<
From version < 65.1 >
edited by Edwin Chen
on 2022/07/02 23:30
To version < 100.6 >
edited by Xiaoling
on 2022/07/19 11:49
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,264 +1,550 @@
1 -{{box cssClass="floatinginfobox" title="**Contents**"}}
1 +
2 +
3 +**Table of Contents:**
4 +
2 2  {{toc/}}
3 -{{/box}}
4 4  
5 -= LA66 LoRaWAN Module =
6 6  
7 -== What is LA66 LoRaWAN Module ==
8 8  
9 += 1.  LA66 LoRaWAN Module =
10 +
11 +
12 +== 1.1  What is LA66 LoRaWAN Module ==
13 +
14 +
15 +(((
16 +(((
17 +[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 +)))
19 +
20 +(((
21 +
22 +)))
23 +
24 +(((
9 9  (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 +)))
27 +)))
10 10  
29 +(((
30 +(((
11 11  (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 +)))
33 +)))
12 12  
35 +(((
36 +(((
13 13  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 +)))
14 14  
40 +(((
15 15  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 +)))
43 +)))
16 16  
45 +(((
46 +(((
17 17  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 +)))
49 +)))
18 18  
19 -== Features ==
20 20  
21 21  
22 -== Specification ==
53 +== 1.2  Features ==
23 23  
24 -[[image:image-20220517072526-1.png]]
55 +* Support LoRaWAN v1.0.4 protocol
56 +* Support peer-to-peer protocol
57 +* TCXO crystal to ensure RF performance on low temperature
58 +* SMD Antenna pad and i-pex antenna connector
59 +* Available in different frequency LoRaWAN frequency bands.
60 +* World-wide unique OTAA keys.
61 +* AT Command via UART-TTL interface
62 +* Firmware upgradable via UART interface
63 +* Ultra-long RF range
25 25  
26 -Input Power Range: 1.8v ~~ 3.7v
27 27  
28 -Power Consumption: < 4uA.
29 29  
30 -Frequency Range: 150 MHz ~~ 960 MHz
67 +== 1.3  Specification ==
31 31  
32 -Maximum Power +22 dBm constant RF output
69 +* CPU: 32-bit 48 MHz
70 +* Flash: 256KB
71 +* RAM: 64KB
72 +* Input Power Range: 1.8v ~~ 3.7v
73 +* Power Consumption: < 4uA.
74 +* Frequency Range: 150 MHz ~~ 960 MHz
75 +* Maximum Power +22 dBm constant RF output
76 +* High sensitivity: -148 dBm
77 +* Temperature:
78 +** Storage: -55 ~~ +125℃
79 +** Operating: -40 ~~ +85℃
80 +* Humidity:
81 +** Storage: 5 ~~ 95% (Non-Condensing)
82 +** Operating: 10 ~~ 95% (Non-Condensing)
83 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
84 +* LoRa Rx current: <9 mA
85 +* I/O Voltage: 3.3v
33 33  
34 -High sensitivity: -148 dBm
35 35  
36 -Temperature:
37 37  
38 -* Storage: -55 ~~ +125℃
39 -* Operating: -40 ~~ +85℃
89 +== 1.4  AT Command ==
40 40  
41 -Humidity:
42 42  
43 -* Storage: 5 ~~ 95% (Non-Condensing)
44 -* Operating: 10 ~~ 95% (Non-Condensing)
92 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
45 45  
46 -LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
47 47  
48 -LoRa Rx current: <9 mA
49 49  
50 -I/O Voltage: 3.3v
96 +== 1.5  Dimension ==
51 51  
98 +[[image:image-20220718094750-3.png]]
52 52  
53 -== AT Command ==
54 54  
55 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
56 56  
102 +== 1.6  Pin Mapping ==
57 57  
58 -== Pin Mapping ==
59 59  
60 -[[image:image-20220523101537-1.png]]
105 +[[image:image-20220719093156-1.png]]
61 61  
62 -== Land Pattern ==
63 63  
108 +
109 +== 1.7  Land Pattern ==
110 +
64 64  [[image:image-20220517072821-2.png]]
65 65  
66 66  
67 -== Part Number ==
68 68  
69 -Part Number: **LA66-XXX**
115 += 2.  LA66 LoRaWAN Shield =
70 70  
71 -**XX**: The default frequency band
72 72  
73 -* **AS923**: LoRaWAN AS923 band
74 -* **AU915**: LoRaWAN AU915 band
75 -* **EU433**: LoRaWAN EU433 band
76 -* **EU868**: LoRaWAN EU868 band
77 -* **KR920**: LoRaWAN KR920 band
78 -* **US915**: LoRaWAN US915 band
79 -* **IN865**: LoRaWAN IN865 band
80 -* **CN470**: LoRaWAN CN470 band
118 +== 2.1  Overview ==
81 81  
82 -= LA66 LoRaWAN Shield =
83 83  
84 -LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
121 +(((
122 +[[image:image-20220715000826-2.png||height="145" width="220"]]
123 +)))
85 85  
86 -== Pin Mapping & LED ==
125 +(((
126 +
127 +)))
87 87  
88 -== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
129 +(((
130 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
131 +)))
89 89  
90 -== Example: Join TTN network and send an uplink message, get downlink message. ==
133 +(((
134 +(((
135 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
136 +)))
137 +)))
91 91  
92 -== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
139 +(((
140 +(((
141 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
142 +)))
143 +)))
93 93  
94 -== Upgrade Firmware of LA66 LoRaWAN Shield ==
145 +(((
146 +(((
147 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
148 +)))
149 +)))
95 95  
96 -=== what needs to be used ===
151 +(((
152 +(((
153 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
154 +)))
155 +)))
97 97  
98 -1.LA66 LoRaWAN Shield that needs to be upgraded
99 99  
100 -2.Arduino
101 101  
102 -3.USB TO TTL
159 +== 2. Features ==
103 103  
104 -[[image:image-20220602100052-2.png]]
161 +* Arduino Shield base on LA66 LoRaWAN module
162 +* Support LoRaWAN v1.0.4 protocol
163 +* Support peer-to-peer protocol
164 +* TCXO crystal to ensure RF performance on low temperature
165 +* SMA connector
166 +* Available in different frequency LoRaWAN frequency bands.
167 +* World-wide unique OTAA keys.
168 +* AT Command via UART-TTL interface
169 +* Firmware upgradable via UART interface
170 +* Ultra-long RF range
105 105  
106 -=== Wiring Schematic ===
107 107  
108 -[[image:image-20220602101311-3.png]]
109 109  
110 -LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
174 +== 2.3  Specification ==
111 111  
112 -GND  >>>>>>>>>>>>GND
176 +* CPU: 32-bit 48 MHz
177 +* Flash: 256KB
178 +* RAM: 64KB
179 +* Input Power Range: 1.8v ~~ 3.7v
180 +* Power Consumption: < 4uA.
181 +* Frequency Range: 150 MHz ~~ 960 MHz
182 +* Maximum Power +22 dBm constant RF output
183 +* High sensitivity: -148 dBm
184 +* Temperature:
185 +** Storage: -55 ~~ +125℃
186 +** Operating: -40 ~~ +85℃
187 +* Humidity:
188 +** Storage: 5 ~~ 95% (Non-Condensing)
189 +** Operating: 10 ~~ 95% (Non-Condensing)
190 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
191 +* LoRa Rx current: <9 mA
192 +* I/O Voltage: 3.3v
113 113  
114 -TXD  >>>>>>>>>>>>TXD
115 115  
116 -RXD  >>>>>>>>>>>>RXD
117 117  
118 -JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
196 +== 2.4  Pin Mapping & LED ==
119 119  
120 -Connect to the PC after connecting the wires
121 121  
122 -[[image:image-20220602102240-4.png]]
123 123  
124 -=== Upgrade steps ===
200 +== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
125 125  
126 -==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
127 127  
128 -[[image:image-20220602102824-5.png]]
129 129  
130 -==== Press the RST switch on the LA66 LoRaWAN Shield once ====
204 +== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
131 131  
132 -[[image:image-20220602104701-12.png]]
133 133  
134 -==== Open the upgrade application software ====
135 135  
136 -Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
208 +== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
137 137  
210 +
211 +
212 +== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
213 +
214 +
215 +=== 2.8.1  Items needed for update ===
216 +
217 +1. LA66 LoRaWAN Shield
218 +1. Arduino
219 +1. USB TO TTL Adapter
220 +
221 +[[image:image-20220602100052-2.png||height="385" width="600"]]
222 +
223 +
224 +=== 2.8.2  Connection ===
225 +
226 +
227 +[[image:image-20220602101311-3.png||height="276" width="600"]]
228 +
229 +
230 +(((
231 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
232 +)))
233 +
234 +(((
235 +(% style="background-color:yellow" %)**GND  <-> GND
236 +TXD  <->  TXD
237 +RXD  <->  RXD**
238 +)))
239 +
240 +
241 +Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
242 +
243 +Connect USB TTL Adapter to PC after connecting the wires
244 +
245 +
246 +[[image:image-20220602102240-4.png||height="304" width="600"]]
247 +
248 +
249 +=== 2.8.3  Upgrade steps ===
250 +
251 +
252 +==== 1.  Switch SW1 to put in ISP position ====
253 +
254 +
255 +[[image:image-20220602102824-5.png||height="306" width="600"]]
256 +
257 +
258 +
259 +==== 2.  Press the RST switch once ====
260 +
261 +
262 +[[image:image-20220602104701-12.png||height="285" width="600"]]
263 +
264 +
265 +
266 +==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
267 +
268 +
269 +(((
270 +(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
271 +)))
272 +
273 +
138 138  [[image:image-20220602103227-6.png]]
139 139  
276 +
140 140  [[image:image-20220602103357-7.png]]
141 141  
142 -===== Select the COM port corresponding to USB TTL =====
143 143  
280 +
281 +(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
282 +(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
283 +
284 +
144 144  [[image:image-20220602103844-8.png]]
145 145  
146 -===== Select the bin file to burn =====
147 147  
288 +
289 +(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
290 +(% style="color:blue" %)**3. Select the bin file to burn**
291 +
292 +
148 148  [[image:image-20220602104144-9.png]]
149 149  
295 +
150 150  [[image:image-20220602104251-10.png]]
151 151  
298 +
152 152  [[image:image-20220602104402-11.png]]
153 153  
154 -===== Click to start the download =====
155 155  
302 +
303 +(% class="wikigeneratedid" id="HClicktostartthedownload" %)
304 +(% style="color:blue" %)**4. Click to start the download**
305 +
156 156  [[image:image-20220602104923-13.png]]
157 157  
158 -===== The following figure appears to prove that the burning is in progress =====
159 159  
309 +
310 +(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
311 +(% style="color:blue" %)**5. Check update process**
312 +
313 +
160 160  [[image:image-20220602104948-14.png]]
161 161  
162 -===== The following picture appears to prove that the burning is successful =====
163 163  
317 +
318 +(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
319 +(% style="color:blue" %)**The following picture shows that the burning is successful**
320 +
164 164  [[image:image-20220602105251-15.png]]
165 165  
166 -= LA66 USB LoRaWAN Adapter =
167 167  
168 -LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
169 169  
170 -Before use, please make sure that the computer has installed the CP2102 driver
325 += 3.  LA66 USB LoRaWAN Adapter =
171 171  
172 -== Pin Mapping & LED ==
173 173  
174 -== Example Send & Get Messages via LoRaWAN in PC ==
328 +== 3.1  Overview ==
175 175  
176 -Connect the LA66 LoRa Shield to the PC
177 177  
178 -[[image:image-20220602171217-1.png||height="615" width="915"]]
331 +[[image:image-20220715001142-3.png||height="145" width="220"]]
179 179  
333 +
334 +(((
335 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
336 +)))
337 +
338 +(((
339 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
340 +)))
341 +
342 +(((
343 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
344 +)))
345 +
346 +(((
347 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
348 +)))
349 +
350 +(((
351 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
352 +)))
353 +
354 +
355 +
356 +== 3.2  Features ==
357 +
358 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
359 +* Ultra-long RF range
360 +* Support LoRaWAN v1.0.4 protocol
361 +* Support peer-to-peer protocol
362 +* TCXO crystal to ensure RF performance on low temperature
363 +* Spring RF antenna
364 +* Available in different frequency LoRaWAN frequency bands.
365 +* World-wide unique OTAA keys.
366 +* AT Command via UART-TTL interface
367 +* Firmware upgradable via UART interface
368 +* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
369 +
370 +
371 +
372 +== 3.3  Specification ==
373 +
374 +* CPU: 32-bit 48 MHz
375 +* Flash: 256KB
376 +* RAM: 64KB
377 +* Input Power Range: 5v
378 +* Frequency Range: 150 MHz ~~ 960 MHz
379 +* Maximum Power +22 dBm constant RF output
380 +* High sensitivity: -148 dBm
381 +* Temperature:
382 +** Storage: -55 ~~ +125℃
383 +** Operating: -40 ~~ +85℃
384 +* Humidity:
385 +** Storage: 5 ~~ 95% (Non-Condensing)
386 +** Operating: 10 ~~ 95% (Non-Condensing)
387 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
388 +* LoRa Rx current: <9 mA
389 +
390 +
391 +
392 +== 3.4  Pin Mapping & LED ==
393 +
394 +
395 +
396 +== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
397 +
398 +
399 +(((
400 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
401 +)))
402 +
403 +
404 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
405 +
406 +
407 +[[image:image-20220602171217-1.png||height="538" width="800"]]
408 +
409 +
180 180  Open the serial port tool
181 181  
182 182  [[image:image-20220602161617-8.png]]
183 183  
184 -[[image:image-20220602161718-9.png||height="529" width="927"]]
414 +[[image:image-20220602161718-9.png||height="457" width="800"]]
185 185  
186 -Press the reset switch RST on the LA66 LoRa Shield.
187 187  
188 -The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
189 189  
190 -[[image:image-20220602161935-10.png]]
418 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
191 191  
192 -send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
420 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
193 193  
422 +
423 +[[image:image-20220602161935-10.png||height="498" width="800"]]
424 +
425 +
426 +
427 +(% style="color:blue" %)**3. See Uplink Command**
428 +
429 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
430 +
194 194  example: AT+SENDB=01,02,8,05820802581ea0a5
195 195  
196 -[[image:image-20220602162157-11.png]]
433 +[[image:image-20220602162157-11.png||height="497" width="800"]]
197 197  
198 -Check to see if TTN received the message
199 199  
200 -[[image:image-20220602162331-12.png||height="547" width="1044"]]
201 201  
202 -== Example Send & Get Messages via LoRaWAN in RPi ==
437 +(% style="color:blue" %)**4. Check to see if TTN received the message**
203 203  
204 -Connect the LA66 LoRa Shield to the RPI
439 +[[image:image-20220602162331-12.png||height="420" width="800"]]
205 205  
206 -[[image:image-20220602171233-2.png||height="592" width="881"]]
207 207  
208 -Log in to the RPI's terminal and connect to the serial port
209 209  
210 -[[image:image-20220602153146-3.png]]
443 +== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
211 211  
212 -Press the reset switch RST on the LA66 LoRa Shield.
213 -The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
214 214  
215 -[[image:image-20220602154928-5.png]]
446 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
216 216  
217 -send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
218 218  
449 +(% style="color:red" %)**Preconditions:**
450 +
451 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
452 +
453 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
454 +
455 +
456 +
457 +(% style="color:blue" %)**Steps for usage:**
458 +
459 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
460 +
461 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
462 +
463 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
464 +
465 +
466 +
467 +== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
468 +
469 +
470 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
471 +
472 +
473 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
474 +
475 +[[image:image-20220602171233-2.png||height="538" width="800"]]
476 +
477 +
478 +
479 +(% style="color:blue" %)**2. Install Minicom in RPi.**
480 +
481 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
482 +
483 + (% style="background-color:yellow" %)**apt update**
484 +
485 + (% style="background-color:yellow" %)**apt install minicom**
486 +
487 +
488 +Use minicom to connect to the RPI's terminal
489 +
490 +[[image:image-20220602153146-3.png||height="439" width="500"]]
491 +
492 +
493 +
494 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
495 +
496 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
497 +
498 +
499 +[[image:image-20220602154928-5.png||height="436" width="500"]]
500 +
501 +
502 +
503 +(% style="color:blue" %)**4. Send Uplink message**
504 +
505 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
506 +
219 219  example: AT+SENDB=01,02,8,05820802581ea0a5
220 220  
221 -[[image:image-20220602160339-6.png]]
222 222  
223 -Check to see if TTN received the message
510 +[[image:image-20220602160339-6.png||height="517" width="600"]]
224 224  
225 -[[image:image-20220602160627-7.png||height="468" width="1013"]]
226 226  
227 -=== Install Minicom ===
228 228  
229 -Enter the following command in the RPI terminal
514 +Check to see if TTN received the message
230 230  
231 -apt update
516 +[[image:image-20220602160627-7.png||height="369" width="800"]]
232 232  
233 -[[image:image-20220602143155-1.png]]
234 234  
235 -apt install minicom
236 236  
237 -[[image:image-20220602143744-2.png]]
520 +== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
238 238  
239 -=== Send PC's CPU/RAM usage to TTN via script. ===
240 240  
241 -==== Take python as an example: ====
242 242  
243 -===== Preconditions: =====
524 +== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
244 244  
245 -1.LA66 USB LoRaWAN Adapter works fine
246 246  
247 -2.LA66 USB LoRaWAN Adapter  is registered with TTN
248 248  
249 -===== Steps for usage =====
250 250  
251 -1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
529 += 4.  Order Info =
252 252  
253 -2.Run the script and see the TTN
254 254  
255 -[[image:image-20220602115852-3.png]]
532 +**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
256 256  
257 257  
535 +(% style="color:blue" %)**XXX**(%%): The default frequency band
258 258  
259 -== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
537 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
538 +* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
539 +* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
540 +* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
541 +* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
542 +* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
543 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
544 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
545 +* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
260 260  
261 261  
262 -== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
548 += 5.  Reference =
263 263  
264 -
550 +* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
image-20220715000242-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +820.7 KB
Content
image-20220715001142-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +508.1 KB
Content
image-20220718094030-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +193.3 KB
Content
image-20220718094138-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +100.3 KB
Content
image-20220718094750-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +97.9 KB
Content
image-20220718094950-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +97.7 KB
Content
image-20220718095457-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.0 KB
Content
image-20220719093156-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +381.2 KB
Content
image-20220719093358-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +649.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0