Changes for page LA66 LoRaWAN Shield User Manual
Last modified by Xiaoling on 2023/05/26 14:19
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,6 +1,8 @@ 1 1 2 2 3 -**Table of Contents:** 3 +{{box cssClass="floatinginfobox" title="**Contents**"}} 4 +{{toc/}} 5 +{{/box}} 4 4 5 5 {{toc/}} 6 6 ... ... @@ -12,25 +12,15 @@ 12 12 == 1.1 What is LA66 LoRaWAN Module == 13 13 14 14 15 -((( 16 16 (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere. 17 -))) 18 18 19 -((( 20 20 (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol. 21 -))) 22 22 23 -((( 24 24 Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration. 25 -))) 26 26 27 -((( 28 28 Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application. 29 -))) 30 30 31 -((( 32 32 LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures. 33 -))) 34 34 35 35 36 36 == 1.2 Features == ... ... @@ -46,7 +46,6 @@ 46 46 * Ultra-long RF range 47 47 48 48 49 - 50 50 == 1.3 Specification == 51 51 52 52 * CPU: 32-bit 48 MHz ... ... @@ -68,7 +68,6 @@ 68 68 * I/O Voltage: 3.3v 69 69 70 70 71 - 72 72 == 1.4 AT Command == 73 73 74 74 AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents. ... ... @@ -115,7 +115,6 @@ 115 115 * Ultra-long RF range 116 116 117 117 118 - 119 119 == 2.3 Specification == 120 120 121 121 * CPU: 32-bit 48 MHz ... ... @@ -137,7 +137,6 @@ 137 137 * I/O Voltage: 3.3v 138 138 139 139 140 - 141 141 == 2.4 Pin Mapping & LED == 142 142 143 143 ... ... @@ -163,9 +163,6 @@ 163 163 1. Arduino 164 164 1. USB TO TTL Adapter 165 165 166 - 167 - 168 - 169 169 [[image:image-20220602100052-2.png||height="385" width="600"]] 170 170 171 171 ... ... @@ -177,9 +177,10 @@ 177 177 178 178 (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) **<->** (% style="color:blue" %)**USB TTL** 179 179 165 + 180 180 (% style="background-color:yellow" %)**GND <-> GND 181 -TXD 182 -RXD 167 +TXD <-> TXD 168 +RXD <-> RXD** 183 183 184 184 185 185 Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module) ... ... @@ -199,14 +199,11 @@ 199 199 [[image:image-20220602102824-5.png||height="306" width="600"]] 200 200 201 201 202 - 203 203 ==== 2. Press the RST switch once ==== 204 204 205 - 206 206 [[image:image-20220602104701-12.png||height="285" width="600"]] 207 207 208 208 209 - 210 210 ==== 3. Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ==== 211 211 212 212 ... ... @@ -248,7 +248,6 @@ 248 248 [[image:image-20220602104923-13.png]] 249 249 250 250 251 - 252 252 (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %) 253 253 (% style="color:blue" %)**5. Check update process** 254 254 ... ... @@ -285,10 +285,8 @@ 285 285 * AT Command via UART-TTL interface 286 286 * Firmware upgradable via UART interface 287 287 270 +== Specification == 288 288 289 - 290 -== 3.3 Specification == 291 - 292 292 * CPU: 32-bit 48 MHz 293 293 * Flash: 256KB 294 294 * RAM: 64KB ... ... @@ -305,24 +305,16 @@ 305 305 * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm 306 306 * LoRa Rx current: <9 mA 307 307 288 +== Pin Mapping & LED == 308 308 290 +== Example Send & Get Messages via LoRaWAN in PC == 309 309 310 -== 3.4 Pin Mapping & LED == 311 - 312 - 313 - 314 -== 3.5 Example: Send & Get Messages via LoRaWAN in PC == 315 - 316 - 317 317 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage. 318 318 294 +~1. Connect the LA66 USB LoRaWAN adapter to PC 319 319 320 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC** 321 - 322 - 323 323 [[image:image-20220602171217-1.png||height="538" width="800"]] 324 324 325 - 326 326 Open the serial port tool 327 327 328 328 [[image:image-20220602161617-8.png]] ... ... @@ -330,75 +330,67 @@ 330 330 [[image:image-20220602161718-9.png||height="457" width="800"]] 331 331 332 332 305 +2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it. 333 333 334 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.** 335 - 336 336 The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network 337 337 338 - 339 339 [[image:image-20220602161935-10.png||height="498" width="800"]] 340 340 341 341 312 +3. See Uplink Command 342 342 343 - (%style="color:blue"%)**3.See Uplink Command**314 +Command format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data> 344 344 345 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>** 346 - 347 347 example: AT+SENDB=01,02,8,05820802581ea0a5 348 348 349 349 [[image:image-20220602162157-11.png||height="497" width="800"]] 350 350 351 351 321 +4. Check to see if TTN received the message 352 352 353 -(% style="color:blue" %)**4. Check to see if TTN received the message** 354 - 355 355 [[image:image-20220602162331-12.png||height="420" width="800"]] 356 356 357 357 358 358 359 -== 3.6Example:327 +== Example:Send PC's CPU/RAM usage to TTN via python == 360 360 361 - 329 +(% class="wikigeneratedid" id="HUsepythonasanexampleFF1A" %) 362 362 **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]] 363 363 332 +(% class="wikigeneratedid" id="HPreconditions:" %) 333 +**Preconditions:** 364 364 365 - (%style="color:red"%)**Preconditions:**335 +1.LA66 USB LoRaWAN Adapter works fine 366 366 367 - (% style="color:red" %)**1.worksfine**337 +2.LA66 USB LoRaWAN Adapter is registered with TTN 368 368 369 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter is registered with TTN** 339 +(% class="wikigeneratedid" id="HStepsforusage" %) 340 +**Steps for usage** 370 370 342 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter 371 371 344 +2.Run the python script in PC and see the TTN 372 372 373 -(% style="color:blue" %)**Steps for usage:** 374 - 375 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter 376 - 377 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN 378 - 379 379 [[image:image-20220602115852-3.png||height="450" width="1187"]] 380 380 381 381 382 382 383 -== 3.7Example:Send & Get Messages via LoRaWAN in RPi ==350 +== Example Send & Get Messages via LoRaWAN in RPi == 384 384 385 - 386 386 Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage. 387 387 354 +~1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi 388 388 389 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi** 390 - 391 391 [[image:image-20220602171233-2.png||height="538" width="800"]] 392 392 393 393 359 +2. Install Minicom in RPi. 394 394 395 -(% style="color:blue" %)**2. Install Minicom in RPi.** 396 - 397 397 (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal 398 398 399 - style="background-color:yellow" %)**apt update**363 +(% class="mark" %)apt update 400 400 401 - style="background-color:yellow" %)**apt install minicom**365 +(% class="mark" %)apt install minicom 402 402 403 403 404 404 Use minicom to connect to the RPI's terminal ... ... @@ -406,27 +406,20 @@ 406 406 [[image:image-20220602153146-3.png||height="439" width="500"]] 407 407 408 408 373 +3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter. 374 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network 409 409 410 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.** 411 - 412 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network. 413 - 414 - 415 415 [[image:image-20220602154928-5.png||height="436" width="500"]] 416 416 417 417 379 +4. Send Uplink message 418 418 419 - (% style="color:blue"%)**4.Send Uplink message**381 +Format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data> 420 420 421 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>** 422 - 423 423 example: AT+SENDB=01,02,8,05820802581ea0a5 424 424 425 - 426 426 [[image:image-20220602160339-6.png||height="517" width="600"]] 427 427 428 - 429 - 430 430 Check to see if TTN received the message 431 431 432 432 [[image:image-20220602160627-7.png||height="369" width="800"]] ... ... @@ -433,37 +433,33 @@ 433 433 434 434 435 435 436 -== 3.8Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==393 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. == 437 437 438 438 396 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter == 439 439 440 -== 3.9 Upgrade Firmware of LA66 USB LoRaWAN Adapter == 441 441 442 442 400 += Order Info = 443 443 402 +Part Number: 444 444 445 - =4.OrderInfo =404 +**LA66-XXX**, **LA66-LoRaWAN-Shield-XXX** or **LA66-USB-LoRaWAN-Adapter-XXX** 446 446 406 +**XXX**: The default frequency band 447 447 448 -**Part Number:** (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or** (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX** 408 +* **AS923**: LoRaWAN AS923 band 409 +* **AU915**: LoRaWAN AU915 band 410 +* **EU433**: LoRaWAN EU433 band 411 +* **EU868**: LoRaWAN EU868 band 412 +* **KR920**: LoRaWAN KR920 band 413 +* **US915**: LoRaWAN US915 band 414 +* **IN865**: LoRaWAN IN865 band 415 +* **CN470**: LoRaWAN CN470 band 416 +* **PP**: Peer to Peer LoRa Protocol 449 449 418 += Reference = 450 450 451 -(% style="color:blue" %)**XXX**(%%): The default frequency band 452 - 453 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 454 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 455 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 456 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 457 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 458 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 459 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 460 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 461 -* (% style="color:red" %)**PP**(%%): Peer to Peer LoRa Protocol 462 - 463 - 464 - 465 -= 5. Reference = 466 - 467 467 * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]] 468 468 469 469