394 394  
344 +2.Run the python script in PC and see the TTN
395 395  
396 -(% style="color:blue" %)**Steps for usage:**
397 -
398 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
399 -
400 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
401 -
402 402  [[image:image-20220602115852-3.png||height="450" width="1187"]]
403 403  
404 404  
405 405  
406 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
350 +== Example Send & Get Messages via LoRaWAN in RPi ==
407 407  
408 -
409 409  Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
410 410  
354 +~1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi
411 411  
412 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
413 -
414 414  [[image:image-20220602171233-2.png||height="538" width="800"]]
415 415  
416 416  
359 +2. Install Minicom in RPi.
417 417  
418 -(% style="color:blue" %)**2. Install Minicom in RPi.**
419 -
420 420  (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
421 421  
422 - (% style="background-color:yellow" %)**apt update**
363 +(% class="mark" %)apt update
423 423  
424 - (% style="background-color:yellow" %)**apt install minicom**
365 +(% class="mark" %)apt install minicom
425 425  
426 426  
427 427  Use minicom to connect to the RPI's terminal
... ... @@ -429,27 +429,20 @@
429 429  [[image:image-20220602153146-3.png||height="439" width="500"]]
430 430  
431 431  
373 +3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.
374 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network
432 432  
433 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
434 -
435 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
436 -
437 -
438 438  [[image:image-20220602154928-5.png||height="436" width="500"]]
439 439  
440 440  
379 +4. Send Uplink message
441 441  
442 -(% style="color:blue" %)**4. Send Uplink message**
381 +Format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
443 443  
444 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
445 -
446 446  example: AT+SENDB=01,02,8,05820802581ea0a5
447 447  
448 -
449 449  [[image:image-20220602160339-6.png||height="517" width="600"]]
450 450  
451 -
452 -
453 453  Check to see if TTN received the message
454 454  
455 455  [[image:image-20220602160627-7.png||height="369" width="800"]]
... ... @@ -456,35 +456,33 @@
456 456  
457 457  
458 458  
459 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
393 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
460 460  
461 461  
396 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
462 462  
463 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
464 464  
465 465  
400 += Order Info =
466 466  
402 +Part Number:
467 467  
468 -= 4.  Order Info =
404 +**LA66-XXX**, **LA66-LoRaWAN-Shield-XXX** or **LA66-USB-LoRaWAN-Adapter-XXX**
469 469  
406 +**XXX**: The default frequency band
470 470  
471 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
408 +* **AS923**: LoRaWAN AS923 band
409 +* **AU915**: LoRaWAN AU915 band
410 +* **EU433**: LoRaWAN EU433 band
411 +* **EU868**: LoRaWAN EU868 band
412 +* **KR920**: LoRaWAN KR920 band
413 +* **US915**: LoRaWAN US915 band
414 +* **IN865**: LoRaWAN IN865 band
415 +* **CN470**: LoRaWAN CN470 band
416 +* **PP**: Peer to Peer LoRa Protocol
472 472  
418 += Reference =
473 473  
474 -(% style="color:blue" %)**XXX**(%%): The default frequency band
475 -
476 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
477 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
478 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
479 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
480 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
481 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
482 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
483 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
484 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
485 -
486 -= 5.  Reference =
487 -
488 488  * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
489 489  
490 490  
image-20220715000242-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -820.7 KB
Content
image-20220715001142-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -508.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0