<
From version < 66.1 >
edited by Edwin Chen
on 2022/07/02 23:32
To version < 105.1 >
edited by Herong Lu
on 2022/07/23 10:47
>
Change comment: Uploaded new attachment "image-20220723104754-4.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Lu
Content
... ... @@ -1,26 +1,74 @@
1 -{{box cssClass="floatinginfobox" title="**Contents**"}}
1 +
2 +
3 +**Table of Contents:**
4 +
2 2  {{toc/}}
3 -{{/box}}
4 4  
5 -= LA66 LoRaWAN Module =
6 6  
7 -== What is LA66 LoRaWAN Module ==
8 8  
9 += 1.  LA66 LoRaWAN Module =
10 +
11 +
12 +== 1.1  What is LA66 LoRaWAN Module ==
13 +
14 +
15 +(((
16 +(((
17 +[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 +)))
19 +
20 +(((
21 +
22 +)))
23 +
24 +(((
9 9  (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 +)))
27 +)))
10 10  
11 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
29 +(((
30 +(((
31 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 +)))
33 +)))
12 12  
35 +(((
36 +(((
13 13  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 +)))
14 14  
40 +(((
15 15  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 +)))
43 +)))
16 16  
45 +(((
46 +(((
17 17  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 +)))
49 +)))
18 18  
19 -== Features ==
20 20  
21 21  
22 -== Specification ==
53 +== 1.2  Features ==
23 23  
55 +* Support LoRaWAN v1.0.4 protocol
56 +* Support peer-to-peer protocol
57 +* TCXO crystal to ensure RF performance on low temperature
58 +* SMD Antenna pad and i-pex antenna connector
59 +* Available in different frequency LoRaWAN frequency bands.
60 +* World-wide unique OTAA keys.
61 +* AT Command via UART-TTL interface
62 +* Firmware upgradable via UART interface
63 +* Ultra-long RF range
64 +
65 +
66 +
67 +== 1.3  Specification ==
68 +
69 +* CPU: 32-bit 48 MHz
70 +* Flash: 256KB
71 +* RAM: 64KB
24 24  * Input Power Range: 1.8v ~~ 3.7v
25 25  * Power Consumption: < 4uA.
26 26  * Frequency Range: 150 MHz ~~ 960 MHz
... ... @@ -37,220 +37,464 @@
37 37  * I/O Voltage: 3.3v
38 38  
39 39  
40 -== AT Command ==
41 41  
89 +== 1.4  AT Command ==
90 +
91 +
42 42  AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
43 43  
44 44  
45 -== Dimension ==
46 46  
47 -[[image:image-20220517072526-1.png]]
96 +== 1.5  Dimension ==
48 48  
98 +[[image:image-20220718094750-3.png]]
49 49  
50 -== Pin Mapping ==
51 51  
52 -[[image:image-20220523101537-1.png]]
53 53  
54 -== Land Pattern ==
102 +== 1.6  Pin Mapping ==
55 55  
104 +[[image:image-20220720111850-1.png]]
105 +
106 +
107 +
108 +== 1.7  Land Pattern ==
109 +
56 56  [[image:image-20220517072821-2.png]]
57 57  
58 58  
59 -== Part Number ==
60 60  
61 -Part Number: **LA66-XXX**
114 += 2.  LA66 LoRaWAN Shield =
62 62  
63 -**XX**: The default frequency band
64 64  
65 -* **AS923**: LoRaWAN AS923 band
66 -* **AU915**: LoRaWAN AU915 band
67 -* **EU433**: LoRaWAN EU433 band
68 -* **EU868**: LoRaWAN EU868 band
69 -* **KR920**: LoRaWAN KR920 band
70 -* **US915**: LoRaWAN US915 band
71 -* **IN865**: LoRaWAN IN865 band
72 -* **CN470**: LoRaWAN CN470 band
117 +== 2.1  Overview ==
73 73  
74 -= LA66 LoRaWAN Shield =
75 75  
76 -LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
120 +(((
121 +[[image:image-20220715000826-2.png||height="145" width="220"]]
122 +)))
77 77  
78 -== Pin Mapping & LED ==
124 +(((
125 +
126 +)))
79 79  
80 -== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
128 +(((
129 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
130 +)))
81 81  
82 -== Example: Join TTN network and send an uplink message, get downlink message. ==
132 +(((
133 +(((
134 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
135 +)))
136 +)))
83 83  
84 -== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
138 +(((
139 +(((
140 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
141 +)))
142 +)))
85 85  
86 -== Upgrade Firmware of LA66 LoRaWAN Shield ==
144 +(((
145 +(((
146 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
147 +)))
148 +)))
87 87  
88 -=== what needs to be used ===
150 +(((
151 +(((
152 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
153 +)))
154 +)))
89 89  
90 -1.LA66 LoRaWAN Shield that needs to be upgraded
91 91  
92 -2.Arduino
93 93  
94 -3.USB TO TTL
158 +== 2. Features ==
95 95  
96 -[[image:image-20220602100052-2.png]]
160 +* Arduino Shield base on LA66 LoRaWAN module
161 +* Support LoRaWAN v1.0.4 protocol
162 +* Support peer-to-peer protocol
163 +* TCXO crystal to ensure RF performance on low temperature
164 +* SMA connector
165 +* Available in different frequency LoRaWAN frequency bands.
166 +* World-wide unique OTAA keys.
167 +* AT Command via UART-TTL interface
168 +* Firmware upgradable via UART interface
169 +* Ultra-long RF range
97 97  
98 -=== Wiring Schematic ===
99 99  
100 -[[image:image-20220602101311-3.png]]
101 101  
102 -LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
173 +== 2.3  Specification ==
103 103  
104 -GND  >>>>>>>>>>>>GND
175 +* CPU: 32-bit 48 MHz
176 +* Flash: 256KB
177 +* RAM: 64KB
178 +* Input Power Range: 1.8v ~~ 3.7v
179 +* Power Consumption: < 4uA.
180 +* Frequency Range: 150 MHz ~~ 960 MHz
181 +* Maximum Power +22 dBm constant RF output
182 +* High sensitivity: -148 dBm
183 +* Temperature:
184 +** Storage: -55 ~~ +125℃
185 +** Operating: -40 ~~ +85℃
186 +* Humidity:
187 +** Storage: 5 ~~ 95% (Non-Condensing)
188 +** Operating: 10 ~~ 95% (Non-Condensing)
189 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
190 +* LoRa Rx current: <9 mA
191 +* I/O Voltage: 3.3v
105 105  
106 -TXD  >>>>>>>>>>>>TXD
107 107  
108 -RXD  >>>>>>>>>>>>RXD
109 109  
110 -JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
195 +== 2.4  Pin Mapping & LED ==
111 111  
112 -Connect to the PC after connecting the wires
113 113  
114 -[[image:image-20220602102240-4.png]]
115 115  
116 -=== Upgrade steps ===
199 +== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
117 117  
118 -==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
119 119  
120 -[[image:image-20220602102824-5.png]]
121 121  
122 -==== Press the RST switch on the LA66 LoRaWAN Shield once ====
203 +== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
123 123  
124 -[[image:image-20220602104701-12.png]]
125 125  
126 -==== Open the upgrade application software ====
127 127  
128 -Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
207 +== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
129 129  
209 +
210 +
211 +== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
212 +
213 +
214 +=== 2.8.1  Items needed for update ===
215 +
216 +1. LA66 LoRaWAN Shield
217 +1. Arduino
218 +1. USB TO TTL Adapter
219 +
220 +[[image:image-20220602100052-2.png||height="385" width="600"]]
221 +
222 +
223 +=== 2.8.2  Connection ===
224 +
225 +
226 +[[image:image-20220602101311-3.png||height="276" width="600"]]
227 +
228 +
229 +(((
230 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
231 +)))
232 +
233 +(((
234 +(% style="background-color:yellow" %)**GND  <-> GND
235 +TXD  <->  TXD
236 +RXD  <->  RXD**
237 +)))
238 +
239 +
240 +Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
241 +
242 +Connect USB TTL Adapter to PC after connecting the wires
243 +
244 +
245 +[[image:image-20220602102240-4.png||height="304" width="600"]]
246 +
247 +
248 +=== 2.8.3  Upgrade steps ===
249 +
250 +
251 +==== 1.  Switch SW1 to put in ISP position ====
252 +
253 +
254 +[[image:image-20220602102824-5.png||height="306" width="600"]]
255 +
256 +
257 +
258 +==== 2.  Press the RST switch once ====
259 +
260 +
261 +[[image:image-20220602104701-12.png||height="285" width="600"]]
262 +
263 +
264 +
265 +==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
266 +
267 +
268 +(((
269 +(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
270 +)))
271 +
272 +
130 130  [[image:image-20220602103227-6.png]]
131 131  
275 +
132 132  [[image:image-20220602103357-7.png]]
133 133  
134 -===== Select the COM port corresponding to USB TTL =====
135 135  
279 +
280 +(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
281 +(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
282 +
283 +
136 136  [[image:image-20220602103844-8.png]]
137 137  
138 -===== Select the bin file to burn =====
139 139  
287 +
288 +(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
289 +(% style="color:blue" %)**3. Select the bin file to burn**
290 +
291 +
140 140  [[image:image-20220602104144-9.png]]
141 141  
294 +
142 142  [[image:image-20220602104251-10.png]]
143 143  
297 +
144 144  [[image:image-20220602104402-11.png]]
145 145  
146 -===== Click to start the download =====
147 147  
301 +
302 +(% class="wikigeneratedid" id="HClicktostartthedownload" %)
303 +(% style="color:blue" %)**4. Click to start the download**
304 +
148 148  [[image:image-20220602104923-13.png]]
149 149  
150 -===== The following figure appears to prove that the burning is in progress =====
151 151  
308 +
309 +(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
310 +(% style="color:blue" %)**5. Check update process**
311 +
312 +
152 152  [[image:image-20220602104948-14.png]]
153 153  
154 -===== The following picture appears to prove that the burning is successful =====
155 155  
316 +
317 +(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
318 +(% style="color:blue" %)**The following picture shows that the burning is successful**
319 +
156 156  [[image:image-20220602105251-15.png]]
157 157  
158 -= LA66 USB LoRaWAN Adapter =
159 159  
160 -LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
161 161  
162 -Before use, please make sure that the computer has installed the CP2102 driver
324 += 3.  LA66 USB LoRaWAN Adapter =
163 163  
164 -== Pin Mapping & LED ==
165 165  
166 -== Example Send & Get Messages via LoRaWAN in PC ==
327 +== 3.1  Overview ==
167 167  
168 -Connect the LA66 LoRa Shield to the PC
169 169  
170 -[[image:image-20220602171217-1.png||height="615" width="915"]]
330 +[[image:image-20220715001142-3.png||height="145" width="220"]]
171 171  
332 +
333 +(((
334 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
335 +)))
336 +
337 +(((
338 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
339 +)))
340 +
341 +(((
342 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
343 +)))
344 +
345 +(((
346 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
347 +)))
348 +
349 +(((
350 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
351 +)))
352 +
353 +
354 +
355 +== 3.2  Features ==
356 +
357 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
358 +* Ultra-long RF range
359 +* Support LoRaWAN v1.0.4 protocol
360 +* Support peer-to-peer protocol
361 +* TCXO crystal to ensure RF performance on low temperature
362 +* Spring RF antenna
363 +* Available in different frequency LoRaWAN frequency bands.
364 +* World-wide unique OTAA keys.
365 +* AT Command via UART-TTL interface
366 +* Firmware upgradable via UART interface
367 +* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
368 +
369 +
370 +
371 +== 3.3  Specification ==
372 +
373 +* CPU: 32-bit 48 MHz
374 +* Flash: 256KB
375 +* RAM: 64KB
376 +* Input Power Range: 5v
377 +* Frequency Range: 150 MHz ~~ 960 MHz
378 +* Maximum Power +22 dBm constant RF output
379 +* High sensitivity: -148 dBm
380 +* Temperature:
381 +** Storage: -55 ~~ +125℃
382 +** Operating: -40 ~~ +85℃
383 +* Humidity:
384 +** Storage: 5 ~~ 95% (Non-Condensing)
385 +** Operating: 10 ~~ 95% (Non-Condensing)
386 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
387 +* LoRa Rx current: <9 mA
388 +
389 +
390 +
391 +== 3.4  Pin Mapping & LED ==
392 +
393 +
394 +
395 +== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
396 +
397 +
398 +(((
399 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
400 +)))
401 +
402 +
403 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
404 +
405 +
406 +[[image:image-20220602171217-1.png||height="538" width="800"]]
407 +
408 +
172 172  Open the serial port tool
173 173  
174 174  [[image:image-20220602161617-8.png]]
175 175  
176 -[[image:image-20220602161718-9.png||height="529" width="927"]]
413 +[[image:image-20220602161718-9.png||height="457" width="800"]]
177 177  
178 -Press the reset switch RST on the LA66 LoRa Shield.
179 179  
180 -The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
181 181  
182 -[[image:image-20220602161935-10.png]]
417 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
183 183  
184 -send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
419 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
185 185  
421 +
422 +[[image:image-20220602161935-10.png||height="498" width="800"]]
423 +
424 +
425 +
426 +(% style="color:blue" %)**3. See Uplink Command**
427 +
428 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
429 +
186 186  example: AT+SENDB=01,02,8,05820802581ea0a5
187 187  
188 -[[image:image-20220602162157-11.png]]
432 +[[image:image-20220602162157-11.png||height="497" width="800"]]
189 189  
190 -Check to see if TTN received the message
191 191  
192 -[[image:image-20220602162331-12.png||height="547" width="1044"]]
193 193  
194 -== Example Send & Get Messages via LoRaWAN in RPi ==
436 +(% style="color:blue" %)**4. Check to see if TTN received the message**
195 195  
196 -Connect the LA66 LoRa Shield to the RPI
438 +[[image:image-20220602162331-12.png||height="420" width="800"]]
197 197  
198 -[[image:image-20220602171233-2.png||height="592" width="881"]]
199 199  
200 -Log in to the RPI's terminal and connect to the serial port
201 201  
202 -[[image:image-20220602153146-3.png]]
442 +== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
203 203  
204 -Press the reset switch RST on the LA66 LoRa Shield.
205 -The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
206 206  
207 -[[image:image-20220602154928-5.png]]
445 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
208 208  
209 -send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
210 210  
211 -example: AT+SENDB=01,02,8,05820802581ea0a5
448 +(% style="color:red" %)**Preconditions:**
212 212  
213 -[[image:image-20220602160339-6.png]]
450 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
214 214  
215 -Check to see if TTN received the message
452 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapte is registered with TTN**
216 216  
217 -[[image:image-20220602160627-7.png||height="468" width="1013"]]
218 218  
219 -=== Install Minicom ===
220 220  
221 -Enter the following command in the RPI terminal
456 +(% style="color:blue" %)**Steps for usage:**
222 222  
223 -apt update
458 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
224 224  
225 -[[image:image-20220602143155-1.png]]
460 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
226 226  
227 -apt install minicom
462 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
228 228  
229 -[[image:image-20220602143744-2.png]]
230 230  
231 -=== Send PC's CPU/RAM usage to TTN via script. ===
232 232  
233 -==== Take python as an example: ====
466 +== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
234 234  
235 -===== Preconditions: =====
236 236  
237 -1.LA66 USB LoRaWAN Adapter works fine
469 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
238 238  
239 -2.LA66 USB LoRaWAN Adapter  is registered with TTN
240 240  
241 -===== Steps for usage =====
472 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
242 242  
243 -1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
474 +[[image:image-20220602171233-2.png||height="538" width="800"]]
244 244  
245 -2.Run the script and see the TTN
246 246  
247 -[[image:image-20220602115852-3.png]]
248 248  
478 +(% style="color:blue" %)**2. Install Minicom in RPi.**
249 249  
480 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
250 250  
251 -== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
482 + (% style="background-color:yellow" %)**apt update**
252 252  
484 + (% style="background-color:yellow" %)**apt install minicom**
253 253  
254 -== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
255 255  
256 -
487 +Use minicom to connect to the RPI's terminal
488 +
489 +[[image:image-20220602153146-3.png||height="439" width="500"]]
490 +
491 +
492 +
493 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
494 +
495 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
496 +
497 +
498 +[[image:image-20220602154928-5.png||height="436" width="500"]]
499 +
500 +
501 +
502 +(% style="color:blue" %)**4. Send Uplink message**
503 +
504 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
505 +
506 +example: AT+SENDB=01,02,8,05820802581ea0a5
507 +
508 +
509 +[[image:image-20220602160339-6.png||height="517" width="600"]]
510 +
511 +
512 +
513 +Check to see if TTN received the message
514 +
515 +[[image:image-20220602160627-7.png||height="369" width="800"]]
516 +
517 +
518 +
519 +== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
520 +
521 +
522 +
523 +== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
524 +
525 +
526 +
527 +
528 += 4.  Order Info =
529 +
530 +
531 +**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
532 +
533 +
534 +(% style="color:blue" %)**XXX**(%%): The default frequency band
535 +
536 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
537 +* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
538 +* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
539 +* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
540 +* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
541 +* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
542 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
543 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
544 +* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
545 +
546 += 5.  Reference =
547 +
548 +* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
image-20220715000242-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +820.7 KB
Content
image-20220715001142-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +508.1 KB
Content
image-20220718094030-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +193.3 KB
Content
image-20220718094138-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +100.3 KB
Content
image-20220718094750-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +97.9 KB
Content
image-20220718094950-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +97.7 KB
Content
image-20220718095457-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20220719093156-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +381.2 KB
Content
image-20220719093358-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +649.5 KB
Content
image-20220720111850-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +380.3 KB
Content
image-20220723100027-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Lu
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20220723100439-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Lu
Size
... ... @@ -1,0 +1,1 @@
1 +749.8 KB
Content
image-20220723102027-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Lu
Size
... ... @@ -1,0 +1,1 @@
1 +28.7 KB
Content
image-20220723104754-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Lu
Size
... ... @@ -1,0 +1,1 @@
1 +231.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0