<
From version < 87.10 >
edited by Xiaoling
on 2022/07/13 10:03
To version < 64.1 >
edited by Edwin Chen
on 2022/07/02 21:03
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,453 +1,263 @@
1 -
2 -
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
3 3  {{toc/}}
3 +{{/box}}
4 4  
5 += LA66 LoRaWAN Module =
5 5  
7 +== What is LA66 LoRaWAN Module ==
6 6  
7 -= 1.  LA66 LoRaWAN Module =
9 +**Dragino LA66** is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
8 8  
11 +**LA66 **is a ready-to-use module that includes the LoRaWAN v1.0.4 protocol. The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk for developers to make a LoRaWAN End device. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
9 9  
10 -== 1.1  What is LA66 LoRaWAN Module ==
11 11  
14 +LA66 is equipped with **TCXO crystal** which ensures the module can achieve the stable performance in extreme temperatures.
12 12  
13 -(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
14 14  
15 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
17 +**Each LA66 **module includes a world-unique OTAA key for LoRaWAN registration.
16 16  
17 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
18 18  
19 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
20 20  
21 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
21 +== Specification ==
22 22  
23 +[[image:image-20220517072526-1.png]]
23 23  
24 -== 1.2  Features ==
25 +Input Power Range: 1.8v ~~ 3.7v
25 25  
26 -* Support LoRaWAN v1.0.4 protocol
27 -* Support peer-to-peer protocol
28 -* TCXO crystal to ensure RF performance on low temperature
29 -* SMD Antenna pad and i-pex antenna connector
30 -* Available in different frequency LoRaWAN frequency bands.
31 -* World-wide unique OTAA keys.
32 -* AT Command via UART-TTL interface
33 -* Firmware upgradable via UART interface
34 -* Ultra-long RF range
27 +Power Consumption: < 4uA.
35 35  
29 +Frequency Range: 150 MHz ~~ 960 MHz
36 36  
31 +Maximum Power +22 dBm constant RF output
37 37  
38 -== 1.3  Specification ==
33 +High sensitivity: -148 dBm
39 39  
40 -* CPU: 32-bit 48 MHz
41 -* Flash: 256KB
42 -* RAM: 64KB
43 -* Input Power Range: 1.8v ~~ 3.7v
44 -* Power Consumption: < 4uA.
45 -* Frequency Range: 150 MHz ~~ 960 MHz
46 -* Maximum Power +22 dBm constant RF output
47 -* High sensitivity: -148 dBm
48 -* Temperature:
49 -** Storage: -55 ~~ +125℃
50 -** Operating: -40 ~~ +85℃
51 -* Humidity:
52 -** Storage: 5 ~~ 95% (Non-Condensing)
53 -** Operating: 10 ~~ 95% (Non-Condensing)
54 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
55 -* LoRa Rx current: <9 mA
56 -* I/O Voltage: 3.3v
35 +Temperature:
57 57  
37 +* Storage: -55 ~~ +125℃
38 +* Operating: -40 ~~ +85℃
58 58  
40 +Humidity:
59 59  
60 -== 1.4  AT Command ==
42 +* Storage: 5 ~~ 95% (Non-Condensing)
43 +* Operating: 10 ~~ 95% (Non-Condensing)
61 61  
62 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
45 +LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
63 63  
47 +LoRa Rx current: <9 mA
64 64  
65 -== 1.5  Dimension ==
49 +I/O Voltage: 3.3v
66 66  
67 -[[image:image-20220517072526-1.png]]
68 68  
52 +== AT Command ==
69 69  
54 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
70 70  
71 -== 1.6  Pin Mapping ==
72 72  
57 +== Pin Mapping ==
73 73  
74 74  [[image:image-20220523101537-1.png]]
75 75  
61 +== Land Pattern ==
76 76  
77 -
78 -== 1.7  Land Pattern ==
79 -
80 80  [[image:image-20220517072821-2.png]]
81 81  
82 82  
66 +== Part Number ==
83 83  
84 -= 2.  LA66 LoRaWAN Shield =
68 +Part Number: **LA66-XXX**
85 85  
70 +**XX**: The default frequency band
86 86  
87 -== 2.1  Overview ==
72 +* **AS923**: LoRaWAN AS923 band
73 +* **AU915**: LoRaWAN AU915 band
74 +* **EU433**: LoRaWAN EU433 band
75 +* **EU868**: LoRaWAN EU868 band
76 +* **KR920**: LoRaWAN KR920 band
77 +* **US915**: LoRaWAN US915 band
78 +* **IN865**: LoRaWAN IN865 band
79 +* **CN470**: LoRaWAN CN470 band
88 88  
89 -LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
81 += LA66 LoRaWAN Shield =
90 90  
83 +LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
91 91  
92 -== 2.2  Features ==
85 +== Pin Mapping & LED ==
93 93  
94 -* Arduino Shield base on LA66 LoRaWAN module
95 -* Support LoRaWAN v1.0.4 protocol
96 -* Support peer-to-peer protocol
97 -* TCXO crystal to ensure RF performance on low temperature
98 -* SMA connector
99 -* Available in different frequency LoRaWAN frequency bands.
100 -* World-wide unique OTAA keys.
101 -* AT Command via UART-TTL interface
102 -* Firmware upgradable via UART interface
103 -* Ultra-long RF range
87 +== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
104 104  
89 +== Example: Join TTN network and send an uplink message, get downlink message. ==
105 105  
91 +== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
106 106  
107 -== 2.3  Specification ==
93 +== Upgrade Firmware of LA66 LoRaWAN Shield ==
108 108  
109 -* CPU: 32-bit 48 MHz
110 -* Flash: 256KB
111 -* RAM: 64KB
112 -* Input Power Range: 1.8v ~~ 3.7v
113 -* Power Consumption: < 4uA.
114 -* Frequency Range: 150 MHz ~~ 960 MHz
115 -* Maximum Power +22 dBm constant RF output
116 -* High sensitivity: -148 dBm
117 -* Temperature:
118 -** Storage: -55 ~~ +125℃
119 -** Operating: -40 ~~ +85℃
120 -* Humidity:
121 -** Storage: 5 ~~ 95% (Non-Condensing)
122 -** Operating: 10 ~~ 95% (Non-Condensing)
123 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
124 -* LoRa Rx current: <9 mA
125 -* I/O Voltage: 3.3v
95 +=== what needs to be used ===
126 126  
97 +1.LA66 LoRaWAN Shield that needs to be upgraded
127 127  
99 +2.Arduino
128 128  
129 -== 2. Pin Mapping & LED ==
101 +3.USB TO TTL
130 130  
103 +[[image:image-20220602100052-2.png]]
131 131  
105 +=== Wiring Schematic ===
132 132  
133 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
107 +[[image:image-20220602101311-3.png]]
134 134  
109 +LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
135 135  
111 +GND  >>>>>>>>>>>>GND
136 136  
137 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
113 +TXD  >>>>>>>>>>>>TXD
138 138  
115 +RXD  >>>>>>>>>>>>RXD
139 139  
117 +JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
140 140  
141 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
119 +Connect to the PC after connecting the wires
142 142  
121 +[[image:image-20220602102240-4.png]]
143 143  
123 +=== Upgrade steps ===
144 144  
145 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
125 +==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
146 146  
127 +[[image:image-20220602102824-5.png]]
147 147  
148 -=== 2.8.1  Items needed for update ===
129 +==== Press the RST switch on the LA66 LoRaWAN Shield once ====
149 149  
150 -1. LA66 LoRaWAN Shield
151 -1. Arduino
152 -1. USB TO TTL Adapter
131 +[[image:image-20220602104701-12.png]]
153 153  
154 -[[image:image-20220602100052-2.png||height="385" width="600"]]
133 +==== Open the upgrade application software ====
155 155  
135 +Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
156 156  
157 -=== 2.8.2  Connection ===
158 -
159 -
160 -[[image:image-20220602101311-3.png||height="276" width="600"]]
161 -
162 -
163 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
164 -
165 -(% style="background-color:yellow" %)**GND  <-> GND
166 -TXD  <->  TXD
167 -RXD  <->  RXD**
168 -
169 -
170 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
171 -
172 -Connect USB TTL Adapter to PC after connecting the wires
173 -
174 -
175 -[[image:image-20220602102240-4.png||height="304" width="600"]]
176 -
177 -
178 -=== 2.8.3  Upgrade steps ===
179 -
180 -
181 -==== 1.  Switch SW1 to put in ISP position ====
182 -
183 -
184 -[[image:image-20220602102824-5.png||height="306" width="600"]]
185 -
186 -
187 -
188 -==== 2.  Press the RST switch once ====
189 -
190 -
191 -[[image:image-20220602104701-12.png||height="285" width="600"]]
192 -
193 -
194 -
195 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
196 -
197 -
198 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
199 -
200 -
201 201  [[image:image-20220602103227-6.png]]
202 202  
203 -
204 204  [[image:image-20220602103357-7.png]]
205 205  
141 +===== Select the COM port corresponding to USB TTL =====
206 206  
207 -
208 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
209 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
210 -
211 -
212 212  [[image:image-20220602103844-8.png]]
213 213  
145 +===== Select the bin file to burn =====
214 214  
215 -
216 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
217 -(% style="color:blue" %)**3. Select the bin file to burn**
218 -
219 -
220 220  [[image:image-20220602104144-9.png]]
221 221  
222 -
223 223  [[image:image-20220602104251-10.png]]
224 224  
225 -
226 226  [[image:image-20220602104402-11.png]]
227 227  
153 +===== Click to start the download =====
228 228  
229 -
230 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
231 -(% style="color:blue" %)**4. Click to start the download**
232 -
233 233  [[image:image-20220602104923-13.png]]
234 234  
157 +===== The following figure appears to prove that the burning is in progress =====
235 235  
236 -
237 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
238 -(% style="color:blue" %)**5. Check update process**
239 -
240 -
241 241  [[image:image-20220602104948-14.png]]
242 242  
161 +===== The following picture appears to prove that the burning is successful =====
243 243  
244 -
245 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
246 -(% style="color:blue" %)**The following picture shows that the burning is successful**
247 -
248 248  [[image:image-20220602105251-15.png]]
249 249  
165 += LA66 USB LoRaWAN Adapter =
250 250  
167 +LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
251 251  
252 -= 3.  LA66 USB LoRaWAN Adapter =
169 +Before use, please make sure that the computer has installed the CP2102 driver
253 253  
171 +== Pin Mapping & LED ==
254 254  
255 -== 3.1  Overview ==
173 +== Example Send & Get Messages via LoRaWAN in PC ==
256 256  
257 -LA66 USB LoRaWAN Adapter is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
175 +Connect the LA66 LoRa Shield to the PC
258 258  
177 +[[image:image-20220602171217-1.png||height="615" width="915"]]
259 259  
260 -== 3.2  Features ==
261 -
262 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
263 -* Ultra-long RF range
264 -* Support LoRaWAN v1.0.4 protocol
265 -* Support peer-to-peer protocol
266 -* TCXO crystal to ensure RF performance on low temperature
267 -* Spring RF antenna
268 -* Available in different frequency LoRaWAN frequency bands.
269 -* World-wide unique OTAA keys.
270 -* AT Command via UART-TTL interface
271 -* Firmware upgradable via UART interface
272 -
273 -
274 -
275 -== 3.3  Specification ==
276 -
277 -* CPU: 32-bit 48 MHz
278 -* Flash: 256KB
279 -* RAM: 64KB
280 -* Input Power Range: 5v
281 -* Frequency Range: 150 MHz ~~ 960 MHz
282 -* Maximum Power +22 dBm constant RF output
283 -* High sensitivity: -148 dBm
284 -* Temperature:
285 -** Storage: -55 ~~ +125℃
286 -** Operating: -40 ~~ +85℃
287 -* Humidity:
288 -** Storage: 5 ~~ 95% (Non-Condensing)
289 -** Operating: 10 ~~ 95% (Non-Condensing)
290 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
291 -* LoRa Rx current: <9 mA
292 -
293 -
294 -
295 -== 3.4  Pin Mapping & LED ==
296 -
297 -
298 -
299 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
300 -
301 -
302 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
303 -
304 -
305 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
306 -
307 -
308 -[[image:image-20220602171217-1.png||height="538" width="800"]]
309 -
310 -
311 311  Open the serial port tool
312 312  
313 313  [[image:image-20220602161617-8.png]]
314 314  
315 -[[image:image-20220602161718-9.png||height="457" width="800"]]
183 +[[image:image-20220602161718-9.png||height="529" width="927"]]
316 316  
185 +Press the reset switch RST on the LA66 LoRa Shield.
317 317  
187 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
318 318  
319 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
189 +[[image:image-20220602161935-10.png]]
320 320  
321 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
191 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
322 322  
323 -
324 -[[image:image-20220602161935-10.png||height="498" width="800"]]
325 -
326 -
327 -
328 -(% style="color:blue" %)**3. See Uplink Command**
329 -
330 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
331 -
332 332  example: AT+SENDB=01,02,8,05820802581ea0a5
333 333  
334 -[[image:image-20220602162157-11.png||height="497" width="800"]]
195 +[[image:image-20220602162157-11.png]]
335 335  
197 +Check to see if TTN received the message
336 336  
199 +[[image:image-20220602162331-12.png||height="547" width="1044"]]
337 337  
338 -(% style="color:blue" %)**4. Check to see if TTN received the message**
201 +== Example Send & Get Messages via LoRaWAN in RPi ==
339 339  
340 -[[image:image-20220602162331-12.png||height="420" width="800"]]
203 +Connect the LA66 LoRa Shield to the RPI
341 341  
205 +[[image:image-20220602171233-2.png||height="592" width="881"]]
342 342  
207 +Log in to the RPI's terminal and connect to the serial port
343 343  
344 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
209 +[[image:image-20220602153146-3.png]]
345 345  
211 +Press the reset switch RST on the LA66 LoRa Shield.
212 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
346 346  
347 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
214 +[[image:image-20220602154928-5.png]]
348 348  
216 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
349 349  
350 -(% style="color:red" %)**Preconditions:**
351 -
352 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
353 -
354 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
355 -
356 -
357 -
358 -(% style="color:blue" %)**Steps for usage:**
359 -
360 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
361 -
362 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
363 -
364 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
365 -
366 -
367 -
368 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
369 -
370 -
371 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
372 -
373 -
374 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
375 -
376 -[[image:image-20220602171233-2.png||height="538" width="800"]]
377 -
378 -
379 -
380 -(% style="color:blue" %)**2. Install Minicom in RPi.**
381 -
382 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
383 -
384 - (% style="background-color:yellow" %)**apt update**
385 -
386 - (% style="background-color:yellow" %)**apt install minicom**
387 -
388 -
389 -Use minicom to connect to the RPI's terminal
390 -
391 -[[image:image-20220602153146-3.png||height="439" width="500"]]
392 -
393 -
394 -
395 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**(%%)
396 -(% style="color:blue" %)The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network
397 -
398 -[[image:image-20220602154928-5.png||height="436" width="500"]]
399 -
400 -
401 -
402 -(% style="color:blue" %)**4. Send Uplink message**
403 -
404 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
405 -
406 406  example: AT+SENDB=01,02,8,05820802581ea0a5
407 407  
220 +[[image:image-20220602160339-6.png]]
408 408  
409 -[[image:image-20220602160339-6.png||height="517" width="600"]]
410 -
411 -
412 -
413 413  Check to see if TTN received the message
414 414  
415 -[[image:image-20220602160627-7.png||height="369" width="800"]]
224 +[[image:image-20220602160627-7.png||height="468" width="1013"]]
416 416  
226 +=== Install Minicom ===
417 417  
228 +Enter the following command in the RPI terminal
418 418  
419 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
230 +apt update
420 420  
232 +[[image:image-20220602143155-1.png]]
421 421  
234 +apt install minicom
422 422  
423 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
236 +[[image:image-20220602143744-2.png]]
424 424  
238 +=== Send PC's CPU/RAM usage to TTN via script. ===
425 425  
240 +==== Take python as an example: ====
426 426  
242 +===== Preconditions: =====
427 427  
428 -= 4.  Order Info =
244 +1.LA66 USB LoRaWAN Adapter works fine
429 429  
246 +2.LA66 USB LoRaWAN Adapter  is registered with TTN
430 430  
431 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
248 +===== Steps for usage =====
432 432  
250 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
433 433  
434 -(% style="color:blue" %)**XXX**(%%): The default frequency band
252 +2.Run the script and see the TTN
435 435  
436 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
437 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
438 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
439 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
440 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
441 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
442 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
443 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
444 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
254 +[[image:image-20220602115852-3.png]]
445 445  
446 446  
447 447  
258 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
448 448  
449 -= 5.  Reference =
450 450  
451 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
261 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
452 452  
453 453  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0