<
From version < 87.2 >
edited by Xiaoling
on 2022/07/13 09:34
To version < 91.1 >
edited by Edwin Chen
on 2022/07/15 00:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,8 +1,6 @@
1 1  
2 2  
3 -{{box cssClass="floatinginfobox" title="**Contents**"}}
4 -{{toc/}}
5 -{{/box}}
3 +**Table of Contents:**
6 6  
7 7  {{toc/}}
8 8  
... ... @@ -14,15 +14,27 @@
14 14  == 1.1  What is LA66 LoRaWAN Module ==
15 15  
16 16  
15 +(((
16 +[[image:image-20220715000242-1.png||height="110" width="132"]]
17 +
17 17  (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 +)))
18 18  
21 +(((
19 19  (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
23 +)))
20 20  
25 +(((
21 21  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
27 +)))
22 22  
29 +(((
23 23  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
31 +)))
24 24  
33 +(((
25 25  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
35 +)))
26 26  
27 27  
28 28  == 1.2  Features ==
... ... @@ -37,7 +37,6 @@
37 37  * Firmware upgradable via UART interface
38 38  * Ultra-long RF range
39 39  
40 -
41 41  == 1.3  Specification ==
42 42  
43 43  * CPU: 32-bit 48 MHz
... ... @@ -58,7 +58,6 @@
58 58  * LoRa Rx current: <9 mA
59 59  * I/O Voltage: 3.3v
60 60  
61 -
62 62  == 1.4  AT Command ==
63 63  
64 64  AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
... ... @@ -88,9 +88,29 @@
88 88  
89 89  == 2.1  Overview ==
90 90  
99 +
100 +[[image:image-20220715000826-2.png||height="386" width="449"]]
101 +
102 +
91 91  LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
92 92  
105 +(((
106 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
107 +)))
93 93  
109 +(((
110 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
111 +)))
112 +
113 +(((
114 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
115 +)))
116 +
117 +(((
118 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
119 +)))
120 +
121 +
94 94  == 2.2  Features ==
95 95  
96 96  * Arduino Shield base on LA66 LoRaWAN module
... ... @@ -104,7 +104,6 @@
104 104  * Firmware upgradable via UART interface
105 105  * Ultra-long RF range
106 106  
107 -
108 108  == 2.3  Specification ==
109 109  
110 110  * CPU: 32-bit 48 MHz
... ... @@ -125,7 +125,6 @@
125 125  * LoRa Rx current: <9 mA
126 126  * I/O Voltage: 3.3v
127 127  
128 -
129 129  == 2.4  Pin Mapping & LED ==
130 130  
131 131  
... ... @@ -151,6 +151,7 @@
151 151  1. Arduino
152 152  1. USB TO TTL Adapter
153 153  
180 +
154 154  [[image:image-20220602100052-2.png||height="385" width="600"]]
155 155  
156 156  
... ... @@ -160,12 +160,15 @@
160 160  [[image:image-20220602101311-3.png||height="276" width="600"]]
161 161  
162 162  
190 +(((
163 163  (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
192 +)))
164 164  
165 -
194 +(((
166 166  (% style="background-color:yellow" %)**GND  <-> GND
167 -TXD  <->  TXD
168 -RXD  <->  RXD**
196 +TXD  <->  TXD
197 +RXD  <->  RXD**
198 +)))
169 169  
170 170  
171 171  Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
... ... @@ -185,15 +185,20 @@
185 185  [[image:image-20220602102824-5.png||height="306" width="600"]]
186 186  
187 187  
218 +
188 188  ==== 2.  Press the RST switch once ====
189 189  
221 +
190 190  [[image:image-20220602104701-12.png||height="285" width="600"]]
191 191  
192 192  
225 +
193 193  ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
194 194  
195 195  
229 +(((
196 196  (% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
231 +)))
197 197  
198 198  
199 199  [[image:image-20220602103227-6.png]]
... ... @@ -231,6 +231,7 @@
231 231  [[image:image-20220602104923-13.png]]
232 232  
233 233  
269 +
234 234  (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
235 235  (% style="color:blue" %)**5. Check update process**
236 236  
... ... @@ -251,9 +251,17 @@
251 251  
252 252  == 3.1  Overview ==
253 253  
254 -LA66 USB LoRaWAN Adapter is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
290 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
255 255  
292 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
256 256  
294 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
295 +
296 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
297 +
298 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
299 +
300 +
257 257  == 3.2  Features ==
258 258  
259 259  * LoRaWAN USB adapter base on LA66 LoRaWAN module
... ... @@ -267,7 +267,7 @@
267 267  * AT Command via UART-TTL interface
268 268  * Firmware upgradable via UART interface
269 269  
270 -== Specification ==
314 +== 3.3  Specification ==
271 271  
272 272  * CPU: 32-bit 48 MHz
273 273  * Flash: 256KB
... ... @@ -285,16 +285,22 @@
285 285  * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
286 286  * LoRa Rx current: <9 mA
287 287  
288 -== Pin Mapping & LED ==
332 +== 3.4  Pin Mapping & LED ==
289 289  
290 -== Example Send & Get Messages via LoRaWAN in PC ==
291 291  
335 +
336 +== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
337 +
338 +
292 292  Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
293 293  
294 -~1. Connect the LA66 USB LoRaWAN adapter to PC
295 295  
342 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
343 +
344 +
296 296  [[image:image-20220602171217-1.png||height="538" width="800"]]
297 297  
347 +
298 298  Open the serial port tool
299 299  
300 300  [[image:image-20220602161617-8.png]]
... ... @@ -302,67 +302,75 @@
302 302  [[image:image-20220602161718-9.png||height="457" width="800"]]
303 303  
304 304  
305 -2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.
306 306  
356 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
357 +
307 307  The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
308 308  
360 +
309 309  [[image:image-20220602161935-10.png||height="498" width="800"]]
310 310  
311 311  
312 -3. See Uplink Command
313 313  
314 -Command format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
365 +(% style="color:blue" %)**3. See Uplink Command**
315 315  
367 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
368 +
316 316  example: AT+SENDB=01,02,8,05820802581ea0a5
317 317  
318 318  [[image:image-20220602162157-11.png||height="497" width="800"]]
319 319  
320 320  
321 -4. Check to see if TTN received the message
322 322  
375 +(% style="color:blue" %)**4. Check to see if TTN received the message**
376 +
323 323  [[image:image-20220602162331-12.png||height="420" width="800"]]
324 324  
325 325  
326 326  
327 -== Example:Send PC's CPU/RAM usage to TTN via python ==
381 +== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
328 328  
329 -(% class="wikigeneratedid" id="HUsepythonasanexampleFF1A" %)
383 +
330 330  **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
331 331  
332 -(% class="wikigeneratedid" id="HPreconditions:" %)
333 -**Preconditions:**
334 334  
335 -1.LA66 USB LoRaWAN Adapter works fine
387 +(% style="color:red" %)**Preconditions:**
336 336  
337 -2.LA66 USB LoRaWAN Adapter  is registered with TTN
389 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
338 338  
339 -(% class="wikigeneratedid" id="HStepsforusage" %)
340 -**Steps for usage**
391 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
341 341  
342 -1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
343 343  
344 -2.Run the python script in PC and see the TTN
345 345  
395 +(% style="color:blue" %)**Steps for usage:**
396 +
397 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
398 +
399 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
400 +
346 346  [[image:image-20220602115852-3.png||height="450" width="1187"]]
347 347  
348 348  
349 349  
350 -== Example Send & Get Messages via LoRaWAN in RPi ==
405 +== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
351 351  
407 +
352 352  Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
353 353  
354 -~1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi
355 355  
411 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
412 +
356 356  [[image:image-20220602171233-2.png||height="538" width="800"]]
357 357  
358 358  
359 -2. Install Minicom in RPi.
360 360  
417 +(% style="color:blue" %)**2. Install Minicom in RPi.**
418 +
361 361  (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
362 362  
363 -(% class="mark" %)apt update
421 + (% style="background-color:yellow" %)**apt update**
364 364  
365 -(% class="mark" %)apt install minicom
423 + (% style="background-color:yellow" %)**apt install minicom**
366 366  
367 367  
368 368  Use minicom to connect to the RPI's terminal
... ... @@ -370,20 +370,27 @@
370 370  [[image:image-20220602153146-3.png||height="439" width="500"]]
371 371  
372 372  
373 -3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.
374 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network
375 375  
432 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
433 +
434 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
435 +
436 +
376 376  [[image:image-20220602154928-5.png||height="436" width="500"]]
377 377  
378 378  
379 -4. Send Uplink message
380 380  
381 -Format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
441 +(% style="color:blue" %)**4. Send Uplink message**
382 382  
443 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
444 +
383 383  example: AT+SENDB=01,02,8,05820802581ea0a5
384 384  
447 +
385 385  [[image:image-20220602160339-6.png||height="517" width="600"]]
386 386  
450 +
451 +
387 387  Check to see if TTN received the message
388 388  
389 389  [[image:image-20220602160627-7.png||height="369" width="800"]]
... ... @@ -390,33 +390,35 @@
390 390  
391 391  
392 392  
393 -== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
458 +== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
394 394  
395 395  
396 -== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
397 397  
462 +== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
398 398  
399 399  
400 -= Order Info =
401 401  
402 -Part Number:
403 403  
404 -**LA66-XXX**, **LA66-LoRaWAN-Shield-XXX** or **LA66-USB-LoRaWAN-Adapter-XXX**
467 += 4.  Order Info =
405 405  
406 -**XXX**: The default frequency band
407 407  
408 -* **AS923**: LoRaWAN AS923 band
409 -* **AU915**: LoRaWAN AU915 band
410 -* **EU433**: LoRaWAN EU433 band
411 -* **EU868**: LoRaWAN EU868 band
412 -* **KR920**: LoRaWAN KR920 band
413 -* **US915**: LoRaWAN US915 band
414 -* **IN865**: LoRaWAN IN865 band
415 -* **CN470**: LoRaWAN CN470 band
416 -* **PP**: Peer to Peer LoRa Protocol
470 +**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
417 417  
418 -= Reference =
419 419  
473 +(% style="color:blue" %)**XXX**(%%): The default frequency band
474 +
475 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
476 +* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
477 +* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
478 +* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
479 +* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
480 +* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
481 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
482 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
483 +* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
484 +
485 += 5.  Reference =
486 +
420 420  * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
421 421  
422 422  
image-20220715000242-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +820.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0