<
From version < 159.1 >
edited by Bei Jinggeng
on 2022/09/07 17:13
To version < 134.6 >
edited by Xiaoling
on 2022/07/26 10:41
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LA66 LoRaWAN Shield User Manual
1 +LA66 LoRaWAN Module
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.Xiaoling
Content
... ... @@ -6,15 +6,15 @@
6 6  
7 7  
8 8  
9 += 1.  LA66 LoRaWAN Module =
9 9  
10 -= 1.  LA66 LoRaWAN Shield =
11 11  
12 +== 1.1  What is LA66 LoRaWAN Module ==
12 12  
13 -== 1.1  Overview ==
14 14  
15 -
16 16  (((
17 -[[image:image-20220715000826-2.png||height="145" width="220"]]
16 +(((
17 +[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 18  )))
19 19  
20 20  (((
... ... @@ -22,12 +22,13 @@
22 22  )))
23 23  
24 24  (((
25 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function t Arduino projects.
25 +(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 26  )))
27 +)))
27 27  
28 28  (((
29 29  (((
30 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
31 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
31 31  )))
32 32  )))
33 33  
... ... @@ -35,10 +35,8 @@
35 35  (((
36 36  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
37 37  )))
38 -)))
39 39  
40 40  (((
41 -(((
42 42  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
43 43  )))
44 44  )))
... ... @@ -53,12 +53,10 @@
53 53  
54 54  == 1.2  Features ==
55 55  
56 -
57 -* Arduino Shield base on LA66 LoRaWAN module
58 -* Support LoRaWAN v1.0.3 protocol
55 +* Support LoRaWAN v1.0.4 protocol
59 59  * Support peer-to-peer protocol
60 60  * TCXO crystal to ensure RF performance on low temperature
61 -* SMA connector
58 +* SMD Antenna pad and i-pex antenna connector
62 62  * Available in different frequency LoRaWAN frequency bands.
63 63  * World-wide unique OTAA keys.
64 64  * AT Command via UART-TTL interface
... ... @@ -65,9 +65,10 @@
65 65  * Firmware upgradable via UART interface
66 66  * Ultra-long RF range
67 67  
68 -== 1.3  Specification ==
69 69  
70 70  
67 +== 1.3  Specification ==
68 +
71 71  * CPU: 32-bit 48 MHz
72 72  * Flash: 256KB
73 73  * RAM: 64KB
... ... @@ -86,155 +86,212 @@
86 86  * LoRa Rx current: <9 mA
87 87  * I/O Voltage: 3.3v
88 88  
89 -== 1.4  Pin Mapping & LED ==
90 90  
91 91  
92 -[[image:image-20220817085048-1.png||height="533" width="734"]]
89 +== 1.4  AT Command ==
93 93  
94 94  
92 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
95 95  
96 -~1. The LED lights up red when there is an upstream data packet
97 -2. When the network is successfully connected, the green light will be on for 5 seconds
98 -3. Purple light on when receiving downlink data packets
99 99  
100 100  
101 -[[image:image-20220820112305-1.png||height="515" width="749"]]
96 +== 1.5  Dimension ==
102 102  
98 +[[image:image-20220718094750-3.png]]
103 103  
104 104  
105 -== 1.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
106 106  
102 +== 1.6  Pin Mapping ==
107 107  
108 -**Show connection diagram:**
104 +[[image:image-20220720111850-1.png]]
109 109  
110 110  
111 -[[image:image-20220723170210-2.png||height="908" width="681"]]
112 112  
108 +== 1.7  Land Pattern ==
113 113  
110 +[[image:image-20220517072821-2.png]]
114 114  
115 -(% style="color:blue" %)**1.  open Arduino IDE**
116 116  
117 117  
118 -[[image:image-20220723170545-4.png]]
114 += 2.  LA66 LoRaWAN Shield =
119 119  
120 120  
117 +== 2.1  Overview ==
121 121  
122 -(% style="color:blue" %)**2.  Open project**
123 123  
120 +(((
121 +[[image:image-20220715000826-2.png||height="145" width="220"]]
122 +)))
124 124  
125 -LA66-LoRaWAN-shield-AT-command-via-Arduino-UNO source code link: [[https:~~/~~/www.dropbox.com/sh/cx0pspkwu62pr97/AAAbKh2ioPdZfSDtdDpooYqha?dl=0>>https://www.dropbox.com/sh/cx0pspkwu62pr97/AAAbKh2ioPdZfSDtdDpooYqha?dl=0]]
124 +(((
125 +
126 +)))
126 126  
128 +(((
129 +(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
130 +)))
127 127  
128 -[[image:image-20220726135239-1.png]]
132 +(((
133 +(((
134 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
135 +)))
136 +)))
129 129  
138 +(((
139 +(((
140 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
141 +)))
142 +)))
130 130  
144 +(((
145 +(((
146 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
147 +)))
148 +)))
131 131  
132 -(% style="color:blue" %)**3.  Click the button marked 1 in the figure to compile, and after the compilation is complete, click the button marked 2 in the figure to upload**
150 +(((
151 +(((
152 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
153 +)))
154 +)))
133 133  
134 134  
135 -[[image:image-20220726135356-2.png]]
136 136  
158 +== 2.2  Features ==
137 137  
160 +* Arduino Shield base on LA66 LoRaWAN module
161 +* Support LoRaWAN v1.0.4 protocol
162 +* Support peer-to-peer protocol
163 +* TCXO crystal to ensure RF performance on low temperature
164 +* SMA connector
165 +* Available in different frequency LoRaWAN frequency bands.
166 +* World-wide unique OTAA keys.
167 +* AT Command via UART-TTL interface
168 +* Firmware upgradable via UART interface
169 +* Ultra-long RF range
138 138  
139 -(% style="color:blue" %)**4.  After the upload is successful, open the serial port monitoring and send the AT command**
140 140  
141 141  
142 -[[image:image-20220723172235-7.png||height="480" width="1027"]]
173 +== 2.3  Specification ==
143 143  
175 +* CPU: 32-bit 48 MHz
176 +* Flash: 256KB
177 +* RAM: 64KB
178 +* Input Power Range: 1.8v ~~ 3.7v
179 +* Power Consumption: < 4uA.
180 +* Frequency Range: 150 MHz ~~ 960 MHz
181 +* Maximum Power +22 dBm constant RF output
182 +* High sensitivity: -148 dBm
183 +* Temperature:
184 +** Storage: -55 ~~ +125℃
185 +** Operating: -40 ~~ +85℃
186 +* Humidity:
187 +** Storage: 5 ~~ 95% (Non-Condensing)
188 +** Operating: 10 ~~ 95% (Non-Condensing)
189 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
190 +* LoRa Rx current: <9 mA
191 +* I/O Voltage: 3.3v
144 144  
145 145  
146 -== 1.6  Example: Join TTN network and send an uplink message, get downlink message. ==
147 147  
195 +== 2.4  LED ==
148 148  
149 -(% style="color:blue" %)**1.  Open project**
150 150  
198 +~1. The LED lights up red when there is an upstream data packet
199 +2. When the network is successfully connected, the green light will be on for 5 seconds
200 +3. Purple light on when receiving downlink data packets
151 151  
152 -Join-TTN-network source code link: [[https:~~/~~/www.dropbox.com/sh/0sjyncafa0gjv00/AACC2m1orov-QHRkvH8-ddCka?dl=0>>https://www.dropbox.com/sh/0sjyncafa0gjv00/AACC2m1orov-QHRkvH8-ddCka?dl=0]]
153 153  
154 154  
155 -[[image:image-20220723172502-8.png]]
204 +== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
156 156  
157 157  
207 +**Show connection diagram:**
158 158  
159 -(% style="color:blue" %)**2.  Same steps as 1.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
160 160  
210 +[[image:image-20220723170210-2.png||height="908" width="681"]]
161 161  
162 -[[image:image-20220723172938-9.png||height="652" width="1050"]]
163 163  
164 164  
214 +(% style="color:blue" %)**1.  open Arduino IDE**
165 165  
166 -== 1.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in Node-RED. ==
167 167  
217 +[[image:image-20220723170545-4.png]]
168 168  
169 -(% style="color:blue" %)**1.  Open project**
170 170  
171 171  
172 -Log-Temperature-Sensor-and-send-data-to-TTN source code link: [[https:~~/~~/www.dropbox.com/sh/0aagmrpec1lxmva/AABMXWVMSHG9dK1_Zv_7xOmCa?dl=0>>https://www.dropbox.com/sh/0aagmrpec1lxmva/AABMXWVMSHG9dK1_Zv_7xOmCa?dl=0]]
221 +(% style="color:blue" %)**2.  Open project**
173 173  
174 174  
175 -[[image:image-20220723173341-10.png||height="581" width="1014"]]
224 +LA66-LoRaWAN-shield-AT-command-via-Arduino-UNO source code link: [[https:~~/~~/www.dropbox.com/sh/trqitpm9adkupva/AAAE542NzwlHubIAIDxe6IWFa?dl=0>>https://www.dropbox.com/sh/trqitpm9adkupva/AAAE542NzwlHubIAIDxe6IWFa?dl=0]]
176 176  
177 177  
178 178  
179 -(% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
180 180  
229 +(% style="color:blue" %)**3.  Click the button marked 1 in the figure to compile, and after the compilation is complete, click the button marked 2 in the figure to upload**
181 181  
182 -[[image:image-20220723173950-11.png||height="665" width="1012"]]
183 183  
184 184  
185 -LA66~-~-node-red~-~-decoder:[[dragino-end-node-decoder/Node-RED at main · dragino/dragino-end-node-decoder · GitHub>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/Node-RED]]
233 +(% style="color:blue" %)**4.  After the upload is successful, open the serial port monitoring and send the AT command**
186 186  
187 187  
236 +[[image:image-20220723172235-7.png||height="480" width="1027"]]
188 188  
189 -(% style="color:blue" %)**3.  Integration into Node-red via TTNV3**
190 190  
191 191  
192 -For the usage of Node-RED, please refer to: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Node-RED/>>http://wiki.dragino.com/xwiki/bin/view/Main/Node-RED/]]
240 +== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
193 193  
194 194  
195 -[[image:image-20220723175700-12.png||height="602" width="995"]]
243 +(% style="color:blue" %)**1.  Open project**
196 196  
197 -== 1.8 Example: How to join helium ==
198 198  
246 +Join-TTN-network source code link: [[https:~~/~~/www.dropbox.com/sh/trqitpm9adkupva/AAAE542NzwlHubIAIDxe6IWFa?dl=0>>https://www.dropbox.com/sh/trqitpm9adkupva/AAAE542NzwlHubIAIDxe6IWFa?dl=0]]
199 199  
200 -(% style="color:blue" %)**1. Create a new device.**
248 +[[image:image-20220723172502-8.png]]
201 201  
202 -[[image:image-20220907165500-1.png||height="464" width="940"]]
203 203  
204 204  
205 -(% style="color:blue" %)**2. Save the device after filling in the necessary information.**
252 +(% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
206 206  
207 -[[image:image-20220907165837-2.png||height="375" width="809"]]
208 208  
255 +[[image:image-20220723172938-9.png||height="652" width="1050"]]
209 209  
210 -(% style="color:blue" %)**3.  Use AT commands.**
211 211  
212 -[[image:image-20220602100052-2.png||height="385" width="600"]]
213 213  
259 +== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in Node-RED. ==
214 214  
215 -(% style="color:#0000ff" %)**4.Use command AT+CFG to get device configuration**
216 216  
217 -[[image:image-20220907170308-3.png||height="556" width="617"]]
262 +(% style="color:blue" %)**1.  Open project**
218 218  
219 219  
220 -(% style="color:blue" %)**5Network successfully.**
265 +Log-Temperature-Sensor-and-send-data-to-TTN source code link: [[https:~~/~~/www.dropbox.com/sh/trqitpm9adkupva/AAAE542NzwlHubIAIDxe6IWFa?dl=0>>https://www.dropbox.com/sh/trqitpm9adkupva/AAAE542NzwlHubIAIDxe6IWFa?dl=0]]
221 221  
222 -[[image:image-20220907170436-4.png]]
223 223  
268 +[[image:image-20220723173341-10.png||height="581" width="1014"]]
224 224  
225 -(% style="color:blue" %)**6.  Send uplink using command**
226 226  
227 -[[image:image-20220907170659-5.png]]
228 228  
229 -[[image:image-20220907170744-6.png||height="242" width="798"]]
272 +(% style="color:blue" %)**2.  Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets**
230 230  
231 231  
232 -== 1.9  Upgrade Firmware of LA66 LoRaWAN Shield ==
275 +[[image:image-20220723173950-11.png||height="665" width="1012"]]
233 233  
234 234  
235 -=== 1.9.1  Items needed for update ===
236 236  
279 +(% style="color:blue" %)**3.  Integration into Node-red via TTNV3**
237 237  
281 +For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
282 +
283 +[[image:image-20220723175700-12.png||height="602" width="995"]]
284 +
285 +
286 +
287 +== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
288 +
289 +
290 +=== 2.8.1  Items needed for update ===
291 +
292 +
238 238  1. LA66 LoRaWAN Shield
239 239  1. Arduino
240 240  1. USB TO TTL Adapter
... ... @@ -242,10 +242,9 @@
242 242  [[image:image-20220602100052-2.png||height="385" width="600"]]
243 243  
244 244  
300 +=== 2.8.2  Connection ===
245 245  
246 -=== 1.9.2  Connection ===
247 247  
248 -
249 249  [[image:image-20220602101311-3.png||height="276" width="600"]]
250 250  
251 251  
... ... @@ -268,11 +268,9 @@
268 268  [[image:image-20220602102240-4.png||height="304" width="600"]]
269 269  
270 270  
325 +=== 2.8.3  Upgrade steps ===
271 271  
272 -=== 1.9.3  Upgrade steps ===
273 273  
274 -
275 -
276 276  ==== (% style="color:blue" %)1.  Switch SW1 to put in ISP position(%%) ====
277 277  
278 278  
... ... @@ -283,16 +283,15 @@
283 283  ==== (% style="color:blue" %)2.  Press the RST switch once(%%) ====
284 284  
285 285  
286 -[[image:image-20220817085447-1.png]]
338 +[[image:image-20220602104701-12.png||height="285" width="600"]]
287 287  
288 288  
289 289  
290 -
291 291  ==== (% style="color:blue" %)3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade(%%) ====
292 292  
293 293  
294 294  (((
295 -(% style="color:blue" %)**1. Software download link:  **(%%)**[[https:~~/~~/www.dropbox.com/sh/j0qyc7a9ejit7jk/AACtx2tK4gEv6YFXMIVUM4dLa?dl=0>>https://www.dropbox.com/sh/j0qyc7a9ejit7jk/AACtx2tK4gEv6YFXMIVUM4dLa?dl=0]]**
346 +(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
296 296  )))
297 297  
298 298  
... ... @@ -328,7 +328,6 @@
328 328  (% class="wikigeneratedid" id="HClicktostartthedownload" %)
329 329  (% style="color:blue" %)**4. Click to start the download**
330 330  
331 -
332 332  [[image:image-20220602104923-13.png]]
333 333  
334 334  
... ... @@ -344,27 +344,316 @@
344 344  (% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
345 345  (% style="color:blue" %)**The following picture shows that the burning is successful**
346 346  
347 -
348 348  [[image:image-20220602105251-15.png]]
349 349  
350 350  
351 351  
352 -= 2FAQ =
401 += 3LA66 USB LoRaWAN Adapter =
353 353  
354 354  
355 -== 2.1  How to Compile Source Code for LA66? ==
404 +== 3.1  Overview ==
356 356  
357 357  
358 -Compile and Upload Code to ASR6601 Platform :[[Instruction>>Main.User Manual for LoRaWAN End Nodes.LA66 LoRaWAN Module.Compile and Upload Code to ASR6601 Platform.WebHome]]
407 +[[image:image-20220715001142-3.png||height="145" width="220"]]
359 359  
360 360  
410 +(((
411 +(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
412 +)))
361 361  
362 -= 3.  Order Info =
414 +(((
415 +(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
416 +)))
363 363  
418 +(((
419 +Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
420 +)))
364 364  
365 -**Part Number:**   (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%)
422 +(((
423 +Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
424 +)))
366 366  
426 +(((
427 +LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
428 +)))
367 367  
430 +
431 +
432 +== 3.2  Features ==
433 +
434 +* LoRaWAN USB adapter base on LA66 LoRaWAN module
435 +* Ultra-long RF range
436 +* Support LoRaWAN v1.0.4 protocol
437 +* Support peer-to-peer protocol
438 +* TCXO crystal to ensure RF performance on low temperature
439 +* Spring RF antenna
440 +* Available in different frequency LoRaWAN frequency bands.
441 +* World-wide unique OTAA keys.
442 +* AT Command via UART-TTL interface
443 +* Firmware upgradable via UART interface
444 +* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
445 +
446 +
447 +== 3.3  Specification ==
448 +
449 +* CPU: 32-bit 48 MHz
450 +* Flash: 256KB
451 +* RAM: 64KB
452 +* Input Power Range: 5v
453 +* Frequency Range: 150 MHz ~~ 960 MHz
454 +* Maximum Power +22 dBm constant RF output
455 +* High sensitivity: -148 dBm
456 +* Temperature:
457 +** Storage: -55 ~~ +125℃
458 +** Operating: -40 ~~ +85℃
459 +* Humidity:
460 +** Storage: 5 ~~ 95% (Non-Condensing)
461 +** Operating: 10 ~~ 95% (Non-Condensing)
462 +* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
463 +* LoRa Rx current: <9 mA
464 +
465 +
466 +== 3.4  Pin Mapping & LED ==
467 +
468 +
469 +
470 +== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
471 +
472 +
473 +(((
474 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
475 +)))
476 +
477 +
478 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
479 +
480 +
481 +[[image:image-20220723100027-1.png]]
482 +
483 +
484 +Open the serial port tool
485 +
486 +[[image:image-20220602161617-8.png]]
487 +
488 +[[image:image-20220602161718-9.png||height="457" width="800"]]
489 +
490 +
491 +
492 +(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
493 +
494 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
495 +
496 +
497 +[[image:image-20220602161935-10.png||height="498" width="800"]]
498 +
499 +
500 +
501 +(% style="color:blue" %)**3. See Uplink Command**
502 +
503 +Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
504 +
505 +example: AT+SENDB=01,02,8,05820802581ea0a5
506 +
507 +[[image:image-20220602162157-11.png||height="497" width="800"]]
508 +
509 +
510 +
511 +(% style="color:blue" %)**4. Check to see if TTN received the message**
512 +
513 +[[image:image-20220602162331-12.png||height="420" width="800"]]
514 +
515 +
516 +
517 +== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
518 +
519 +
520 +**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
521 +
522 +(**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
523 +
524 +(% style="color:red" %)**Preconditions:**
525 +
526 +(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
527 +
528 +(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
529 +
530 +
531 +
532 +(% style="color:blue" %)**Steps for usage:**
533 +
534 +(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
535 +
536 +(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
537 +
538 +[[image:image-20220602115852-3.png||height="450" width="1187"]]
539 +
540 +
541 +
542 +== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
543 +
544 +
545 +Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
546 +
547 +
548 +(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
549 +
550 +[[image:image-20220723100439-2.png]]
551 +
552 +
553 +
554 +(% style="color:blue" %)**2. Install Minicom in RPi.**
555 +
556 +(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
557 +
558 + (% style="background-color:yellow" %)**apt update**
559 +
560 + (% style="background-color:yellow" %)**apt install minicom**
561 +
562 +
563 +Use minicom to connect to the RPI's terminal
564 +
565 +[[image:image-20220602153146-3.png||height="439" width="500"]]
566 +
567 +
568 +
569 +(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
570 +
571 +The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
572 +
573 +
574 +[[image:image-20220602154928-5.png||height="436" width="500"]]
575 +
576 +
577 +
578 +(% style="color:blue" %)**4. Send Uplink message**
579 +
580 +Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
581 +
582 +example: AT+SENDB=01,02,8,05820802581ea0a5
583 +
584 +
585 +[[image:image-20220602160339-6.png||height="517" width="600"]]
586 +
587 +
588 +
589 +Check to see if TTN received the message
590 +
591 +[[image:image-20220602160627-7.png||height="369" width="800"]]
592 +
593 +
594 +
595 +== 3.8  Example: Use of LA66 USB LoRaWAN Adapter and APP sample process and DRAGINO-LA66-APP. ==
596 +
597 +
598 +=== 3.8.1 DRAGINO-LA66-APP ===
599 +
600 +
601 +[[image:image-20220723102027-3.png]]
602 +
603 +
604 +
605 +==== (% style="color:blue" %)**Overview:**(%%) ====
606 +
607 +
608 +DRAGINO-LA66-APP is a mobile APP for LA66 USB LoRaWAN Adapter and APP sample process. DRAGINO-LA66-APP can obtain the positioning information of the mobile phone and send it to the LoRaWAN platform through the LA66 USB LoRaWAN Adapter.
609 +
610 +View the communication signal strength between the node and the gateway through the RSSI value(DRAGINO-LA66-APP currently only supports Android system)
611 +
612 +
613 +
614 +==== (% style="color:blue" %)**Conditions of Use:**(%%) ====
615 +
616 +
617 +Requires a type-c to USB adapter
618 +
619 +[[image:image-20220723104754-4.png]]
620 +
621 +
622 +
623 +==== (% style="color:blue" %)**Use of APP:**(%%) ====
624 +
625 +
626 +Function and page introduction
627 +
628 +[[image:image-20220723113448-7.png||height="1481" width="670"]]
629 +
630 +1.Display LA66 USB LoRaWAN Module connection status
631 +
632 +2.Check and reconnect
633 +
634 +3.Turn send timestamps on or off
635 +
636 +4.Display LoRaWan connection status
637 +
638 +5.Check LoRaWan connection status
639 +
640 +6.The RSSI value of the node when the ACK is received
641 +
642 +7.Node's Signal Strength Icon
643 +
644 +8.Set the packet sending interval of the node in seconds
645 +
646 +9.AT command input box
647 +
648 +10.Send AT command button
649 +
650 +11.Node log box
651 +
652 +12.clear log button
653 +
654 +13.exit button
655 +
656 +
657 +LA66 USB LoRaWAN Module not connected
658 +
659 +[[image:image-20220723110520-5.png||height="903" width="677"]]
660 +
661 +
662 +
663 +Connect LA66 USB LoRaWAN Module
664 +
665 +[[image:image-20220723110626-6.png||height="906" width="680"]]
666 +
667 +
668 +
669 +=== 3.8.2 Use DRAGINO-LA66-APP to obtain positioning information and send it to TTNV3 through LA66 USB LoRaWAN Adapter and integrate it into Node-RED ===
670 +
671 +
672 +**1.  Register LA66 USB LoRaWAN Module to TTNV3**
673 +
674 +[[image:image-20220723134549-8.png]]
675 +
676 +
677 +
678 +**2.  Open Node-RED,And import the JSON file to generate the flow**
679 +
680 +Sample JSON file please go to this link to download:放置JSON文件的链接
681 +
682 +For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
683 +
684 +The following is the positioning effect map
685 +
686 +[[image:image-20220723144339-1.png]]
687 +
688 +
689 +
690 +== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
691 +
692 +
693 +The LA66 USB LoRaWAN Adapter is the same as the LA66 LoRaWAN Shield update method
694 +
695 +Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
696 +
697 +[[image:image-20220723150132-2.png]]
698 +
699 +
700 +
701 += 4.  Order Info =
702 +
703 +
704 +**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
705 +
706 +
368 368  (% style="color:blue" %)**XXX**(%%): The default frequency band
369 369  
370 370  * (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
... ... @@ -377,10 +377,7 @@
377 377  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
378 378  * (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
379 379  
719 += 5.  Reference =
380 380  
381 -= 4.  Reference =
382 382  
383 -
384 -* Hardware Design File for LA66 LoRaWAN Shield : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
385 -
386 -
722 +* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
image-20220726135239-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -91.4 KB
Content
image-20220726135356-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -45.6 KB
Content
image-20220813173738-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -13.2 KB
Content
image-20220813174353-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -189.1 KB
Content
image-20220813183239-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -642.4 KB
Content
image-20220814101457-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -913.4 KB
Content
image-20220817085048-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -913.4 KB
Content
image-20220817085447-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -467.7 KB
Content
image-20220817085646-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -95.7 KB
Content
image-20220820112305-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -784.9 KB
Content
image-20220907165500-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -121.8 KB
Content
image-20220907165837-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -86.9 KB
Content
image-20220907170308-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -40.4 KB
Content
image-20220907170436-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -22.6 KB
Content
image-20220907170659-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -27.8 KB
Content
image-20220907170744-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Bei
Size
... ... @@ -1,1 +1,0 @@
1 -44.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0