Changes for page LA66 LoRaWAN Shield User Manual
Last modified by Xiaoling on 2023/05/26 14:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,8 @@ 1 1 2 2 3 -**Table of Contents:** 3 +{{box cssClass="floatinginfobox" title="**Contents**"}} 4 +{{toc/}} 5 +{{/box}} 4 4 5 5 {{toc/}} 6 6 ... ... @@ -12,25 +12,15 @@ 12 12 == 1.1 What is LA66 LoRaWAN Module == 13 13 14 14 15 -((( 16 16 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere. 17 -))) 18 18 19 -((( 20 20 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol. 21 -))) 22 22 23 -((( 24 24 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration. 25 -))) 26 26 27 -((( 28 28 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application. 29 -))) 30 30 31 -((( 32 32 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures. 33 -))) 34 34 35 35 36 36 == 1.2 Features == ... ... @@ -46,7 +46,6 @@ 46 46 * Ultra-long RF range 47 47 48 48 49 - 50 50 == 1.3 Specification == 51 51 52 52 * CPU: 32-bit 48 MHz ... ... @@ -68,7 +68,6 @@ 68 68 * I/O Voltage: 3.3v 69 69 70 70 71 - 72 72 == 1.4 AT Command == 73 73 74 74 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents. ... ... @@ -115,7 +115,6 @@ 115 115 * Ultra-long RF range 116 116 117 117 118 - 119 119 == 2.3 Specification == 120 120 121 121 * CPU: 32-bit 48 MHz ... ... @@ -137,7 +137,6 @@ 137 137 * I/O Voltage: 3.3v 138 138 139 139 140 - 141 141 == 2.4 Pin Mapping & LED == 142 142 143 143 ... ... @@ -163,9 +163,6 @@ 163 163 1. Arduino 164 164 1. USB TO TTL Adapter 165 165 166 - 167 - 168 - 169 169 [[image:image-20220602100052-2.png||height="385" width="600"]] 170 170 171 171 ... ... @@ -175,15 +175,12 @@ 175 175 [[image:image-20220602101311-3.png||height="276" width="600"]] 176 176 177 177 178 -((( 179 179 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) **<->** (% style="color:blue" %)**USB TTL** 180 -))) 181 181 182 - (((165 + 183 183 (% style="background-color:yellow" %)**GND <-> GND 184 -TXD <-> TXD 185 -RXD <-> RXD** 186 -))) 167 +TXD <-> TXD 168 +RXD <-> RXD** 187 187 188 188 189 189 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module) ... ... @@ -203,14 +203,11 @@ 203 203 [[image:image-20220602102824-5.png||height="306" width="600"]] 204 204 205 205 206 - 207 207 ==== 2. Press the RST switch once ==== 208 208 209 - 210 210 [[image:image-20220602104701-12.png||height="285" width="600"]] 211 211 212 212 213 - 214 214 ==== 3. Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ==== 215 215 216 216 ... ... @@ -252,7 +252,6 @@ 252 252 [[image:image-20220602104923-13.png]] 253 253 254 254 255 - 256 256 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %) 257 257 (% style="color:blue" %)**5. Check update process** 258 258 ... ... @@ -289,10 +289,8 @@ 289 289 * AT Command via UART-TTL interface 290 290 * Firmware upgradable via UART interface 291 291 270 +== Specification == 292 292 293 - 294 -== 3.3 Specification == 295 - 296 296 * CPU: 32-bit 48 MHz 297 297 * Flash: 256KB 298 298 * RAM: 64KB ... ... @@ -309,24 +309,16 @@ 309 309 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm 310 310 * LoRa Rx current: <9 mA 311 311 288 +== Pin Mapping & LED == 312 312 290 +== Example Send & Get Messages via LoRaWAN in PC == 313 313 314 -== 3.4 Pin Mapping & LED == 315 - 316 - 317 - 318 -== 3.5 Example: Send & Get Messages via LoRaWAN in PC == 319 - 320 - 321 321 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage. 322 322 294 +~1. Connect the LA66 USB LoRaWAN adapter to PC 323 323 324 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC** 325 - 326 - 327 327 [[image:image-20220602171217-1.png||height="538" width="800"]] 328 328 329 - 330 330 Open the serial port tool 331 331 332 332 [[image:image-20220602161617-8.png]] ... ... @@ -334,75 +334,67 @@ 334 334 [[image:image-20220602161718-9.png||height="457" width="800"]] 335 335 336 336 305 +2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it. 337 337 338 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.** 339 - 340 340 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network 341 341 342 - 343 343 [[image:image-20220602161935-10.png||height="498" width="800"]] 344 344 345 345 312 +3. See Uplink Command 346 346 347 - (%style="color:blue"%)**3.See Uplink Command**314 +Command format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data> 348 348 349 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>** 350 - 351 351 example: AT+SENDB=01,02,8,05820802581ea0a5 352 352 353 353 [[image:image-20220602162157-11.png||height="497" width="800"]] 354 354 355 355 321 +4. Check to see if TTN received the message 356 356 357 -(% style="color:blue" %)**4. Check to see if TTN received the message** 358 - 359 359 [[image:image-20220602162331-12.png||height="420" width="800"]] 360 360 361 361 362 362 363 -== 3.6Example:327 +== Example:Send PC's CPU/RAM usage to TTN via python == 364 364 365 - 329 +(% class="wikigeneratedid" id="HUsepythonasanexampleFF1A" %) 366 366 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]] 367 367 332 +(% class="wikigeneratedid" id="HPreconditions:" %) 333 +**Preconditions:** 368 368 369 - (%style="color:red"%)**Preconditions:**335 +1.LA66 USB LoRaWAN Adapter works fine 370 370 371 - (% style="color:red" %)**1.worksfine**337 +2.LA66 USB LoRaWAN Adapter is registered with TTN 372 372 373 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter is registered with TTN** 339 +(% class="wikigeneratedid" id="HStepsforusage" %) 340 +**Steps for usage** 374 374 342 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter 375 375 344 +2.Run the python script in PC and see the TTN 376 376 377 -(% style="color:blue" %)**Steps for usage:** 378 - 379 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter 380 - 381 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN 382 - 383 383 [[image:image-20220602115852-3.png||height="450" width="1187"]] 384 384 385 385 386 386 387 -== 3.7Example:Send & Get Messages via LoRaWAN in RPi ==350 +== Example Send & Get Messages via LoRaWAN in RPi == 388 388 389 - 390 390 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage. 391 391 354 +~1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi 392 392 393 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi** 394 - 395 395 [[image:image-20220602171233-2.png||height="538" width="800"]] 396 396 397 397 359 +2. Install Minicom in RPi. 398 398 399 -(% style="color:blue" %)**2. Install Minicom in RPi.** 400 - 401 401 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal 402 402 403 - style="background-color:yellow" %)**apt update**363 +(% class="mark" %)apt update 404 404 405 - style="background-color:yellow" %)**apt install minicom**365 +(% class="mark" %)apt install minicom 406 406 407 407 408 408 Use minicom to connect to the RPI's terminal ... ... @@ -410,27 +410,20 @@ 410 410 [[image:image-20220602153146-3.png||height="439" width="500"]] 411 411 412 412 373 +3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter. 374 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network 413 413 414 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.** 415 - 416 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network. 417 - 418 - 419 419 [[image:image-20220602154928-5.png||height="436" width="500"]] 420 420 421 421 379 +4. Send Uplink message 422 422 423 - (% style="color:blue"%)**4.Send Uplink message**381 +Format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data> 424 424 425 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>** 426 - 427 427 example: AT+SENDB=01,02,8,05820802581ea0a5 428 428 429 - 430 430 [[image:image-20220602160339-6.png||height="517" width="600"]] 431 431 432 - 433 - 434 434 Check to see if TTN received the message 435 435 436 436 [[image:image-20220602160627-7.png||height="369" width="800"]] ... ... @@ -437,37 +437,33 @@ 437 437 438 438 439 439 440 -== 3.8Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==393 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. == 441 441 442 442 396 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter == 443 443 444 -== 3.9 Upgrade Firmware of LA66 USB LoRaWAN Adapter == 445 445 446 446 400 += Order Info = 447 447 402 +Part Number: 448 448 449 - =4.OrderInfo =404 +**LA66-XXX**, **LA66-LoRaWAN-Shield-XXX** or **LA66-USB-LoRaWAN-Adapter-XXX** 450 450 406 +**XXX**: The default frequency band 451 451 452 -**Part Number:** (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or** (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX** 408 +* **AS923**: LoRaWAN AS923 band 409 +* **AU915**: LoRaWAN AU915 band 410 +* **EU433**: LoRaWAN EU433 band 411 +* **EU868**: LoRaWAN EU868 band 412 +* **KR920**: LoRaWAN KR920 band 413 +* **US915**: LoRaWAN US915 band 414 +* **IN865**: LoRaWAN IN865 band 415 +* **CN470**: LoRaWAN CN470 band 416 +* **PP**: Peer to Peer LoRa Protocol 453 453 418 += Reference = 454 454 455 -(% style="color:blue" %)**XXX**(%%): The default frequency band 456 - 457 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 458 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 459 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 460 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 461 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 462 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 463 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 464 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 465 -* (% style="color:red" %)**PP**(%%): Peer to Peer LoRa Protocol 466 - 467 - 468 - 469 -= 5. Reference = 470 - 471 471 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]] 472 472 473 473