<
From version < 87.16 >
edited by Xiaoling
on 2022/07/13 10:10
To version < 87.2 >
edited by Xiaoling
on 2022/07/13 09:34
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,6 +1,8 @@
1 1  
2 2  
3 -**Table of Contents:**
3 +{{box cssClass="floatinginfobox" title="**Contents**"}}
4 +{{toc/}}
5 +{{/box}}
4 4  
5 5  {{toc/}}
6 6  
... ... @@ -12,25 +12,15 @@
12 12  == 1.1  What is LA66 LoRaWAN Module ==
13 13  
14 14  
15 -(((
16 16  (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
17 -)))
18 18  
19 -(((
20 20  (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
21 -)))
22 22  
23 -(((
24 24  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
25 -)))
26 26  
27 -(((
28 28  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
29 -)))
30 30  
31 -(((
32 32  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
33 -)))
34 34  
35 35  
36 36  == 1.2  Features ==
... ... @@ -46,7 +46,6 @@
46 46  * Ultra-long RF range
47 47  
48 48  
49 -
50 50  == 1.3  Specification ==
51 51  
52 52  * CPU: 32-bit 48 MHz
... ... @@ -68,7 +68,6 @@
68 68  * I/O Voltage: 3.3v
69 69  
70 70  
71 -
72 72  == 1.4  AT Command ==
73 73  
74 74  AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
... ... @@ -115,7 +115,6 @@
115 115  * Ultra-long RF range
116 116  
117 117  
118 -
119 119  == 2.3  Specification ==
120 120  
121 121  * CPU: 32-bit 48 MHz
... ... @@ -137,7 +137,6 @@
137 137  * I/O Voltage: 3.3v
138 138  
139 139  
140 -
141 141  == 2.4  Pin Mapping & LED ==
142 142  
143 143  
... ... @@ -163,9 +163,6 @@
163 163  1. Arduino
164 164  1. USB TO TTL Adapter
165 165  
166 -
167 -
168 -
169 169  [[image:image-20220602100052-2.png||height="385" width="600"]]
170 170  
171 171  
... ... @@ -177,11 +177,10 @@
177 177  
178 178  (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
179 179  
180 -(((
165 +
181 181  (% style="background-color:yellow" %)**GND  <-> GND
182 -TXD  <->  TXD
183 -RXD  <->  RXD**
184 -)))
167 +TXD  <->  TXD
168 +RXD  <->  RXD**
185 185  
186 186  
187 187  Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
... ... @@ -201,14 +201,11 @@
201 201  [[image:image-20220602102824-5.png||height="306" width="600"]]
202 202  
203 203  
204 -
205 205  ==== 2.  Press the RST switch once ====
206 206  
207 -
208 208  [[image:image-20220602104701-12.png||height="285" width="600"]]
209 209  
210 210  
211 -
212 212  ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
213 213  
214 214  
... ... @@ -250,7 +250,6 @@
250 250  [[image:image-20220602104923-13.png]]
251 251  
252 252  
253 -
254 254  (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
255 255  (% style="color:blue" %)**5. Check update process**
256 256  
... ... @@ -287,10 +287,8 @@
287 287  * AT Command via UART-TTL interface
288 288  * Firmware upgradable via UART interface
289 289  
270 +== Specification ==
290 290  
291 -
292 -== 3.3  Specification ==
293 -
294 294  * CPU: 32-bit 48 MHz
295 295  * Flash: 256KB
296 296  * RAM: 64KB
... ... @@ -307,24 +307,16 @@
307 307  * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
308 308  * LoRa Rx current: <9 mA
309 309  
288 +== Pin Mapping & LED ==
310 310  
290 +== Example Send & Get Messages via LoRaWAN in PC ==
311 311  
312 -== 3.4  Pin Mapping & LED ==
313 -
314 -
315 -
316 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
317 -
318 -
319 319  Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
320 320  
294 +~1. Connect the LA66 USB LoRaWAN adapter to PC
321 321  
322 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
323 -
324 -
325 325  [[image:image-20220602171217-1.png||height="538" width="800"]]
326 326  
327 -
328 328  Open the serial port tool
329 329  
330 330  [[image:image-20220602161617-8.png]]
... ... @@ -332,75 +332,67 @@
332 332  [[image:image-20220602161718-9.png||height="457" width="800"]]
333 333  
334 334  
305 +2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.
335 335  
336 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
337 -
338 338  The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
339 339  
340 -
341 341  [[image:image-20220602161935-10.png||height="498" width="800"]]
342 342  
343 343  
312 +3. See Uplink Command
344 344  
345 -(% style="color:blue" %)**3. See Uplink Command**
314 +Command format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
346 346  
347 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
348 -
349 349  example: AT+SENDB=01,02,8,05820802581ea0a5
350 350  
351 351  [[image:image-20220602162157-11.png||height="497" width="800"]]
352 352  
353 353  
321 +4. Check to see if TTN received the message
354 354  
355 -(% style="color:blue" %)**4. Check to see if TTN received the message**
356 -
357 357  [[image:image-20220602162331-12.png||height="420" width="800"]]
358 358  
359 359  
360 360  
361 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
327 +== Example:Send PC's CPU/RAM usage to TTN via python ==
362 362  
363 -
329 +(% class="wikigeneratedid" id="HUsepythonasanexampleFF1A" %)
364 364  **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
365 365  
332 +(% class="wikigeneratedid" id="HPreconditions:" %)
333 +**Preconditions:**
366 366  
367 -(% style="color:red" %)**Preconditions:**
335 +1.LA66 USB LoRaWAN Adapter works fine
368 368  
369 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
337 +2.LA66 USB LoRaWAN Adapter  is registered with TTN
370 370  
371 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
339 +(% class="wikigeneratedid" id="HStepsforusage" %)
340 +**Steps for usage**
372 372  
342 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
373 373  
344 +2.Run the python script in PC and see the TTN
374 374  
375 -(% style="color:blue" %)**Steps for usage:**
376 -
377 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
378 -
379 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
380 -
381 381  [[image:image-20220602115852-3.png||height="450" width="1187"]]
382 382  
383 383  
384 384  
385 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
350 +== Example Send & Get Messages via LoRaWAN in RPi ==
386 386  
387 -
388 388  Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
389 389  
354 +~1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi
390 390  
391 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
392 -
393 393  [[image:image-20220602171233-2.png||height="538" width="800"]]
394 394  
395 395  
359 +2. Install Minicom in RPi.
396 396  
397 -(% style="color:blue" %)**2. Install Minicom in RPi.**
398 -
399 399  (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
400 400  
401 - (% style="background-color:yellow" %)**apt update**
363 +(% class="mark" %)apt update
402 402  
403 - (% style="background-color:yellow" %)**apt install minicom**
365 +(% class="mark" %)apt install minicom
404 404  
405 405  
406 406  Use minicom to connect to the RPI's terminal
... ... @@ -408,27 +408,20 @@
408 408  [[image:image-20220602153146-3.png||height="439" width="500"]]
409 409  
410 410  
373 +3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.
374 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network
411 411  
412 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
413 -
414 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
415 -
416 -
417 417  [[image:image-20220602154928-5.png||height="436" width="500"]]
418 418  
419 419  
379 +4. Send Uplink message
420 420  
421 -(% style="color:blue" %)**4. Send Uplink message**
381 +Format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
422 422  
423 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
424 -
425 425  example: AT+SENDB=01,02,8,05820802581ea0a5
426 426  
427 -
428 428  [[image:image-20220602160339-6.png||height="517" width="600"]]
429 429  
430 -
431 -
432 432  Check to see if TTN received the message
433 433  
434 434  [[image:image-20220602160627-7.png||height="369" width="800"]]
... ... @@ -435,37 +435,33 @@
435 435  
436 436  
437 437  
438 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
393 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
439 439  
440 440  
396 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
441 441  
442 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
443 443  
444 444  
400 += Order Info =
445 445  
402 +Part Number:
446 446  
447 -= 4.  Order Info =
404 +**LA66-XXX**, **LA66-LoRaWAN-Shield-XXX** or **LA66-USB-LoRaWAN-Adapter-XXX**
448 448  
406 +**XXX**: The default frequency band
449 449  
450 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
408 +* **AS923**: LoRaWAN AS923 band
409 +* **AU915**: LoRaWAN AU915 band
410 +* **EU433**: LoRaWAN EU433 band
411 +* **EU868**: LoRaWAN EU868 band
412 +* **KR920**: LoRaWAN KR920 band
413 +* **US915**: LoRaWAN US915 band
414 +* **IN865**: LoRaWAN IN865 band
415 +* **CN470**: LoRaWAN CN470 band
416 +* **PP**: Peer to Peer LoRa Protocol
451 451  
418 += Reference =
452 452  
453 -(% style="color:blue" %)**XXX**(%%): The default frequency band
454 -
455 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
456 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
457 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
458 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
459 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
460 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
461 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
462 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
463 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
464 -
465 -
466 -
467 -= 5.  Reference =
468 -
469 469  * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
470 470  
471 471  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0