<
From version < 64.1 >
edited by Edwin Chen
on 2022/07/02 21:03
To version < 87.13 >
edited by Xiaoling
on 2022/07/13 10:05
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,263 +1,450 @@
1 -{{box cssClass="floatinginfobox" title="**Contents**"}}
2 -{{toc/}}
3 -{{/box}}
1 +
4 4  
5 -= LA66 LoRaWAN Module =
3 +**Table of Contents:**
6 6  
7 -== What is LA66 LoRaWAN Module ==
5 +{{toc/}}
8 8  
9 -**Dragino LA66** is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
10 10  
11 -**LA66 **is a ready-to-use module that includes the LoRaWAN v1.0.4 protocol. The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk for developers to make a LoRaWAN End device. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
12 12  
9 += 1.  LA66 LoRaWAN Module =
13 13  
14 -LA66 is equipped with **TCXO crystal** which ensures the module can achieve the stable performance in extreme temperatures.
15 15  
12 +== 1.1  What is LA66 LoRaWAN Module ==
16 16  
17 -**Each LA66 **module includes a world-unique OTAA key for LoRaWAN registration.
18 18  
15 +(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
19 19  
17 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
20 20  
21 -== Specification ==
19 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
22 22  
23 -[[image:image-20220517072526-1.png]]
21 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
24 24  
25 -Input Power Range: 1.8v ~~ 3.7v
23 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
26 26  
27 -Power Consumption: < 4uA.
28 28  
29 -Frequency Range: 150 MHz ~~ 960 MHz
26 +== 1.2  Features ==
30 30  
31 -Maximum Power +22 dBm constant RF output
28 +* Support LoRaWAN v1.0.4 protocol
29 +* Support peer-to-peer protocol
30 +* TCXO crystal to ensure RF performance on low temperature
31 +* SMD Antenna pad and i-pex antenna connector
32 +* Available in different frequency LoRaWAN frequency bands.
33 +* World-wide unique OTAA keys.
34 +* AT Command via UART-TTL interface
35 +* Firmware upgradable via UART interface
36 +* Ultra-long RF range
32 32  
33 -High sensitivity: -148 dBm
34 34  
35 -Temperature:
39 +== 1.3  Specification ==
36 36  
37 -* Storage: -55 ~~ +125℃
38 -* Operating: -40 ~~ +85℃
41 +* CPU: 32-bit 48 MHz
42 +* Flash: 256KB
43 +* RAM: 64KB
44 +* Input Power Range: 1.8v ~~ 3.7v
45 +* Power Consumption: < 4uA.
46 +* Frequency Range: 150 MHz ~~ 960 MHz
47 +* Maximum Power +22 dBm constant RF output
48 +* High sensitivity: -148 dBm
49 +* Temperature:
50 +** Storage: -55 ~~ +125℃
51 +** Operating: -40 ~~ +85℃
52 +* Humidity:
53 +** Storage: 5 ~~ 95% (Non-Condensing)
54 +** Operating: 10 ~~ 95% (Non-Condensing)
55 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
56 +* LoRa Rx current: <9 mA
57 +* I/O Voltage: 3.3v
39 39  
40 -Humidity:
41 41  
42 -* Storage: 5 ~~ 95% (Non-Condensing)
43 -* Operating: 10 ~~ 95% (Non-Condensing)
60 +== 1.4  AT Command ==
44 44  
45 -LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
62 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
46 46  
47 -LoRa Rx current: <9 mA
48 48  
49 -I/O Voltage: 3.3v
65 +== 1.5  Dimension ==
50 50  
67 +[[image:image-20220517072526-1.png]]
51 51  
52 -== AT Command ==
53 53  
54 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
55 55  
71 +== 1.6  Pin Mapping ==
56 56  
57 -== Pin Mapping ==
58 58  
59 59  [[image:image-20220523101537-1.png]]
60 60  
61 -== Land Pattern ==
62 62  
77 +
78 +== 1.7  Land Pattern ==
79 +
63 63  [[image:image-20220517072821-2.png]]
64 64  
65 65  
66 -== Part Number ==
67 67  
68 -Part Number: **LA66-XXX**
84 += 2.  LA66 LoRaWAN Shield =
69 69  
70 -**XX**: The default frequency band
71 71  
72 -* **AS923**: LoRaWAN AS923 band
73 -* **AU915**: LoRaWAN AU915 band
74 -* **EU433**: LoRaWAN EU433 band
75 -* **EU868**: LoRaWAN EU868 band
76 -* **KR920**: LoRaWAN KR920 band
77 -* **US915**: LoRaWAN US915 band
78 -* **IN865**: LoRaWAN IN865 band
79 -* **CN470**: LoRaWAN CN470 band
87 +== 2.1  Overview ==
80 80  
81 -= LA66 LoRaWAN Shield =
89 +LA66 LoRaWAN Shield is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
82 82  
83 -LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
84 84  
85 -== Pin Mapping & LED ==
92 +== 2.2  Features ==
86 86  
87 -== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
94 +* Arduino Shield base on LA66 LoRaWAN module
95 +* Support LoRaWAN v1.0.4 protocol
96 +* Support peer-to-peer protocol
97 +* TCXO crystal to ensure RF performance on low temperature
98 +* SMA connector
99 +* Available in different frequency LoRaWAN frequency bands.
100 +* World-wide unique OTAA keys.
101 +* AT Command via UART-TTL interface
102 +* Firmware upgradable via UART interface
103 +* Ultra-long RF range
88 88  
89 -== Example: Join TTN network and send an uplink message, get downlink message. ==
90 90  
91 -== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
106 +== 2.3  Specification ==
92 92  
93 -== Upgrade Firmware of LA66 LoRaWAN Shield ==
108 +* CPU: 32-bit 48 MHz
109 +* Flash: 256KB
110 +* RAM: 64KB
111 +* Input Power Range: 1.8v ~~ 3.7v
112 +* Power Consumption: < 4uA.
113 +* Frequency Range: 150 MHz ~~ 960 MHz
114 +* Maximum Power +22 dBm constant RF output
115 +* High sensitivity: -148 dBm
116 +* Temperature:
117 +** Storage: -55 ~~ +125℃
118 +** Operating: -40 ~~ +85℃
119 +* Humidity:
120 +** Storage: 5 ~~ 95% (Non-Condensing)
121 +** Operating: 10 ~~ 95% (Non-Condensing)
122 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
123 +* LoRa Rx current: <9 mA
124 +* I/O Voltage: 3.3v
94 94  
95 -=== what needs to be used ===
96 96  
97 -1.LA66 LoRaWAN Shield that needs to be upgraded
127 +== 2. Pin Mapping & LED ==
98 98  
99 -2.Arduino
100 100  
101 -3.USB TO TTL
102 102  
103 -[[image:image-20220602100052-2.png]]
131 +== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
104 104  
105 -=== Wiring Schematic ===
106 106  
107 -[[image:image-20220602101311-3.png]]
108 108  
109 -LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
135 +== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
110 110  
111 -GND  >>>>>>>>>>>>GND
112 112  
113 -TXD  >>>>>>>>>>>>TXD
114 114  
115 -RXD  >>>>>>>>>>>>RXD
139 +== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
116 116  
117 -JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
118 118  
119 -Connect to the PC after connecting the wires
120 120  
121 -[[image:image-20220602102240-4.png]]
143 +== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
122 122  
123 -=== Upgrade steps ===
124 124  
125 -==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
146 +=== 2.8.1  Items needed for update ===
126 126  
127 -[[image:image-20220602102824-5.png]]
148 +1. LA66 LoRaWAN Shield
149 +1. Arduino
150 +1. USB TO TTL Adapter
128 128  
129 -==== Press the RST switch on the LA66 LoRaWAN Shield once ====
152 +[[image:image-20220602100052-2.png||height="385" width="600"]]
130 130  
131 -[[image:image-20220602104701-12.png]]
132 132  
133 -==== Open the upgrade application software ====
155 +=== 2.8.2  Connection ===
134 134  
135 -Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
136 136  
158 +[[image:image-20220602101311-3.png||height="276" width="600"]]
159 +
160 +
161 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
162 +
163 +(% style="background-color:yellow" %)**GND  <-> GND
164 +TXD  <->  TXD
165 +RXD  <->  RXD**
166 +
167 +
168 +Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
169 +
170 +Connect USB TTL Adapter to PC after connecting the wires
171 +
172 +
173 +[[image:image-20220602102240-4.png||height="304" width="600"]]
174 +
175 +
176 +=== 2.8.3  Upgrade steps ===
177 +
178 +
179 +==== 1.  Switch SW1 to put in ISP position ====
180 +
181 +
182 +[[image:image-20220602102824-5.png||height="306" width="600"]]
183 +
184 +
185 +
186 +==== 2.  Press the RST switch once ====
187 +
188 +
189 +[[image:image-20220602104701-12.png||height="285" width="600"]]
190 +
191 +
192 +
193 +==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
194 +
195 +
196 +(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
197 +
198 +
137 137  [[image:image-20220602103227-6.png]]
138 138  
201 +
139 139  [[image:image-20220602103357-7.png]]
140 140  
141 -===== Select the COM port corresponding to USB TTL =====
142 142  
205 +
206 +(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
207 +(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
208 +
209 +
143 143  [[image:image-20220602103844-8.png]]
144 144  
145 -===== Select the bin file to burn =====
146 146  
213 +
214 +(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
215 +(% style="color:blue" %)**3. Select the bin file to burn**
216 +
217 +
147 147  [[image:image-20220602104144-9.png]]
148 148  
220 +
149 149  [[image:image-20220602104251-10.png]]
150 150  
223 +
151 151  [[image:image-20220602104402-11.png]]
152 152  
153 -===== Click to start the download =====
154 154  
227 +
228 +(% class="wikigeneratedid" id="HClicktostartthedownload" %)
229 +(% style="color:blue" %)**4. Click to start the download**
230 +
155 155  [[image:image-20220602104923-13.png]]
156 156  
157 -===== The following figure appears to prove that the burning is in progress =====
158 158  
234 +
235 +(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
236 +(% style="color:blue" %)**5. Check update process**
237 +
238 +
159 159  [[image:image-20220602104948-14.png]]
160 160  
161 -===== The following picture appears to prove that the burning is successful =====
162 162  
242 +
243 +(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
244 +(% style="color:blue" %)**The following picture shows that the burning is successful**
245 +
163 163  [[image:image-20220602105251-15.png]]
164 164  
165 -= LA66 USB LoRaWAN Adapter =
166 166  
167 -LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
168 168  
169 -Before use, please make sure that the computer has installed the CP2102 driver
250 += 3.  LA66 USB LoRaWAN Adapter =
170 170  
171 -== Pin Mapping & LED ==
172 172  
173 -== Example Send & Get Messages via LoRaWAN in PC ==
253 +== 3.1  Overview ==
174 174  
175 -Connect the LA66 LoRa Shield to the PC
255 +LA66 USB LoRaWAN Adapter is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
176 176  
177 -[[image:image-20220602171217-1.png||height="615" width="915"]]
178 178  
258 +== 3.2  Features ==
259 +
260 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
261 +* Ultra-long RF range
262 +* Support LoRaWAN v1.0.4 protocol
263 +* Support peer-to-peer protocol
264 +* TCXO crystal to ensure RF performance on low temperature
265 +* Spring RF antenna
266 +* Available in different frequency LoRaWAN frequency bands.
267 +* World-wide unique OTAA keys.
268 +* AT Command via UART-TTL interface
269 +* Firmware upgradable via UART interface
270 +
271 +
272 +== 3.3  Specification ==
273 +
274 +* CPU: 32-bit 48 MHz
275 +* Flash: 256KB
276 +* RAM: 64KB
277 +* Input Power Range: 5v
278 +* Frequency Range: 150 MHz ~~ 960 MHz
279 +* Maximum Power +22 dBm constant RF output
280 +* High sensitivity: -148 dBm
281 +* Temperature:
282 +** Storage: -55 ~~ +125℃
283 +** Operating: -40 ~~ +85℃
284 +* Humidity:
285 +** Storage: 5 ~~ 95% (Non-Condensing)
286 +** Operating: 10 ~~ 95% (Non-Condensing)
287 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
288 +* LoRa Rx current: <9 mA
289 +
290 +
291 +== 3.4  Pin Mapping & LED ==
292 +
293 +
294 +
295 +== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
296 +
297 +
298 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
299 +
300 +
301 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
302 +
303 +
304 +[[image:image-20220602171217-1.png||height="538" width="800"]]
305 +
306 +
179 179  Open the serial port tool
180 180  
181 181  [[image:image-20220602161617-8.png]]
182 182  
183 -[[image:image-20220602161718-9.png||height="529" width="927"]]
311 +[[image:image-20220602161718-9.png||height="457" width="800"]]
184 184  
185 -Press the reset switch RST on the LA66 LoRa Shield.
186 186  
187 -The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
188 188  
189 -[[image:image-20220602161935-10.png]]
315 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
190 190  
191 -send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
317 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
192 192  
319 +
320 +[[image:image-20220602161935-10.png||height="498" width="800"]]
321 +
322 +
323 +
324 +(% style="color:blue" %)**3. See Uplink Command**
325 +
326 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
327 +
193 193  example: AT+SENDB=01,02,8,05820802581ea0a5
194 194  
195 -[[image:image-20220602162157-11.png]]
330 +[[image:image-20220602162157-11.png||height="497" width="800"]]
196 196  
197 -Check to see if TTN received the message
198 198  
199 -[[image:image-20220602162331-12.png||height="547" width="1044"]]
200 200  
201 -== Example Send & Get Messages via LoRaWAN in RPi ==
334 +(% style="color:blue" %)**4. Check to see if TTN received the message**
202 202  
203 -Connect the LA66 LoRa Shield to the RPI
336 +[[image:image-20220602162331-12.png||height="420" width="800"]]
204 204  
205 -[[image:image-20220602171233-2.png||height="592" width="881"]]
206 206  
207 -Log in to the RPI's terminal and connect to the serial port
208 208  
209 -[[image:image-20220602153146-3.png]]
340 +== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
210 210  
211 -Press the reset switch RST on the LA66 LoRa Shield.
212 -The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
213 213  
214 -[[image:image-20220602154928-5.png]]
343 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
215 215  
216 -send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
217 217  
346 +(% style="color:red" %)**Preconditions:**
347 +
348 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
349 +
350 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
351 +
352 +
353 +
354 +(% style="color:blue" %)**Steps for usage:**
355 +
356 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
357 +
358 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
359 +
360 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
361 +
362 +
363 +
364 +== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
365 +
366 +
367 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
368 +
369 +
370 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
371 +
372 +[[image:image-20220602171233-2.png||height="538" width="800"]]
373 +
374 +
375 +
376 +(% style="color:blue" %)**2. Install Minicom in RPi.**
377 +
378 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
379 +
380 + (% style="background-color:yellow" %)**apt update**
381 +
382 + (% style="background-color:yellow" %)**apt install minicom**
383 +
384 +
385 +Use minicom to connect to the RPI's terminal
386 +
387 +[[image:image-20220602153146-3.png||height="439" width="500"]]
388 +
389 +
390 +
391 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
392 +
393 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
394 +
395 +
396 +[[image:image-20220602154928-5.png||height="436" width="500"]]
397 +
398 +
399 +
400 +(% style="color:blue" %)**4. Send Uplink message**
401 +
402 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
403 +
218 218  example: AT+SENDB=01,02,8,05820802581ea0a5
219 219  
220 -[[image:image-20220602160339-6.png]]
221 221  
222 -Check to see if TTN received the message
407 +[[image:image-20220602160339-6.png||height="517" width="600"]]
223 223  
224 -[[image:image-20220602160627-7.png||height="468" width="1013"]]
225 225  
226 -=== Install Minicom ===
227 227  
228 -Enter the following command in the RPI terminal
411 +Check to see if TTN received the message
229 229  
230 -apt update
413 +[[image:image-20220602160627-7.png||height="369" width="800"]]
231 231  
232 -[[image:image-20220602143155-1.png]]
233 233  
234 -apt install minicom
235 235  
236 -[[image:image-20220602143744-2.png]]
417 +== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
237 237  
238 -=== Send PC's CPU/RAM usage to TTN via script. ===
239 239  
240 -==== Take python as an example: ====
241 241  
242 -===== Preconditions: =====
421 +== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
243 243  
244 -1.LA66 USB LoRaWAN Adapter works fine
245 245  
246 -2.LA66 USB LoRaWAN Adapter  is registered with TTN
247 247  
248 -===== Steps for usage =====
249 249  
250 -1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
426 += 4.  Order Info =
251 251  
252 -2.Run the script and see the TTN
253 253  
254 -[[image:image-20220602115852-3.png]]
429 +**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
255 255  
256 256  
432 +(% style="color:blue" %)**XXX**(%%): The default frequency band
257 257  
258 -== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
434 +* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
435 +* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
436 +* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
437 +* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
438 +* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
439 +* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
440 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
441 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
442 +* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
259 259  
260 260  
261 -== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
262 262  
446 += 5.  Reference =
447 +
448 +* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
449 +
263 263  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0