Changes for page LA66 LoRaWAN Shield User Manual
Last modified by Xiaoling on 2023/05/26 14:19
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -1,6 +1,8 @@ 1 1 2 2 3 -**Table of Contents:** 3 +{{box cssClass="floatinginfobox" title="**Contents**"}} 4 +{{toc/}} 5 +{{/box}} 4 4 5 5 {{toc/}} 6 6 ... ... @@ -12,27 +12,15 @@ 12 12 == 1.1 What is LA66 LoRaWAN Module == 13 13 14 14 15 -((( 16 -[[image:image-20220715000242-1.png||height="110" width="132"]] 17 - 18 18 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere. 19 -))) 20 20 21 -((( 22 22 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol. 23 -))) 24 24 25 -((( 26 26 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration. 27 -))) 28 28 29 -((( 30 30 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application. 31 -))) 32 32 33 -((( 34 34 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures. 35 -))) 36 36 37 37 38 38 == 1.2 Features == ... ... @@ -47,6 +47,7 @@ 47 47 * Firmware upgradable via UART interface 48 48 * Ultra-long RF range 49 49 40 + 50 50 == 1.3 Specification == 51 51 52 52 * CPU: 32-bit 48 MHz ... ... @@ -67,6 +67,7 @@ 67 67 * LoRa Rx current: <9 mA 68 68 * I/O Voltage: 3.3v 69 69 61 + 70 70 == 1.4 AT Command == 71 71 72 72 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents. ... ... @@ -96,29 +96,9 @@ 96 96 97 97 == 2.1 Overview == 98 98 99 - 100 -[[image:image-20220715000826-2.png||height="386" width="449"]] 101 - 102 - 103 103 LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to Arduino projects. 104 104 105 -((( 106 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol. 107 -))) 108 108 109 -((( 110 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration. 111 -))) 112 - 113 -((( 114 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application. 115 -))) 116 - 117 -((( 118 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures. 119 -))) 120 - 121 - 122 122 == 2.2 Features == 123 123 124 124 * Arduino Shield base on LA66 LoRaWAN module ... ... @@ -132,6 +132,7 @@ 132 132 * Firmware upgradable via UART interface 133 133 * Ultra-long RF range 134 134 107 + 135 135 == 2.3 Specification == 136 136 137 137 * CPU: 32-bit 48 MHz ... ... @@ -152,6 +152,7 @@ 152 152 * LoRa Rx current: <9 mA 153 153 * I/O Voltage: 3.3v 154 154 128 + 155 155 == 2.4 Pin Mapping & LED == 156 156 157 157 ... ... @@ -186,15 +186,12 @@ 186 186 [[image:image-20220602101311-3.png||height="276" width="600"]] 187 187 188 188 189 -((( 190 190 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) **<->** (% style="color:blue" %)**USB TTL** 191 -))) 192 192 193 - (((165 + 194 194 (% style="background-color:yellow" %)**GND <-> GND 195 -TXD <-> TXD 196 -RXD <-> RXD** 197 -))) 167 +TXD <-> TXD 168 +RXD <-> RXD** 198 198 199 199 200 200 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module) ... ... @@ -214,20 +214,15 @@ 214 214 [[image:image-20220602102824-5.png||height="306" width="600"]] 215 215 216 216 217 - 218 218 ==== 2. Press the RST switch once ==== 219 219 220 - 221 221 [[image:image-20220602104701-12.png||height="285" width="600"]] 222 222 223 223 224 - 225 225 ==== 3. Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ==== 226 226 227 227 228 -((( 229 229 (% style="color:blue" %)**1. Software download link: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]** 230 -))) 231 231 232 232 233 233 [[image:image-20220602103227-6.png]] ... ... @@ -265,7 +265,6 @@ 265 265 [[image:image-20220602104923-13.png]] 266 266 267 267 268 - 269 269 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %) 270 270 (% style="color:blue" %)**5. Check update process** 271 271 ... ... @@ -286,19 +286,9 @@ 286 286 287 287 == 3.1 Overview == 288 288 289 - [[image:image-20220715001142-3.png||height="145"width="220"]]254 +LA66 USB LoRaWAN Adapter is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface. 290 290 291 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface. 292 292 293 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol. 294 - 295 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration. 296 - 297 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application. 298 - 299 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures. 300 - 301 - 302 302 == 3.2 Features == 303 303 304 304 * LoRaWAN USB adapter base on LA66 LoRaWAN module ... ... @@ -312,7 +312,7 @@ 312 312 * AT Command via UART-TTL interface 313 313 * Firmware upgradable via UART interface 314 314 315 -== 3.3Specification ==270 +== Specification == 316 316 317 317 * CPU: 32-bit 48 MHz 318 318 * Flash: 256KB ... ... @@ -330,22 +330,16 @@ 330 330 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm 331 331 * LoRa Rx current: <9 mA 332 332 333 -== 3.4Pin Mapping & LED ==288 +== Pin Mapping & LED == 334 334 290 +== Example Send & Get Messages via LoRaWAN in PC == 335 335 336 - 337 -== 3.5 Example: Send & Get Messages via LoRaWAN in PC == 338 - 339 - 340 340 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage. 341 341 294 +~1. Connect the LA66 USB LoRaWAN adapter to PC 342 342 343 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC** 344 - 345 - 346 346 [[image:image-20220602171217-1.png||height="538" width="800"]] 347 347 348 - 349 349 Open the serial port tool 350 350 351 351 [[image:image-20220602161617-8.png]] ... ... @@ -353,75 +353,67 @@ 353 353 [[image:image-20220602161718-9.png||height="457" width="800"]] 354 354 355 355 305 +2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it. 356 356 357 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.** 358 - 359 359 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network 360 360 361 - 362 362 [[image:image-20220602161935-10.png||height="498" width="800"]] 363 363 364 364 312 +3. See Uplink Command 365 365 366 - (%style="color:blue"%)**3.See Uplink Command**314 +Command format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data> 367 367 368 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>** 369 - 370 370 example: AT+SENDB=01,02,8,05820802581ea0a5 371 371 372 372 [[image:image-20220602162157-11.png||height="497" width="800"]] 373 373 374 374 321 +4. Check to see if TTN received the message 375 375 376 -(% style="color:blue" %)**4. Check to see if TTN received the message** 377 - 378 378 [[image:image-20220602162331-12.png||height="420" width="800"]] 379 379 380 380 381 381 382 -== 3.6Example:327 +== Example:Send PC's CPU/RAM usage to TTN via python == 383 383 384 - 329 +(% class="wikigeneratedid" id="HUsepythonasanexampleFF1A" %) 385 385 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]] 386 386 332 +(% class="wikigeneratedid" id="HPreconditions:" %) 333 +**Preconditions:** 387 387 388 - (%style="color:red"%)**Preconditions:**335 +1.LA66 USB LoRaWAN Adapter works fine 389 389 390 - (% style="color:red" %)**1.worksfine**337 +2.LA66 USB LoRaWAN Adapter is registered with TTN 391 391 392 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter is registered with TTN** 339 +(% class="wikigeneratedid" id="HStepsforusage" %) 340 +**Steps for usage** 393 393 342 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter 394 394 344 +2.Run the python script in PC and see the TTN 395 395 396 -(% style="color:blue" %)**Steps for usage:** 397 - 398 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter 399 - 400 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN 401 - 402 402 [[image:image-20220602115852-3.png||height="450" width="1187"]] 403 403 404 404 405 405 406 -== 3.7Example:Send & Get Messages via LoRaWAN in RPi ==350 +== Example Send & Get Messages via LoRaWAN in RPi == 407 407 408 - 409 409 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage. 410 410 354 +~1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi 411 411 412 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi** 413 - 414 414 [[image:image-20220602171233-2.png||height="538" width="800"]] 415 415 416 416 359 +2. Install Minicom in RPi. 417 417 418 -(% style="color:blue" %)**2. Install Minicom in RPi.** 419 - 420 420 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal 421 421 422 - style="background-color:yellow" %)**apt update**363 +(% class="mark" %)apt update 423 423 424 - style="background-color:yellow" %)**apt install minicom**365 +(% class="mark" %)apt install minicom 425 425 426 426 427 427 Use minicom to connect to the RPI's terminal ... ... @@ -429,27 +429,20 @@ 429 429 [[image:image-20220602153146-3.png||height="439" width="500"]] 430 430 431 431 373 +3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter. 374 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network 432 432 433 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.** 434 - 435 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network. 436 - 437 - 438 438 [[image:image-20220602154928-5.png||height="436" width="500"]] 439 439 440 440 379 +4. Send Uplink message 441 441 442 - (% style="color:blue"%)**4.Send Uplink message**381 +Format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data> 443 443 444 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>** 445 - 446 446 example: AT+SENDB=01,02,8,05820802581ea0a5 447 447 448 - 449 449 [[image:image-20220602160339-6.png||height="517" width="600"]] 450 450 451 - 452 - 453 453 Check to see if TTN received the message 454 454 455 455 [[image:image-20220602160627-7.png||height="369" width="800"]] ... ... @@ -456,35 +456,33 @@ 456 456 457 457 458 458 459 -== 3.8Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==393 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. == 460 460 461 461 396 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter == 462 462 463 -== 3.9 Upgrade Firmware of LA66 USB LoRaWAN Adapter == 464 464 465 465 400 += Order Info = 466 466 402 +Part Number: 467 467 468 - =4.OrderInfo =404 +**LA66-XXX**, **LA66-LoRaWAN-Shield-XXX** or **LA66-USB-LoRaWAN-Adapter-XXX** 469 469 406 +**XXX**: The default frequency band 470 470 471 -**Part Number:** (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or** (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX** 408 +* **AS923**: LoRaWAN AS923 band 409 +* **AU915**: LoRaWAN AU915 band 410 +* **EU433**: LoRaWAN EU433 band 411 +* **EU868**: LoRaWAN EU868 band 412 +* **KR920**: LoRaWAN KR920 band 413 +* **US915**: LoRaWAN US915 band 414 +* **IN865**: LoRaWAN IN865 band 415 +* **CN470**: LoRaWAN CN470 band 416 +* **PP**: Peer to Peer LoRa Protocol 472 472 418 += Reference = 473 473 474 -(% style="color:blue" %)**XXX**(%%): The default frequency band 475 - 476 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 477 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 478 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 479 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 480 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 481 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 482 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 483 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 484 -* (% style="color:red" %)**PP**(%%): Peer to Peer LoRa Protocol 485 - 486 -= 5. Reference = 487 - 488 488 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]] 489 489 490 490
- image-20220715000242-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -172.4 KB - Content
- image-20220715000826-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -820.7 KB - Content
- image-20220715001142-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.1 KB - Content