Changes for page LA66 LoRaWAN Shield User Manual
Last modified by Xiaoling on 2023/05/26 14:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,8 +1,6 @@ 1 1 2 2 3 -{{box cssClass="floatinginfobox" title="**Contents**"}} 4 -{{toc/}} 5 -{{/box}} 3 +**Table of Contents:** 6 6 7 7 {{toc/}} 8 8 ... ... @@ -14,15 +14,25 @@ 14 14 == 1.1 What is LA66 LoRaWAN Module == 15 15 16 16 15 +((( 17 17 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere. 17 +))) 18 18 19 +((( 19 19 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol. 21 +))) 20 20 23 +((( 21 21 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration. 25 +))) 22 22 27 +((( 23 23 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application. 29 +))) 24 24 31 +((( 25 25 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures. 33 +))) 26 26 27 27 28 28 == 1.2 Features == ... ... @@ -38,6 +38,7 @@ 38 38 * Ultra-long RF range 39 39 40 40 49 + 41 41 == 1.3 Specification == 42 42 43 43 * CPU: 32-bit 48 MHz ... ... @@ -59,6 +59,7 @@ 59 59 * I/O Voltage: 3.3v 60 60 61 61 71 + 62 62 == 1.4 AT Command == 63 63 64 64 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents. ... ... @@ -105,6 +105,7 @@ 105 105 * Ultra-long RF range 106 106 107 107 118 + 108 108 == 2.3 Specification == 109 109 110 110 * CPU: 32-bit 48 MHz ... ... @@ -126,6 +126,7 @@ 126 126 * I/O Voltage: 3.3v 127 127 128 128 140 + 129 129 == 2.4 Pin Mapping & LED == 130 130 131 131 ... ... @@ -151,6 +151,9 @@ 151 151 1. Arduino 152 152 1. USB TO TTL Adapter 153 153 166 + 167 + 168 + 154 154 [[image:image-20220602100052-2.png||height="385" width="600"]] 155 155 156 156 ... ... @@ -162,10 +162,11 @@ 162 162 163 163 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) **<->** (% style="color:blue" %)**USB TTL** 164 164 165 - 180 +((( 166 166 (% style="background-color:yellow" %)**GND <-> GND 167 -TXD <-> TXD 168 -RXD <-> RXD** 182 +TXD <-> TXD 183 +RXD <-> RXD** 184 +))) 169 169 170 170 171 171 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module) ... ... @@ -185,11 +185,14 @@ 185 185 [[image:image-20220602102824-5.png||height="306" width="600"]] 186 186 187 187 204 + 188 188 ==== 2. Press the RST switch once ==== 189 189 207 + 190 190 [[image:image-20220602104701-12.png||height="285" width="600"]] 191 191 192 192 211 + 193 193 ==== 3. Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ==== 194 194 195 195 ... ... @@ -231,6 +231,7 @@ 231 231 [[image:image-20220602104923-13.png]] 232 232 233 233 253 + 234 234 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %) 235 235 (% style="color:blue" %)**5. Check update process** 236 236 ... ... @@ -267,8 +267,10 @@ 267 267 * AT Command via UART-TTL interface 268 268 * Firmware upgradable via UART interface 269 269 270 -== Specification == 271 271 291 + 292 +== 3.3 Specification == 293 + 272 272 * CPU: 32-bit 48 MHz 273 273 * Flash: 256KB 274 274 * RAM: 64KB ... ... @@ -285,16 +285,24 @@ 285 285 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm 286 286 * LoRa Rx current: <9 mA 287 287 288 -== Pin Mapping & LED == 289 289 290 -== Example Send & Get Messages via LoRaWAN in PC == 291 291 312 +== 3.4 Pin Mapping & LED == 313 + 314 + 315 + 316 +== 3.5 Example: Send & Get Messages via LoRaWAN in PC == 317 + 318 + 292 292 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage. 293 293 294 -~1. Connect the LA66 USB LoRaWAN adapter to PC 295 295 322 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC** 323 + 324 + 296 296 [[image:image-20220602171217-1.png||height="538" width="800"]] 297 297 327 + 298 298 Open the serial port tool 299 299 300 300 [[image:image-20220602161617-8.png]] ... ... @@ -302,67 +302,75 @@ 302 302 [[image:image-20220602161718-9.png||height="457" width="800"]] 303 303 304 304 305 -2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it. 306 306 336 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.** 337 + 307 307 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network 308 308 340 + 309 309 [[image:image-20220602161935-10.png||height="498" width="800"]] 310 310 311 311 312 -3. See Uplink Command 313 313 314 - Commandformat: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>345 +(% style="color:blue" %)**3. See Uplink Command** 315 315 347 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>** 348 + 316 316 example: AT+SENDB=01,02,8,05820802581ea0a5 317 317 318 318 [[image:image-20220602162157-11.png||height="497" width="800"]] 319 319 320 320 321 -4. Check to see if TTN received the message 322 322 355 +(% style="color:blue" %)**4. Check to see if TTN received the message** 356 + 323 323 [[image:image-20220602162331-12.png||height="420" width="800"]] 324 324 325 325 326 326 327 -== Example:Send PC's CPU/RAM usage to TTN via python == 361 +== 3.6 Example: Send PC's CPU/RAM usage to TTN via python == 328 328 329 - (% class="wikigeneratedid" id="HUsepythonasanexampleFF1A" %)363 + 330 330 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]] 331 331 332 -(% class="wikigeneratedid" id="HPreconditions:" %) 333 -**Preconditions:** 334 334 335 - 1.LA66USB LoRaWAN Adapter worksfine367 +(% style="color:red" %)**Preconditions:** 336 336 337 - 2.LA66 USB LoRaWAN Adapterisregisteredwith TTN369 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine** 338 338 339 -(% class="wikigeneratedid" id="HStepsforusage" %) 340 -**Steps for usage** 371 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter is registered with TTN** 341 341 342 -1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter 343 343 344 -2.Run the python script in PC and see the TTN 345 345 375 +(% style="color:blue" %)**Steps for usage:** 376 + 377 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter 378 + 379 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN 380 + 346 346 [[image:image-20220602115852-3.png||height="450" width="1187"]] 347 347 348 348 349 349 350 -== Example Send & Get Messages via LoRaWAN in RPi == 385 +== 3.7 Example: Send & Get Messages via LoRaWAN in RPi == 351 351 387 + 352 352 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage. 353 353 354 -~1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi 355 355 391 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi** 392 + 356 356 [[image:image-20220602171233-2.png||height="538" width="800"]] 357 357 358 358 359 -2. Install Minicom in RPi. 360 360 397 +(% style="color:blue" %)**2. Install Minicom in RPi.** 398 + 361 361 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal 362 362 363 -(% class="mark" %)apt update401 + (% style="background-color:yellow" %)**apt update** 364 364 365 -(% class="mark" %)apt install minicom403 + (% style="background-color:yellow" %)**apt install minicom** 366 366 367 367 368 368 Use minicom to connect to the RPI's terminal ... ... @@ -370,20 +370,27 @@ 370 370 [[image:image-20220602153146-3.png||height="439" width="500"]] 371 371 372 372 373 -3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter. 374 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network 375 375 412 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.** 413 + 414 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network. 415 + 416 + 376 376 [[image:image-20220602154928-5.png||height="436" width="500"]] 377 377 378 378 379 -4. Send Uplink message 380 380 381 - Format:AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>421 +(% style="color:blue" %)**4. Send Uplink message** 382 382 423 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>** 424 + 383 383 example: AT+SENDB=01,02,8,05820802581ea0a5 384 384 427 + 385 385 [[image:image-20220602160339-6.png||height="517" width="600"]] 386 386 430 + 431 + 387 387 Check to see if TTN received the message 388 388 389 389 [[image:image-20220602160627-7.png||height="369" width="800"]] ... ... @@ -390,33 +390,37 @@ 390 390 391 391 392 392 393 -== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. == 438 +== 3.8 Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. == 394 394 395 395 396 -== Upgrade Firmware of LA66 USB LoRaWAN Adapter == 397 397 442 +== 3.9 Upgrade Firmware of LA66 USB LoRaWAN Adapter == 398 398 399 399 400 -= Order Info = 401 401 402 -Part Number: 403 403 404 - **LA66-XXX**,**LA66-LoRaWAN-Shield-XXX**or**LA66-USB-LoRaWAN-Adapter-XXX**447 += 4. Order Info = 405 405 406 -**XXX**: The default frequency band 407 407 408 -* **AS923**: LoRaWAN AS923 band 409 -* **AU915**: LoRaWAN AU915 band 410 -* **EU433**: LoRaWAN EU433 band 411 -* **EU868**: LoRaWAN EU868 band 412 -* **KR920**: LoRaWAN KR920 band 413 -* **US915**: LoRaWAN US915 band 414 -* **IN865**: LoRaWAN IN865 band 415 -* **CN470**: LoRaWAN CN470 band 416 -* **PP**: Peer to Peer LoRa Protocol 450 +**Part Number:** (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or** (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX** 417 417 418 -= Reference = 419 419 453 +(% style="color:blue" %)**XXX**(%%): The default frequency band 454 + 455 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 456 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 457 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 458 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 459 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 460 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 461 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 462 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 463 +* (% style="color:red" %)**PP**(%%): Peer to Peer LoRa Protocol 464 + 465 + 466 + 467 += 5. Reference = 468 + 420 420 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]] 421 421 422 422