Changes for page LA66 LoRaWAN Shield User Manual
Last modified by Xiaoling on 2023/05/26 14:19
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -1,6 +1,8 @@ 1 1 2 2 3 -**Table of Contents:** 3 +{{box cssClass="floatinginfobox" title="**Contents**"}} 4 +{{toc/}} 5 +{{/box}} 4 4 5 5 {{toc/}} 6 6 ... ... @@ -12,27 +12,15 @@ 12 12 == 1.1 What is LA66 LoRaWAN Module == 13 13 14 14 15 -((( 16 -[[image:image-20220715000242-1.png||height="110" width="132"]] 17 - 18 18 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere. 19 -))) 20 20 21 -((( 22 22 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol. 23 -))) 24 24 25 -((( 26 26 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration. 27 -))) 28 28 29 -((( 30 30 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application. 31 -))) 32 32 33 -((( 34 34 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures. 35 -))) 36 36 37 37 38 38 == 1.2 Features == ... ... @@ -47,6 +47,7 @@ 47 47 * Firmware upgradable via UART interface 48 48 * Ultra-long RF range 49 49 40 + 50 50 == 1.3 Specification == 51 51 52 52 * CPU: 32-bit 48 MHz ... ... @@ -67,6 +67,7 @@ 67 67 * LoRa Rx current: <9 mA 68 68 * I/O Voltage: 3.3v 69 69 61 + 70 70 == 1.4 AT Command == 71 71 72 72 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents. ... ... @@ -96,29 +96,9 @@ 96 96 97 97 == 2.1 Overview == 98 98 99 - 100 -[[image:image-20220715000826-2.png||height="386" width="449"]] 101 - 102 - 103 103 LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to Arduino projects. 104 104 105 -((( 106 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol. 107 -))) 108 108 109 -((( 110 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration. 111 -))) 112 - 113 -((( 114 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application. 115 -))) 116 - 117 -((( 118 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures. 119 -))) 120 - 121 - 122 122 == 2.2 Features == 123 123 124 124 * Arduino Shield base on LA66 LoRaWAN module ... ... @@ -132,6 +132,7 @@ 132 132 * Firmware upgradable via UART interface 133 133 * Ultra-long RF range 134 134 107 + 135 135 == 2.3 Specification == 136 136 137 137 * CPU: 32-bit 48 MHz ... ... @@ -152,6 +152,7 @@ 152 152 * LoRa Rx current: <9 mA 153 153 * I/O Voltage: 3.3v 154 154 128 + 155 155 == 2.4 Pin Mapping & LED == 156 156 157 157 ... ... @@ -177,7 +177,6 @@ 177 177 1. Arduino 178 178 1. USB TO TTL Adapter 179 179 180 - 181 181 [[image:image-20220602100052-2.png||height="385" width="600"]] 182 182 183 183 ... ... @@ -187,15 +187,12 @@ 187 187 [[image:image-20220602101311-3.png||height="276" width="600"]] 188 188 189 189 190 -((( 191 191 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) **<->** (% style="color:blue" %)**USB TTL** 192 -))) 193 193 194 - (((165 + 195 195 (% style="background-color:yellow" %)**GND <-> GND 196 -TXD <-> TXD 197 -RXD <-> RXD** 198 -))) 167 +TXD <-> TXD 168 +RXD <-> RXD** 199 199 200 200 201 201 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module) ... ... @@ -215,20 +215,15 @@ 215 215 [[image:image-20220602102824-5.png||height="306" width="600"]] 216 216 217 217 218 - 219 219 ==== 2. Press the RST switch once ==== 220 220 221 - 222 222 [[image:image-20220602104701-12.png||height="285" width="600"]] 223 223 224 224 225 - 226 226 ==== 3. Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ==== 227 227 228 228 229 -((( 230 230 (% style="color:blue" %)**1. Software download link: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]** 231 -))) 232 232 233 233 234 234 [[image:image-20220602103227-6.png]] ... ... @@ -266,7 +266,6 @@ 266 266 [[image:image-20220602104923-13.png]] 267 267 268 268 269 - 270 270 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %) 271 271 (% style="color:blue" %)**5. Check update process** 272 272 ... ... @@ -287,17 +287,9 @@ 287 287 288 288 == 3.1 Overview == 289 289 290 - (% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%)is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.254 +LA66 USB LoRaWAN Adapter is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface. 291 291 292 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol. 293 293 294 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration. 295 - 296 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application. 297 - 298 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures. 299 - 300 - 301 301 == 3.2 Features == 302 302 303 303 * LoRaWAN USB adapter base on LA66 LoRaWAN module ... ... @@ -311,7 +311,7 @@ 311 311 * AT Command via UART-TTL interface 312 312 * Firmware upgradable via UART interface 313 313 314 -== 3.3Specification ==270 +== Specification == 315 315 316 316 * CPU: 32-bit 48 MHz 317 317 * Flash: 256KB ... ... @@ -329,22 +329,16 @@ 329 329 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm 330 330 * LoRa Rx current: <9 mA 331 331 332 -== 3.4Pin Mapping & LED ==288 +== Pin Mapping & LED == 333 333 290 +== Example Send & Get Messages via LoRaWAN in PC == 334 334 335 - 336 -== 3.5 Example: Send & Get Messages via LoRaWAN in PC == 337 - 338 - 339 339 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage. 340 340 294 +~1. Connect the LA66 USB LoRaWAN adapter to PC 341 341 342 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC** 343 - 344 - 345 345 [[image:image-20220602171217-1.png||height="538" width="800"]] 346 346 347 - 348 348 Open the serial port tool 349 349 350 350 [[image:image-20220602161617-8.png]] ... ... @@ -352,75 +352,67 @@ 352 352 [[image:image-20220602161718-9.png||height="457" width="800"]] 353 353 354 354 305 +2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it. 355 355 356 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.** 357 - 358 358 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network 359 359 360 - 361 361 [[image:image-20220602161935-10.png||height="498" width="800"]] 362 362 363 363 312 +3. See Uplink Command 364 364 365 - (%style="color:blue"%)**3.See Uplink Command**314 +Command format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data> 366 366 367 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>** 368 - 369 369 example: AT+SENDB=01,02,8,05820802581ea0a5 370 370 371 371 [[image:image-20220602162157-11.png||height="497" width="800"]] 372 372 373 373 321 +4. Check to see if TTN received the message 374 374 375 -(% style="color:blue" %)**4. Check to see if TTN received the message** 376 - 377 377 [[image:image-20220602162331-12.png||height="420" width="800"]] 378 378 379 379 380 380 381 -== 3.6Example:327 +== Example:Send PC's CPU/RAM usage to TTN via python == 382 382 383 - 329 +(% class="wikigeneratedid" id="HUsepythonasanexampleFF1A" %) 384 384 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]] 385 385 332 +(% class="wikigeneratedid" id="HPreconditions:" %) 333 +**Preconditions:** 386 386 387 - (%style="color:red"%)**Preconditions:**335 +1.LA66 USB LoRaWAN Adapter works fine 388 388 389 - (% style="color:red" %)**1.worksfine**337 +2.LA66 USB LoRaWAN Adapter is registered with TTN 390 390 391 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter is registered with TTN** 339 +(% class="wikigeneratedid" id="HStepsforusage" %) 340 +**Steps for usage** 392 392 342 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter 393 393 344 +2.Run the python script in PC and see the TTN 394 394 395 -(% style="color:blue" %)**Steps for usage:** 396 - 397 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter 398 - 399 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN 400 - 401 401 [[image:image-20220602115852-3.png||height="450" width="1187"]] 402 402 403 403 404 404 405 -== 3.7Example:Send & Get Messages via LoRaWAN in RPi ==350 +== Example Send & Get Messages via LoRaWAN in RPi == 406 406 407 - 408 408 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage. 409 409 354 +~1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi 410 410 411 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi** 412 - 413 413 [[image:image-20220602171233-2.png||height="538" width="800"]] 414 414 415 415 359 +2. Install Minicom in RPi. 416 416 417 -(% style="color:blue" %)**2. Install Minicom in RPi.** 418 - 419 419 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal 420 420 421 - style="background-color:yellow" %)**apt update**363 +(% class="mark" %)apt update 422 422 423 - style="background-color:yellow" %)**apt install minicom**365 +(% class="mark" %)apt install minicom 424 424 425 425 426 426 Use minicom to connect to the RPI's terminal ... ... @@ -428,27 +428,20 @@ 428 428 [[image:image-20220602153146-3.png||height="439" width="500"]] 429 429 430 430 373 +3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter. 374 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network 431 431 432 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.** 433 - 434 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network. 435 - 436 - 437 437 [[image:image-20220602154928-5.png||height="436" width="500"]] 438 438 439 439 379 +4. Send Uplink message 440 440 441 - (% style="color:blue"%)**4.Send Uplink message**381 +Format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data> 442 442 443 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>** 444 - 445 445 example: AT+SENDB=01,02,8,05820802581ea0a5 446 446 447 - 448 448 [[image:image-20220602160339-6.png||height="517" width="600"]] 449 449 450 - 451 - 452 452 Check to see if TTN received the message 453 453 454 454 [[image:image-20220602160627-7.png||height="369" width="800"]] ... ... @@ -455,35 +455,33 @@ 455 455 456 456 457 457 458 -== 3.8Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==393 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. == 459 459 460 460 396 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter == 461 461 462 -== 3.9 Upgrade Firmware of LA66 USB LoRaWAN Adapter == 463 463 464 464 400 += Order Info = 465 465 402 +Part Number: 466 466 467 - =4.OrderInfo =404 +**LA66-XXX**, **LA66-LoRaWAN-Shield-XXX** or **LA66-USB-LoRaWAN-Adapter-XXX** 468 468 406 +**XXX**: The default frequency band 469 469 470 -**Part Number:** (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or** (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX** 408 +* **AS923**: LoRaWAN AS923 band 409 +* **AU915**: LoRaWAN AU915 band 410 +* **EU433**: LoRaWAN EU433 band 411 +* **EU868**: LoRaWAN EU868 band 412 +* **KR920**: LoRaWAN KR920 band 413 +* **US915**: LoRaWAN US915 band 414 +* **IN865**: LoRaWAN IN865 band 415 +* **CN470**: LoRaWAN CN470 band 416 +* **PP**: Peer to Peer LoRa Protocol 471 471 418 += Reference = 472 472 473 -(% style="color:blue" %)**XXX**(%%): The default frequency band 474 - 475 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 476 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 477 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 478 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 479 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 480 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 481 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 482 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 483 -* (% style="color:red" %)**PP**(%%): Peer to Peer LoRa Protocol 484 - 485 -= 5. Reference = 486 - 487 487 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]] 488 488 489 489
- image-20220715000242-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -172.4 KB - Content
- image-20220715000826-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -820.7 KB - Content
- image-20220715001142-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.1 KB - Content