<
From version < 67.1 >
edited by Edwin Chen
on 2022/07/02 23:33
To version < 103.1 >
edited by Herong Lu
on 2022/07/23 10:04
>
Change comment: Uploaded new attachment "image-20220723100439-2.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Lu
Content
... ... @@ -1,28 +1,74 @@
1 -{{box cssClass="floatinginfobox" title="**Contents**"}}
1 +
2 +
3 +**Table of Contents:**
4 +
2 2  {{toc/}}
3 -{{/box}}
4 4  
5 -= LA66 LoRaWAN Module =
6 6  
7 -== What is LA66 LoRaWAN Module ==
8 8  
9 += 1.  LA66 LoRaWAN Module =
10 +
11 +
12 +== 1.1  What is LA66 LoRaWAN Module ==
13 +
14 +
15 +(((
16 +(((
17 +[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 +)))
19 +
20 +(((
21 +
22 +)))
23 +
24 +(((
9 9  (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 +)))
27 +)))
10 10  
11 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
29 +(((
30 +(((
31 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 +)))
33 +)))
12 12  
35 +(((
36 +(((
13 13  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 +)))
14 14  
40 +(((
15 15  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 +)))
43 +)))
16 16  
45 +(((
46 +(((
17 17  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 +)))
49 +)))
18 18  
19 19  
20 -== Features ==
21 21  
53 +== 1.2  Features ==
22 22  
55 +* Support LoRaWAN v1.0.4 protocol
56 +* Support peer-to-peer protocol
57 +* TCXO crystal to ensure RF performance on low temperature
58 +* SMD Antenna pad and i-pex antenna connector
59 +* Available in different frequency LoRaWAN frequency bands.
60 +* World-wide unique OTAA keys.
61 +* AT Command via UART-TTL interface
62 +* Firmware upgradable via UART interface
63 +* Ultra-long RF range
23 23  
24 -== Specification ==
25 25  
66 +
67 +== 1.3  Specification ==
68 +
69 +* CPU: 32-bit 48 MHz
70 +* Flash: 256KB
71 +* RAM: 64KB
26 26  * Input Power Range: 1.8v ~~ 3.7v
27 27  * Power Consumption: < 4uA.
28 28  * Frequency Range: 150 MHz ~~ 960 MHz
... ... @@ -38,220 +38,465 @@
38 38  * LoRa Rx current: <9 mA
39 39  * I/O Voltage: 3.3v
40 40  
41 -== AT Command ==
42 42  
88 +
89 +== 1.4  AT Command ==
90 +
91 +
43 43  AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
44 44  
45 45  
46 -== Dimension ==
47 47  
48 -[[image:image-20220517072526-1.png]]
96 +== 1.5  Dimension ==
49 49  
98 +[[image:image-20220718094750-3.png]]
50 50  
51 -== Pin Mapping ==
52 52  
53 -[[image:image-20220523101537-1.png]]
54 54  
55 -== Land Pattern ==
102 +== 1.6  Pin Mapping ==
56 56  
104 +[[image:image-20220720111850-1.png]]
105 +
106 +
107 +
108 +== 1.7  Land Pattern ==
109 +
57 57  [[image:image-20220517072821-2.png]]
58 58  
59 59  
60 -== Part Number ==
61 61  
62 -Part Number: **LA66-XXX**
114 += 2.  LA66 LoRaWAN Shield =
63 63  
64 -**XX**: The default frequency band
65 65  
66 -* **AS923**: LoRaWAN AS923 band
67 -* **AU915**: LoRaWAN AU915 band
68 -* **EU433**: LoRaWAN EU433 band
69 -* **EU868**: LoRaWAN EU868 band
70 -* **KR920**: LoRaWAN KR920 band
71 -* **US915**: LoRaWAN US915 band
72 -* **IN865**: LoRaWAN IN865 band
73 -* **CN470**: LoRaWAN CN470 band
117 +== 2.1  Overview ==
74 74  
75 -= LA66 LoRaWAN Shield =
76 76  
77 -LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
120 +(((
121 +[[image:image-20220715000826-2.png||height="145" width="220"]]
122 +)))
78 78  
79 -== Pin Mapping & LED ==
124 +(((
125 +
126 +)))
80 80  
81 -== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
128 +(((
129 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
130 +)))
82 82  
83 -== Example: Join TTN network and send an uplink message, get downlink message. ==
132 +(((
133 +(((
134 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
135 +)))
136 +)))
84 84  
85 -== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
138 +(((
139 +(((
140 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
141 +)))
142 +)))
86 86  
87 -== Upgrade Firmware of LA66 LoRaWAN Shield ==
144 +(((
145 +(((
146 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
147 +)))
148 +)))
88 88  
89 -=== what needs to be used ===
150 +(((
151 +(((
152 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
153 +)))
154 +)))
90 90  
91 -1.LA66 LoRaWAN Shield that needs to be upgraded
92 92  
93 -2.Arduino
94 94  
95 -3.USB TO TTL
158 +== 2. Features ==
96 96  
97 -[[image:image-20220602100052-2.png]]
160 +* Arduino Shield base on LA66 LoRaWAN module
161 +* Support LoRaWAN v1.0.4 protocol
162 +* Support peer-to-peer protocol
163 +* TCXO crystal to ensure RF performance on low temperature
164 +* SMA connector
165 +* Available in different frequency LoRaWAN frequency bands.
166 +* World-wide unique OTAA keys.
167 +* AT Command via UART-TTL interface
168 +* Firmware upgradable via UART interface
169 +* Ultra-long RF range
98 98  
99 -=== Wiring Schematic ===
100 100  
101 -[[image:image-20220602101311-3.png]]
102 102  
103 -LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
173 +== 2.3  Specification ==
104 104  
105 -GND  >>>>>>>>>>>>GND
175 +* CPU: 32-bit 48 MHz
176 +* Flash: 256KB
177 +* RAM: 64KB
178 +* Input Power Range: 1.8v ~~ 3.7v
179 +* Power Consumption: < 4uA.
180 +* Frequency Range: 150 MHz ~~ 960 MHz
181 +* Maximum Power +22 dBm constant RF output
182 +* High sensitivity: -148 dBm
183 +* Temperature:
184 +** Storage: -55 ~~ +125℃
185 +** Operating: -40 ~~ +85℃
186 +* Humidity:
187 +** Storage: 5 ~~ 95% (Non-Condensing)
188 +** Operating: 10 ~~ 95% (Non-Condensing)
189 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
190 +* LoRa Rx current: <9 mA
191 +* I/O Voltage: 3.3v
106 106  
107 -TXD  >>>>>>>>>>>>TXD
108 108  
109 -RXD  >>>>>>>>>>>>RXD
110 110  
111 -JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
195 +== 2.4  Pin Mapping & LED ==
112 112  
113 -Connect to the PC after connecting the wires
114 114  
115 -[[image:image-20220602102240-4.png]]
116 116  
117 -=== Upgrade steps ===
199 +== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
118 118  
119 -==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
120 120  
121 -[[image:image-20220602102824-5.png]]
122 122  
123 -==== Press the RST switch on the LA66 LoRaWAN Shield once ====
203 +== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
124 124  
125 -[[image:image-20220602104701-12.png]]
126 126  
127 -==== Open the upgrade application software ====
128 128  
129 -Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
207 +== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
130 130  
209 +
210 +
211 +== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
212 +
213 +
214 +=== 2.8.1  Items needed for update ===
215 +
216 +1. LA66 LoRaWAN Shield
217 +1. Arduino
218 +1. USB TO TTL Adapter
219 +
220 +[[image:image-20220602100052-2.png||height="385" width="600"]]
221 +
222 +
223 +=== 2.8.2  Connection ===
224 +
225 +
226 +[[image:image-20220602101311-3.png||height="276" width="600"]]
227 +
228 +
229 +(((
230 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
231 +)))
232 +
233 +(((
234 +(% style="background-color:yellow" %)**GND  <-> GND
235 +TXD  <->  TXD
236 +RXD  <->  RXD**
237 +)))
238 +
239 +
240 +Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
241 +
242 +Connect USB TTL Adapter to PC after connecting the wires
243 +
244 +
245 +[[image:image-20220602102240-4.png||height="304" width="600"]]
246 +
247 +
248 +=== 2.8.3  Upgrade steps ===
249 +
250 +
251 +==== 1.  Switch SW1 to put in ISP position ====
252 +
253 +
254 +[[image:image-20220602102824-5.png||height="306" width="600"]]
255 +
256 +
257 +
258 +==== 2.  Press the RST switch once ====
259 +
260 +
261 +[[image:image-20220602104701-12.png||height="285" width="600"]]
262 +
263 +
264 +
265 +==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
266 +
267 +
268 +(((
269 +(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
270 +)))
271 +
272 +
131 131  [[image:image-20220602103227-6.png]]
132 132  
275 +
133 133  [[image:image-20220602103357-7.png]]
134 134  
135 -===== Select the COM port corresponding to USB TTL =====
136 136  
279 +
280 +(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
281 +(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
282 +
283 +
137 137  [[image:image-20220602103844-8.png]]
138 138  
139 -===== Select the bin file to burn =====
140 140  
287 +
288 +(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
289 +(% style="color:blue" %)**3. Select the bin file to burn**
290 +
291 +
141 141  [[image:image-20220602104144-9.png]]
142 142  
294 +
143 143  [[image:image-20220602104251-10.png]]
144 144  
297 +
145 145  [[image:image-20220602104402-11.png]]
146 146  
147 -===== Click to start the download =====
148 148  
301 +
302 +(% class="wikigeneratedid" id="HClicktostartthedownload" %)
303 +(% style="color:blue" %)**4. Click to start the download**
304 +
149 149  [[image:image-20220602104923-13.png]]
150 150  
151 -===== The following figure appears to prove that the burning is in progress =====
152 152  
308 +
309 +(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
310 +(% style="color:blue" %)**5. Check update process**
311 +
312 +
153 153  [[image:image-20220602104948-14.png]]
154 154  
155 -===== The following picture appears to prove that the burning is successful =====
156 156  
316 +
317 +(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
318 +(% style="color:blue" %)**The following picture shows that the burning is successful**
319 +
157 157  [[image:image-20220602105251-15.png]]
158 158  
159 -= LA66 USB LoRaWAN Adapter =
160 160  
161 -LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
162 162  
163 -Before use, please make sure that the computer has installed the CP2102 driver
324 += 3.  LA66 USB LoRaWAN Adapter =
164 164  
165 -== Pin Mapping & LED ==
166 166  
167 -== Example Send & Get Messages via LoRaWAN in PC ==
327 +== 3.1  Overview ==
168 168  
169 -Connect the LA66 LoRa Shield to the PC
170 170  
171 -[[image:image-20220602171217-1.png||height="615" width="915"]]
330 +[[image:image-20220715001142-3.png||height="145" width="220"]]
172 172  
332 +
333 +(((
334 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
335 +)))
336 +
337 +(((
338 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
339 +)))
340 +
341 +(((
342 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
343 +)))
344 +
345 +(((
346 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
347 +)))
348 +
349 +(((
350 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
351 +)))
352 +
353 +
354 +
355 +== 3.2  Features ==
356 +
357 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
358 +* Ultra-long RF range
359 +* Support LoRaWAN v1.0.4 protocol
360 +* Support peer-to-peer protocol
361 +* TCXO crystal to ensure RF performance on low temperature
362 +* Spring RF antenna
363 +* Available in different frequency LoRaWAN frequency bands.
364 +* World-wide unique OTAA keys.
365 +* AT Command via UART-TTL interface
366 +* Firmware upgradable via UART interface
367 +* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
368 +
369 +
370 +
371 +== 3.3  Specification ==
372 +
373 +* CPU: 32-bit 48 MHz
374 +* Flash: 256KB
375 +* RAM: 64KB
376 +* Input Power Range: 5v
377 +* Frequency Range: 150 MHz ~~ 960 MHz
378 +* Maximum Power +22 dBm constant RF output
379 +* High sensitivity: -148 dBm
380 +* Temperature:
381 +** Storage: -55 ~~ +125℃
382 +** Operating: -40 ~~ +85℃
383 +* Humidity:
384 +** Storage: 5 ~~ 95% (Non-Condensing)
385 +** Operating: 10 ~~ 95% (Non-Condensing)
386 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
387 +* LoRa Rx current: <9 mA
388 +
389 +
390 +
391 +== 3.4  Pin Mapping & LED ==
392 +
393 +
394 +
395 +== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
396 +
397 +
398 +(((
399 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
400 +)))
401 +
402 +
403 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
404 +
405 +
406 +[[image:image-20220602171217-1.png||height="538" width="800"]]
407 +
408 +
173 173  Open the serial port tool
174 174  
175 175  [[image:image-20220602161617-8.png]]
176 176  
177 -[[image:image-20220602161718-9.png||height="529" width="927"]]
413 +[[image:image-20220602161718-9.png||height="457" width="800"]]
178 178  
179 -Press the reset switch RST on the LA66 LoRa Shield.
180 180  
181 -The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
182 182  
183 -[[image:image-20220602161935-10.png]]
417 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
184 184  
185 -send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
419 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
186 186  
421 +
422 +[[image:image-20220602161935-10.png||height="498" width="800"]]
423 +
424 +
425 +
426 +(% style="color:blue" %)**3. See Uplink Command**
427 +
428 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
429 +
187 187  example: AT+SENDB=01,02,8,05820802581ea0a5
188 188  
189 -[[image:image-20220602162157-11.png]]
432 +[[image:image-20220602162157-11.png||height="497" width="800"]]
190 190  
191 -Check to see if TTN received the message
192 192  
193 -[[image:image-20220602162331-12.png||height="547" width="1044"]]
194 194  
195 -== Example Send & Get Messages via LoRaWAN in RPi ==
436 +(% style="color:blue" %)**4. Check to see if TTN received the message**
196 196  
197 -Connect the LA66 LoRa Shield to the RPI
438 +[[image:image-20220602162331-12.png||height="420" width="800"]]
198 198  
199 -[[image:image-20220602171233-2.png||height="592" width="881"]]
200 200  
201 -Log in to the RPI's terminal and connect to the serial port
202 202  
203 -[[image:image-20220602153146-3.png]]
442 +== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
204 204  
205 -Press the reset switch RST on the LA66 LoRa Shield.
206 -The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
207 207  
208 -[[image:image-20220602154928-5.png]]
445 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
209 209  
210 -send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
211 211  
212 -example: AT+SENDB=01,02,8,05820802581ea0a5
448 +(% style="color:red" %)**Preconditions:**
213 213  
214 -[[image:image-20220602160339-6.png]]
450 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
215 215  
216 -Check to see if TTN received the message
452 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapte is registered with TTN**
217 217  
218 -[[image:image-20220602160627-7.png||height="468" width="1013"]]
219 219  
220 -=== Install Minicom ===
221 221  
222 -Enter the following command in the RPI terminal
456 +(% style="color:blue" %)**Steps for usage:**
223 223  
224 -apt update
458 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
225 225  
226 -[[image:image-20220602143155-1.png]]
460 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
227 227  
228 -apt install minicom
462 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
229 229  
230 -[[image:image-20220602143744-2.png]]
231 231  
232 -=== Send PC's CPU/RAM usage to TTN via script. ===
233 233  
234 -==== Take python as an example: ====
466 +== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
235 235  
236 -===== Preconditions: =====
237 237  
238 -1.LA66 USB LoRaWAN Adapter works fine
469 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
239 239  
240 -2.LA66 USB LoRaWAN Adapter  is registered with TTN
241 241  
242 -===== Steps for usage =====
472 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
243 243  
244 -1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
474 +[[image:image-20220602171233-2.png||height="538" width="800"]]
245 245  
246 -2.Run the script and see the TTN
247 247  
248 -[[image:image-20220602115852-3.png]]
249 249  
478 +(% style="color:blue" %)**2. Install Minicom in RPi.**
250 250  
480 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
251 251  
252 -== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
482 + (% style="background-color:yellow" %)**apt update**
253 253  
484 + (% style="background-color:yellow" %)**apt install minicom**
254 254  
255 -== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
256 256  
257 -
487 +Use minicom to connect to the RPI's terminal
488 +
489 +[[image:image-20220602153146-3.png||height="439" width="500"]]
490 +
491 +
492 +
493 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
494 +
495 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
496 +
497 +
498 +[[image:image-20220602154928-5.png||height="436" width="500"]]
499 +
500 +
501 +
502 +(% style="color:blue" %)**4. Send Uplink message**
503 +
504 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
505 +
506 +example: AT+SENDB=01,02,8,05820802581ea0a5
507 +
508 +
509 +[[image:image-20220602160339-6.png||height="517" width="600"]]
510 +
511 +
512 +
513 +Check to see if TTN received the message
514 +
515 +[[image:image-20220602160627-7.png||height="369" width="800"]]
516 +
517 +
518 +
519 +== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
520 +
521 +
522 +
523 +== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
524 +
525 +
526 +
527 +
528 += 4.  Order Info =
529 +
530 +
531 +**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
532 +
533 +
534 +(% style="color:blue" %)**XXX**(%%): The default frequency band
535 +
536 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
537 +* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
538 +* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
539 +* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
540 +* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
541 +* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
542 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
543 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
544 +* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
545 +
546 += 5.  Reference =
547 +
548 +* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
image-20220715000242-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +820.7 KB
Content
image-20220715001142-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +508.1 KB
Content
image-20220718094030-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +193.3 KB
Content
image-20220718094138-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +100.3 KB
Content
image-20220718094750-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +97.9 KB
Content
image-20220718094950-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +97.7 KB
Content
image-20220718095457-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20220719093156-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +381.2 KB
Content
image-20220719093358-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +649.5 KB
Content
image-20220720111850-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +380.3 KB
Content
image-20220723100027-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Lu
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20220723100439-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Lu
Size
... ... @@ -1,0 +1,1 @@
1 +749.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0