<
From version < 87.3 >
edited by Xiaoling
on 2022/07/13 09:49
To version < 64.1 >
edited by Edwin Chen
on 2022/07/02 21:03
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,429 +3,263 @@
1 -
2 -
3 3  {{box cssClass="floatinginfobox" title="**Contents**"}}
4 4  {{toc/}}
5 5  {{/box}}
6 6  
7 -{{toc/}}
5 += LA66 LoRaWAN Module =
8 8  
7 +== What is LA66 LoRaWAN Module ==
9 9  
9 +**Dragino LA66** is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
10 10  
11 -= 1.  LA66 LoRaWAN Module =
11 +**LA66 **is a ready-to-use module that includes the LoRaWAN v1.0.4 protocol. The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk for developers to make a LoRaWAN End device. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
12 12  
13 13  
14 -== 1.1  What is LA66 LoRaWAN Module ==
14 +LA66 is equipped with **TCXO crystal** which ensures the module can achieve the stable performance in extreme temperatures.
15 15  
16 16  
17 -(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
17 +**Each LA66 **module includes a world-unique OTAA key for LoRaWAN registration.
18 18  
19 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
20 20  
21 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
22 22  
23 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
21 +== Specification ==
24 24  
25 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
26 -
27 -
28 -== 1.2  Features ==
29 -
30 -* Support LoRaWAN v1.0.4 protocol
31 -* Support peer-to-peer protocol
32 -* TCXO crystal to ensure RF performance on low temperature
33 -* SMD Antenna pad and i-pex antenna connector
34 -* Available in different frequency LoRaWAN frequency bands.
35 -* World-wide unique OTAA keys.
36 -* AT Command via UART-TTL interface
37 -* Firmware upgradable via UART interface
38 -* Ultra-long RF range
39 -
40 -== 1.3  Specification ==
41 -
42 -* CPU: 32-bit 48 MHz
43 -* Flash: 256KB
44 -* RAM: 64KB
45 -* Input Power Range: 1.8v ~~ 3.7v
46 -* Power Consumption: < 4uA.
47 -* Frequency Range: 150 MHz ~~ 960 MHz
48 -* Maximum Power +22 dBm constant RF output
49 -* High sensitivity: -148 dBm
50 -* Temperature:
51 -** Storage: -55 ~~ +125℃
52 -** Operating: -40 ~~ +85℃
53 -* Humidity:
54 -** Storage: 5 ~~ 95% (Non-Condensing)
55 -** Operating: 10 ~~ 95% (Non-Condensing)
56 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
57 -* LoRa Rx current: <9 mA
58 -* I/O Voltage: 3.3v
59 -
60 -== 1.4  AT Command ==
61 -
62 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
63 -
64 -
65 -== 1.5  Dimension ==
66 -
67 67  [[image:image-20220517072526-1.png]]
68 68  
25 +Input Power Range: 1.8v ~~ 3.7v
69 69  
27 +Power Consumption: < 4uA.
70 70  
71 -== 1.6  Pin Mapping ==
29 +Frequency Range: 150 MHz ~~ 960 MHz
72 72  
31 +Maximum Power +22 dBm constant RF output
73 73  
74 -[[image:image-20220523101537-1.png]]
33 +High sensitivity: -148 dBm
75 75  
35 +Temperature:
76 76  
37 +* Storage: -55 ~~ +125℃
38 +* Operating: -40 ~~ +85℃
77 77  
78 -== 1.7  Land Pattern ==
40 +Humidity:
79 79  
80 -[[image:image-20220517072821-2.png]]
42 +* Storage: 5 ~~ 95% (Non-Condensing)
43 +* Operating: 10 ~~ 95% (Non-Condensing)
81 81  
45 +LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
82 82  
47 +LoRa Rx current: <9 mA
83 83  
84 -= 2.  LA66 LoRaWAN Shield =
49 +I/O Voltage: 3.3v
85 85  
86 86  
87 -== 2.1  Overview ==
52 +== AT Command ==
88 88  
89 -LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
54 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
90 90  
91 91  
92 -== 2.2  Features ==
57 +== Pin Mapping ==
93 93  
94 -* Arduino Shield base on LA66 LoRaWAN module
95 -* Support LoRaWAN v1.0.4 protocol
96 -* Support peer-to-peer protocol
97 -* TCXO crystal to ensure RF performance on low temperature
98 -* SMA connector
99 -* Available in different frequency LoRaWAN frequency bands.
100 -* World-wide unique OTAA keys.
101 -* AT Command via UART-TTL interface
102 -* Firmware upgradable via UART interface
103 -* Ultra-long RF range
59 +[[image:image-20220523101537-1.png]]
104 104  
105 -== 2.3  Specification ==
61 +== Land Pattern ==
106 106  
107 -* CPU: 32-bit 48 MHz
108 -* Flash: 256KB
109 -* RAM: 64KB
110 -* Input Power Range: 1.8v ~~ 3.7v
111 -* Power Consumption: < 4uA.
112 -* Frequency Range: 150 MHz ~~ 960 MHz
113 -* Maximum Power +22 dBm constant RF output
114 -* High sensitivity: -148 dBm
115 -* Temperature:
116 -** Storage: -55 ~~ +125℃
117 -** Operating: -40 ~~ +85℃
118 -* Humidity:
119 -** Storage: 5 ~~ 95% (Non-Condensing)
120 -** Operating: 10 ~~ 95% (Non-Condensing)
121 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
122 -* LoRa Rx current: <9 mA
123 -* I/O Voltage: 3.3v
63 +[[image:image-20220517072821-2.png]]
124 124  
125 -== 2.4  Pin Mapping & LED ==
126 126  
66 +== Part Number ==
127 127  
68 +Part Number: **LA66-XXX**
128 128  
129 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
70 +**XX**: The default frequency band
130 130  
72 +* **AS923**: LoRaWAN AS923 band
73 +* **AU915**: LoRaWAN AU915 band
74 +* **EU433**: LoRaWAN EU433 band
75 +* **EU868**: LoRaWAN EU868 band
76 +* **KR920**: LoRaWAN KR920 band
77 +* **US915**: LoRaWAN US915 band
78 +* **IN865**: LoRaWAN IN865 band
79 +* **CN470**: LoRaWAN CN470 band
131 131  
81 += LA66 LoRaWAN Shield =
132 132  
133 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
83 +LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
134 134  
85 +== Pin Mapping & LED ==
135 135  
87 +== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
136 136  
137 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
89 +== Example: Join TTN network and send an uplink message, get downlink message. ==
138 138  
91 +== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
139 139  
93 +== Upgrade Firmware of LA66 LoRaWAN Shield ==
140 140  
141 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
95 +=== what needs to be used ===
142 142  
97 +1.LA66 LoRaWAN Shield that needs to be upgraded
143 143  
144 -=== 2.8.1  Items needed for update ===
99 +2.Arduino
145 145  
146 -1. LA66 LoRaWAN Shield
147 -1. Arduino
148 -1. USB TO TTL Adapter
101 +3.USB TO TTL
149 149  
150 -[[image:image-20220602100052-2.png||height="385" width="600"]]
103 +[[image:image-20220602100052-2.png]]
151 151  
105 +=== Wiring Schematic ===
152 152  
153 -=== 2.8.2  Connection ===
107 +[[image:image-20220602101311-3.png]]
154 154  
109 +LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
155 155  
156 -[[image:image-20220602101311-3.png||height="276" width="600"]]
111 +GND  >>>>>>>>>>>>GND
157 157  
113 +TXD  >>>>>>>>>>>>TXD
158 158  
159 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
115 +RXD  >>>>>>>>>>>>RXD
160 160  
117 +JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
161 161  
162 -(% style="background-color:yellow" %)**GND  <-> GND
163 -TXD  <->  TXD
164 -RXD  <->  RXD**
119 +Connect to the PC after connecting the wires
165 165  
121 +[[image:image-20220602102240-4.png]]
166 166  
167 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
123 +=== Upgrade steps ===
168 168  
169 -Connect USB TTL Adapter to PC after connecting the wires
125 +==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
170 170  
127 +[[image:image-20220602102824-5.png]]
171 171  
172 -[[image:image-20220602102240-4.png||height="304" width="600"]]
129 +==== Press the RST switch on the LA66 LoRaWAN Shield once ====
173 173  
131 +[[image:image-20220602104701-12.png]]
174 174  
175 -=== 2.8.3  Upgrade steps ===
133 +==== Open the upgrade application software ====
176 176  
135 +Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
177 177  
178 -==== 1.  Switch SW1 to put in ISP position ====
179 -
180 -
181 -[[image:image-20220602102824-5.png||height="306" width="600"]]
182 -
183 -
184 -==== 2.  Press the RST switch once ====
185 -
186 -[[image:image-20220602104701-12.png||height="285" width="600"]]
187 -
188 -
189 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
190 -
191 -
192 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
193 -
194 -
195 195  [[image:image-20220602103227-6.png]]
196 196  
197 -
198 198  [[image:image-20220602103357-7.png]]
199 199  
141 +===== Select the COM port corresponding to USB TTL =====
200 200  
201 -
202 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
203 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
204 -
205 -
206 206  [[image:image-20220602103844-8.png]]
207 207  
145 +===== Select the bin file to burn =====
208 208  
209 -
210 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
211 -(% style="color:blue" %)**3. Select the bin file to burn**
212 -
213 -
214 214  [[image:image-20220602104144-9.png]]
215 215  
216 -
217 217  [[image:image-20220602104251-10.png]]
218 218  
219 -
220 220  [[image:image-20220602104402-11.png]]
221 221  
153 +===== Click to start the download =====
222 222  
223 -
224 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
225 -(% style="color:blue" %)**4. Click to start the download**
226 -
227 227  [[image:image-20220602104923-13.png]]
228 228  
157 +===== The following figure appears to prove that the burning is in progress =====
229 229  
230 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
231 -(% style="color:blue" %)**5. Check update process**
232 -
233 -
234 234  [[image:image-20220602104948-14.png]]
235 235  
161 +===== The following picture appears to prove that the burning is successful =====
236 236  
237 -
238 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
239 -(% style="color:blue" %)**The following picture shows that the burning is successful**
240 -
241 241  [[image:image-20220602105251-15.png]]
242 242  
165 += LA66 USB LoRaWAN Adapter =
243 243  
167 +LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
244 244  
245 -= 3.  LA66 USB LoRaWAN Adapter =
169 +Before use, please make sure that the computer has installed the CP2102 driver
246 246  
171 +== Pin Mapping & LED ==
247 247  
248 -== 3.1  Overview ==
173 +== Example Send & Get Messages via LoRaWAN in PC ==
249 249  
250 -LA66 USB LoRaWAN Adapter is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
175 +Connect the LA66 LoRa Shield to the PC
251 251  
177 +[[image:image-20220602171217-1.png||height="615" width="915"]]
252 252  
253 -== 3.2  Features ==
254 -
255 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
256 -* Ultra-long RF range
257 -* Support LoRaWAN v1.0.4 protocol
258 -* Support peer-to-peer protocol
259 -* TCXO crystal to ensure RF performance on low temperature
260 -* Spring RF antenna
261 -* Available in different frequency LoRaWAN frequency bands.
262 -* World-wide unique OTAA keys.
263 -* AT Command via UART-TTL interface
264 -* Firmware upgradable via UART interface
265 -
266 -== 3.3  Specification ==
267 -
268 -* CPU: 32-bit 48 MHz
269 -* Flash: 256KB
270 -* RAM: 64KB
271 -* Input Power Range: 5v
272 -* Frequency Range: 150 MHz ~~ 960 MHz
273 -* Maximum Power +22 dBm constant RF output
274 -* High sensitivity: -148 dBm
275 -* Temperature:
276 -** Storage: -55 ~~ +125℃
277 -** Operating: -40 ~~ +85℃
278 -* Humidity:
279 -** Storage: 5 ~~ 95% (Non-Condensing)
280 -** Operating: 10 ~~ 95% (Non-Condensing)
281 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
282 -* LoRa Rx current: <9 mA
283 -
284 -== 3.4  Pin Mapping & LED ==
285 -
286 -
287 -
288 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
289 -
290 -
291 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
292 -
293 -
294 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
295 -
296 -
297 -[[image:image-20220602171217-1.png||height="538" width="800"]]
298 -
299 -
300 300  Open the serial port tool
301 301  
302 302  [[image:image-20220602161617-8.png]]
303 303  
304 -[[image:image-20220602161718-9.png||height="457" width="800"]]
183 +[[image:image-20220602161718-9.png||height="529" width="927"]]
305 305  
185 +Press the reset switch RST on the LA66 LoRa Shield.
306 306  
187 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
307 307  
308 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
189 +[[image:image-20220602161935-10.png]]
309 309  
310 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
191 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
311 311  
312 -
313 -[[image:image-20220602161935-10.png||height="498" width="800"]]
314 -
315 -
316 -
317 -(% style="color:blue" %)**3. See Uplink Command**
318 -
319 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
320 -
321 321  example: AT+SENDB=01,02,8,05820802581ea0a5
322 322  
323 -[[image:image-20220602162157-11.png||height="497" width="800"]]
195 +[[image:image-20220602162157-11.png]]
324 324  
197 +Check to see if TTN received the message
325 325  
199 +[[image:image-20220602162331-12.png||height="547" width="1044"]]
326 326  
327 -(% style="color:blue" %)**4. Check to see if TTN received the message**
201 +== Example Send & Get Messages via LoRaWAN in RPi ==
328 328  
329 -[[image:image-20220602162331-12.png||height="420" width="800"]]
203 +Connect the LA66 LoRa Shield to the RPI
330 330  
205 +[[image:image-20220602171233-2.png||height="592" width="881"]]
331 331  
207 +Log in to the RPI's terminal and connect to the serial port
332 332  
333 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
209 +[[image:image-20220602153146-3.png]]
334 334  
211 +Press the reset switch RST on the LA66 LoRa Shield.
212 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
335 335  
336 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
214 +[[image:image-20220602154928-5.png]]
337 337  
216 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
338 338  
339 -(% style="color:red" %)**Preconditions:**
218 +example: AT+SENDB=01,02,8,05820802581ea0a5
340 340  
341 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
220 +[[image:image-20220602160339-6.png]]
342 342  
343 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapte is registered with TTN**
222 +Check to see if TTN received the message
344 344  
224 +[[image:image-20220602160627-7.png||height="468" width="1013"]]
345 345  
226 +=== Install Minicom ===
346 346  
347 -(% style="color:blue" %)**Steps for usage:**
228 +Enter the following command in the RPI terminal
348 348  
349 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
230 +apt update
350 350  
351 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
232 +[[image:image-20220602143155-1.png]]
352 352  
353 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
234 +apt install minicom
354 354  
236 +[[image:image-20220602143744-2.png]]
355 355  
238 +=== Send PC's CPU/RAM usage to TTN via script. ===
356 356  
357 -== Example Send & Get Messages via LoRaWAN in RPi ==
240 +==== Take python as an example: ====
358 358  
359 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
242 +===== Preconditions: =====
360 360  
361 -~1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi
244 +1.LA66 USB LoRaWAN Adapter works fine
362 362  
363 -[[image:image-20220602171233-2.png||height="538" width="800"]]
246 +2.LA66 USB LoRaWAN Adapteis registered with TTN
364 364  
248 +===== Steps for usage =====
365 365  
366 -2. Install Minicom in RPi.
250 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
367 367  
368 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
252 +2.Run the script and see the TTN
369 369  
370 -(% class="mark" %)apt update
254 +[[image:image-20220602115852-3.png]]
371 371  
372 -(% class="mark" %)apt install minicom
373 373  
374 374  
375 -Use minicom to connect to the RPI's terminal
376 -
377 -[[image:image-20220602153146-3.png||height="439" width="500"]]
378 -
379 -
380 -3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.
381 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network
382 -
383 -[[image:image-20220602154928-5.png||height="436" width="500"]]
384 -
385 -
386 -4. Send Uplink message
387 -
388 -Format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
389 -
390 -example: AT+SENDB=01,02,8,05820802581ea0a5
391 -
392 -[[image:image-20220602160339-6.png||height="517" width="600"]]
393 -
394 -Check to see if TTN received the message
395 -
396 -[[image:image-20220602160627-7.png||height="369" width="800"]]
397 -
398 -
399 -
400 400  == Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
401 401  
402 402  
403 403  == Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
404 404  
405 -
406 -
407 -= Order Info =
408 -
409 -Part Number:
410 -
411 -**LA66-XXX**, **LA66-LoRaWAN-Shield-XXX** or **LA66-USB-LoRaWAN-Adapter-XXX**
412 -
413 -**XXX**: The default frequency band
414 -
415 -* **AS923**: LoRaWAN AS923 band
416 -* **AU915**: LoRaWAN AU915 band
417 -* **EU433**: LoRaWAN EU433 band
418 -* **EU868**: LoRaWAN EU868 band
419 -* **KR920**: LoRaWAN KR920 band
420 -* **US915**: LoRaWAN US915 band
421 -* **IN865**: LoRaWAN IN865 band
422 -* **CN470**: LoRaWAN CN470 band
423 -* **PP**: Peer to Peer LoRa Protocol
424 -
425 -= Reference =
426 -
427 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
428 -
429 429  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0