<
From version < 87.15 >
edited by Xiaoling
on 2022/07/13 10:09
To version < 87.2 >
edited by Xiaoling
on 2022/07/13 09:34
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,6 +1,8 @@
1 1  
2 2  
3 -**Table of Contents:**
3 +{{box cssClass="floatinginfobox" title="**Contents**"}}
4 +{{toc/}}
5 +{{/box}}
4 4  
5 5  {{toc/}}
6 6  
... ... @@ -12,25 +12,15 @@
12 12  == 1.1  What is LA66 LoRaWAN Module ==
13 13  
14 14  
15 -(((
16 16  (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
17 -)))
18 18  
19 -(((
20 20  (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
21 -)))
22 22  
23 -(((
24 24  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
25 -)))
26 26  
27 -(((
28 28  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
29 -)))
30 30  
31 -(((
32 32  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
33 -)))
34 34  
35 35  
36 36  == 1.2  Features ==
... ... @@ -46,7 +46,6 @@
46 46  * Ultra-long RF range
47 47  
48 48  
49 -
50 50  == 1.3  Specification ==
51 51  
52 52  * CPU: 32-bit 48 MHz
... ... @@ -68,7 +68,6 @@
68 68  * I/O Voltage: 3.3v
69 69  
70 70  
71 -
72 72  == 1.4  AT Command ==
73 73  
74 74  AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
... ... @@ -115,7 +115,6 @@
115 115  * Ultra-long RF range
116 116  
117 117  
118 -
119 119  == 2.3  Specification ==
120 120  
121 121  * CPU: 32-bit 48 MHz
... ... @@ -137,7 +137,6 @@
137 137  * I/O Voltage: 3.3v
138 138  
139 139  
140 -
141 141  == 2.4  Pin Mapping & LED ==
142 142  
143 143  
... ... @@ -163,9 +163,6 @@
163 163  1. Arduino
164 164  1. USB TO TTL Adapter
165 165  
166 -
167 -
168 -
169 169  [[image:image-20220602100052-2.png||height="385" width="600"]]
170 170  
171 171  
... ... @@ -177,9 +177,10 @@
177 177  
178 178  (% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
179 179  
165 +
180 180  (% style="background-color:yellow" %)**GND  <-> GND
181 -TXD  <->  TXD
182 -RXD  <->  RXD**
167 +TXD  <->  TXD
168 +RXD  <->  RXD**
183 183  
184 184  
185 185  Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
... ... @@ -199,14 +199,11 @@
199 199  [[image:image-20220602102824-5.png||height="306" width="600"]]
200 200  
201 201  
202 -
203 203  ==== 2.  Press the RST switch once ====
204 204  
205 -
206 206  [[image:image-20220602104701-12.png||height="285" width="600"]]
207 207  
208 208  
209 -
210 210  ==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
211 211  
212 212  
... ... @@ -248,7 +248,6 @@
248 248  [[image:image-20220602104923-13.png]]
249 249  
250 250  
251 -
252 252  (% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
253 253  (% style="color:blue" %)**5. Check update process**
254 254  
... ... @@ -285,10 +285,8 @@
285 285  * AT Command via UART-TTL interface
286 286  * Firmware upgradable via UART interface
287 287  
270 +== Specification ==
288 288  
289 -
290 -== 3.3  Specification ==
291 -
292 292  * CPU: 32-bit 48 MHz
293 293  * Flash: 256KB
294 294  * RAM: 64KB
... ... @@ -305,24 +305,16 @@
305 305  * LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
306 306  * LoRa Rx current: <9 mA
307 307  
288 +== Pin Mapping & LED ==
308 308  
290 +== Example Send & Get Messages via LoRaWAN in PC ==
309 309  
310 -== 3.4  Pin Mapping & LED ==
311 -
312 -
313 -
314 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
315 -
316 -
317 317  Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
318 318  
294 +~1. Connect the LA66 USB LoRaWAN adapter to PC
319 319  
320 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
321 -
322 -
323 323  [[image:image-20220602171217-1.png||height="538" width="800"]]
324 324  
325 -
326 326  Open the serial port tool
327 327  
328 328  [[image:image-20220602161617-8.png]]
... ... @@ -330,75 +330,67 @@
330 330  [[image:image-20220602161718-9.png||height="457" width="800"]]
331 331  
332 332  
305 +2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.
333 333  
334 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
335 -
336 336  The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
337 337  
338 -
339 339  [[image:image-20220602161935-10.png||height="498" width="800"]]
340 340  
341 341  
312 +3. See Uplink Command
342 342  
343 -(% style="color:blue" %)**3. See Uplink Command**
314 +Command format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
344 344  
345 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
346 -
347 347  example: AT+SENDB=01,02,8,05820802581ea0a5
348 348  
349 349  [[image:image-20220602162157-11.png||height="497" width="800"]]
350 350  
351 351  
321 +4. Check to see if TTN received the message
352 352  
353 -(% style="color:blue" %)**4. Check to see if TTN received the message**
354 -
355 355  [[image:image-20220602162331-12.png||height="420" width="800"]]
356 356  
357 357  
358 358  
359 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
327 +== Example:Send PC's CPU/RAM usage to TTN via python ==
360 360  
361 -
329 +(% class="wikigeneratedid" id="HUsepythonasanexampleFF1A" %)
362 362  **Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
363 363  
332 +(% class="wikigeneratedid" id="HPreconditions:" %)
333 +**Preconditions:**
364 364  
365 -(% style="color:red" %)**Preconditions:**
335 +1.LA66 USB LoRaWAN Adapter works fine
366 366  
367 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
337 +2.LA66 USB LoRaWAN Adapter  is registered with TTN
368 368  
369 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
339 +(% class="wikigeneratedid" id="HStepsforusage" %)
340 +**Steps for usage**
370 370  
342 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
371 371  
344 +2.Run the python script in PC and see the TTN
372 372  
373 -(% style="color:blue" %)**Steps for usage:**
374 -
375 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
376 -
377 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
378 -
379 379  [[image:image-20220602115852-3.png||height="450" width="1187"]]
380 380  
381 381  
382 382  
383 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
350 +== Example Send & Get Messages via LoRaWAN in RPi ==
384 384  
385 -
386 386  Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
387 387  
354 +~1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi
388 388  
389 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
390 -
391 391  [[image:image-20220602171233-2.png||height="538" width="800"]]
392 392  
393 393  
359 +2. Install Minicom in RPi.
394 394  
395 -(% style="color:blue" %)**2. Install Minicom in RPi.**
396 -
397 397  (% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
398 398  
399 - (% style="background-color:yellow" %)**apt update**
363 +(% class="mark" %)apt update
400 400  
401 - (% style="background-color:yellow" %)**apt install minicom**
365 +(% class="mark" %)apt install minicom
402 402  
403 403  
404 404  Use minicom to connect to the RPI's terminal
... ... @@ -406,27 +406,20 @@
406 406  [[image:image-20220602153146-3.png||height="439" width="500"]]
407 407  
408 408  
373 +3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.
374 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network
409 409  
410 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
411 -
412 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
413 -
414 -
415 415  [[image:image-20220602154928-5.png||height="436" width="500"]]
416 416  
417 417  
379 +4. Send Uplink message
418 418  
419 -(% style="color:blue" %)**4. Send Uplink message**
381 +Format: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
420 420  
421 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
422 -
423 423  example: AT+SENDB=01,02,8,05820802581ea0a5
424 424  
425 -
426 426  [[image:image-20220602160339-6.png||height="517" width="600"]]
427 427  
428 -
429 -
430 430  Check to see if TTN received the message
431 431  
432 432  [[image:image-20220602160627-7.png||height="369" width="800"]]
... ... @@ -433,37 +433,33 @@
433 433  
434 434  
435 435  
436 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
393 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
437 437  
438 438  
396 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
439 439  
440 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
441 441  
442 442  
400 += Order Info =
443 443  
402 +Part Number:
444 444  
445 -= 4.  Order Info =
404 +**LA66-XXX**, **LA66-LoRaWAN-Shield-XXX** or **LA66-USB-LoRaWAN-Adapter-XXX**
446 446  
406 +**XXX**: The default frequency band
447 447  
448 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
408 +* **AS923**: LoRaWAN AS923 band
409 +* **AU915**: LoRaWAN AU915 band
410 +* **EU433**: LoRaWAN EU433 band
411 +* **EU868**: LoRaWAN EU868 band
412 +* **KR920**: LoRaWAN KR920 band
413 +* **US915**: LoRaWAN US915 band
414 +* **IN865**: LoRaWAN IN865 band
415 +* **CN470**: LoRaWAN CN470 band
416 +* **PP**: Peer to Peer LoRa Protocol
449 449  
418 += Reference =
450 450  
451 -(% style="color:blue" %)**XXX**(%%): The default frequency band
452 -
453 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
454 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
455 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
456 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
457 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
458 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
459 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
460 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
461 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
462 -
463 -
464 -
465 -= 5.  Reference =
466 -
467 467  * Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
468 468  
469 469  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0