<
From version < 131.1 >
edited by Herong Lu
on 2022/07/23 17:41
To version < 52.1 >
edited by Herong Lu
on 2022/06/02 16:07
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,646 +1,235 @@
1 -0
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
2 +{{toc/}}
3 +{{/box}}
2 2  
3 -**Table of Contents:**
5 += LA66 LoRaWAN Module =
4 4  
5 -{{toc/}}
7 +== What is LA66 LoRaWAN Module ==
6 6  
9 +**Dragino LA66** is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRa and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
7 7  
11 +**LA66 **is a ready-to-use module which includes the LoRaWAN v1.0.4 protocol. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
8 8  
9 -= 1.  LA66 LoRaWAN Module =
13 +**Each LA66 **module includes a world unique OTAA key for LoRaWAN registration.
10 10  
11 11  
12 -== 1.1  What is LA66 LoRaWAN Module ==
13 13  
17 +== Specification ==
14 14  
15 -(((
16 -(((
17 -[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 -)))
19 +[[image:image-20220517072526-1.png]]
19 19  
20 -(((
21 -
22 -)))
21 +Input Power Range: 1.8v ~~ 3.7v
23 23  
24 -(((
25 -(% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 -)))
27 -)))
23 +Power Consumption: < 4uA.
28 28  
29 -(((
30 -(((
31 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 -)))
33 -)))
25 +Frequency Range: 150 MHz ~~ 960 MHz
34 34  
35 -(((
36 -(((
37 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 -)))
27 +Maximum Power +22 dBm constant RF output
39 39  
40 -(((
41 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 -)))
43 -)))
29 +High sensitivity: -148 dBm
44 44  
45 -(((
46 -(((
47 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 -)))
49 -)))
31 +Temperature:
50 50  
33 +* Storage: -55 ~~ +125℃
34 +* Operating: -40 ~~ +85℃
51 51  
36 +Humidity:
52 52  
53 -== 1.2  Features ==
38 +* Storage: 5 ~~ 95% (Non-Condensing)
39 +* Operating: 10 ~~ 95% (Non-Condensing)
54 54  
55 -* Support LoRaWAN v1.0.4 protocol
56 -* Support peer-to-peer protocol
57 -* TCXO crystal to ensure RF performance on low temperature
58 -* SMD Antenna pad and i-pex antenna connector
59 -* Available in different frequency LoRaWAN frequency bands.
60 -* World-wide unique OTAA keys.
61 -* AT Command via UART-TTL interface
62 -* Firmware upgradable via UART interface
63 -* Ultra-long RF range
41 +LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
64 64  
65 -== 1.3  Specification ==
43 +LoRa Rx current: <9 mA
66 66  
67 -* CPU: 32-bit 48 MHz
68 -* Flash: 256KB
69 -* RAM: 64KB
70 -* Input Power Range: 1.8v ~~ 3.7v
71 -* Power Consumption: < 4uA.
72 -* Frequency Range: 150 MHz ~~ 960 MHz
73 -* Maximum Power +22 dBm constant RF output
74 -* High sensitivity: -148 dBm
75 -* Temperature:
76 -** Storage: -55 ~~ +125℃
77 -** Operating: -40 ~~ +85℃
78 -* Humidity:
79 -** Storage: 5 ~~ 95% (Non-Condensing)
80 -** Operating: 10 ~~ 95% (Non-Condensing)
81 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
82 -* LoRa Rx current: <9 mA
83 -* I/O Voltage: 3.3v
45 +I/O Voltage: 3.3v
84 84  
85 -== 1.4  AT Command ==
86 86  
48 +== AT Command ==
87 87  
88 88  AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
89 89  
90 90  
53 +== Pin Mapping ==
91 91  
92 -== 1.5  Dimension ==
55 +[[image:image-20220523101537-1.png]]
93 93  
94 -[[image:image-20220718094750-3.png]]
57 +== Land Pattern ==
95 95  
96 -
97 -
98 -== 1.6  Pin Mapping ==
99 -
100 -[[image:image-20220720111850-1.png]]
101 -
102 -
103 -
104 -== 1.7  Land Pattern ==
105 -
106 106  [[image:image-20220517072821-2.png]]
107 107  
108 108  
62 +== Part Number ==
109 109  
110 -= 2.  LA66 LoRaWAN Shield =
64 +Part Number: **LA66-XXX**
111 111  
66 +**XX**: The default frequency band
112 112  
113 -== 2.1  Overview ==
68 +* **AS923**: LoRaWAN AS923 band
69 +* **AU915**: LoRaWAN AU915 band
70 +* **EU433**: LoRaWAN EU433 band
71 +* **EU868**: LoRaWAN EU868 band
72 +* **KR920**: LoRaWAN KR920 band
73 +* **US915**: LoRaWAN US915 band
74 +* **IN865**: LoRaWAN IN865 band
75 +* **CN470**: LoRaWAN CN470 band
114 114  
77 += LA66 LoRaWAN Shield =
115 115  
116 -(((
117 -[[image:image-20220715000826-2.png||height="145" width="220"]]
118 -)))
79 +LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
119 119  
120 -(((
121 -
122 -)))
81 +== Pin Mapping & LED ==
123 123  
124 -(((
125 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
126 -)))
83 +== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
127 127  
128 -(((
129 -(((
130 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
131 -)))
132 -)))
85 +== Example: Join TTN network and send an uplink message, get downlink message. ==
133 133  
134 -(((
135 -(((
136 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
137 -)))
138 -)))
87 +== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
139 139  
140 -(((
141 -(((
142 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
143 -)))
144 -)))
89 +== Upgrade Firmware of LA66 LoRaWAN Shield ==
145 145  
146 -(((
147 -(((
148 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
149 -)))
150 -)))
91 +=== what needs to be used ===
151 151  
93 +1.LA66 LoRaWAN Shield that needs to be upgraded
152 152  
95 +2.Arduino
153 153  
154 -== 2. Features ==
97 +3.USB TO TTL
155 155  
156 -* Arduino Shield base on LA66 LoRaWAN module
157 -* Support LoRaWAN v1.0.4 protocol
158 -* Support peer-to-peer protocol
159 -* TCXO crystal to ensure RF performance on low temperature
160 -* SMA connector
161 -* Available in different frequency LoRaWAN frequency bands.
162 -* World-wide unique OTAA keys.
163 -* AT Command via UART-TTL interface
164 -* Firmware upgradable via UART interface
165 -* Ultra-long RF range
99 +[[image:image-20220602100052-2.png]]
166 166  
167 -== 2.3  Specification ==
101 +=== Wiring Schematic ===
168 168  
169 -* CPU: 32-bit 48 MHz
170 -* Flash: 256KB
171 -* RAM: 64KB
172 -* Input Power Range: 1.8v ~~ 3.7v
173 -* Power Consumption: < 4uA.
174 -* Frequency Range: 150 MHz ~~ 960 MHz
175 -* Maximum Power +22 dBm constant RF output
176 -* High sensitivity: -148 dBm
177 -* Temperature:
178 -** Storage: -55 ~~ +125℃
179 -** Operating: -40 ~~ +85℃
180 -* Humidity:
181 -** Storage: 5 ~~ 95% (Non-Condensing)
182 -** Operating: 10 ~~ 95% (Non-Condensing)
183 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
184 -* LoRa Rx current: <9 mA
185 -* I/O Voltage: 3.3v
103 +[[image:image-20220602101311-3.png]]
186 186  
187 -== 2.4  LED ==
105 +LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
188 188  
189 -~1. The LED lights up red when there is an upstream data packet
190 -2. When the network is successfully connected, the green light will be on for 5 seconds
191 -3. Purple light on when receiving downlink data packets
107 +GND  >>>>>>>>>>>>GND
192 192  
109 +TXD  >>>>>>>>>>>>TXD
193 193  
194 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
111 +RXD  >>>>>>>>>>>>RXD
195 195  
196 -Show connection diagram:
113 +JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
197 197  
198 -[[image:image-20220723170210-2.png||height="908" width="681"]]
115 +Connect to the PC after connecting the wires
199 199  
200 -1.open Arduino IDE
117 +[[image:image-20220602102240-4.png]]
201 201  
202 -[[image:image-20220723170545-4.png]]
119 +=== Upgrade steps ===
203 203  
204 -2.Open project
121 +==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
205 205  
206 -[[image:image-20220723170750-5.png||height="533" width="930"]]
123 +[[image:image-20220602102824-5.png]]
207 207  
208 -3.Click the button marked 1 in the figure to compile, and after the compilation is complete, click the button marked 2 in the figure to upload
125 +==== Press the RST switch on the LA66 LoRaWAN Shield once ====
209 209  
210 -[[image:image-20220723171228-6.png]]
127 +[[image:image-20220602104701-12.png]]
211 211  
212 -4.After the upload is successful, open the serial port monitoring and send the AT command
129 +==== Open the upgrade application software ====
213 213  
214 -[[image:image-20220723172235-7.png||height="480" width="1027"]]
131 +Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
215 215  
216 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
217 -
218 -1.Open project
219 -
220 -[[image:image-20220723172502-8.png]]
221 -
222 -2.Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets
223 -
224 -[[image:image-20220723172938-9.png||height="652" width="1050"]]
225 -
226 -
227 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
228 -
229 -1.Open project
230 -
231 -[[image:image-20220723173341-10.png||height="581" width="1014"]]
232 -
233 -2.Same steps as 2.5,after opening the serial port monitoring, it will automatically connect to the network and send packets
234 -
235 -[[image:image-20220723173950-11.png||height="665" width="1012"]]
236 -
237 -
238 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
239 -
240 -
241 -=== 2.8.1  Items needed for update ===
242 -
243 -1. LA66 LoRaWAN Shield
244 -1. Arduino
245 -1. USB TO TTL Adapter
246 -
247 -[[image:image-20220602100052-2.png||height="385" width="600"]]
248 -
249 -
250 -=== 2.8.2  Connection ===
251 -
252 -
253 -[[image:image-20220602101311-3.png||height="276" width="600"]]
254 -
255 -
256 -(((
257 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
258 -)))
259 -
260 -(((
261 -(% style="background-color:yellow" %)**GND  <-> GND
262 -TXD  <->  TXD
263 -RXD  <->  RXD**
264 -)))
265 -
266 -
267 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
268 -
269 -Connect USB TTL Adapter to PC after connecting the wires
270 -
271 -
272 -[[image:image-20220602102240-4.png||height="304" width="600"]]
273 -
274 -
275 -=== 2.8.3  Upgrade steps ===
276 -
277 -
278 -==== 1.  Switch SW1 to put in ISP position ====
279 -
280 -
281 -[[image:image-20220602102824-5.png||height="306" width="600"]]
282 -
283 -
284 -
285 -==== 2.  Press the RST switch once ====
286 -
287 -
288 -[[image:image-20220602104701-12.png||height="285" width="600"]]
289 -
290 -
291 -
292 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
293 -
294 -
295 -(((
296 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
297 -)))
298 -
299 -
300 300  [[image:image-20220602103227-6.png]]
301 301  
302 -
303 303  [[image:image-20220602103357-7.png]]
304 304  
137 +===== Select the COM port corresponding to USB TTL =====
305 305  
306 -
307 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
308 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
309 -
310 -
311 311  [[image:image-20220602103844-8.png]]
312 312  
141 +===== Select the bin file to burn =====
313 313  
314 -
315 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
316 -(% style="color:blue" %)**3. Select the bin file to burn**
317 -
318 -
319 319  [[image:image-20220602104144-9.png]]
320 320  
321 -
322 322  [[image:image-20220602104251-10.png]]
323 323  
324 -
325 325  [[image:image-20220602104402-11.png]]
326 326  
149 +===== Click to start the download =====
327 327  
328 -
329 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
330 -(% style="color:blue" %)**4. Click to start the download**
331 -
332 332  [[image:image-20220602104923-13.png]]
333 333  
153 +===== The following figure appears to prove that the burning is in progress =====
334 334  
335 -
336 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
337 -(% style="color:blue" %)**5. Check update process**
338 -
339 -
340 340  [[image:image-20220602104948-14.png]]
341 341  
157 +===== The following picture appears to prove that the burning is successful =====
342 342  
343 -
344 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
345 -(% style="color:blue" %)**The following picture shows that the burning is successful**
346 -
347 347  [[image:image-20220602105251-15.png]]
348 348  
161 += LA66 USB LoRaWAN Adapter =
349 349  
163 +LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
350 350  
351 -= 3.  LA66 USB LoRaWAN Adapter =
165 +Before use, please make sure that the computer has installed the CP2102 driver
352 352  
167 +== Pin Mapping & LED ==
353 353  
354 -== 3.1  Overview ==
169 +== Example Send & Get Messages via LoRaWAN in PC ==
355 355  
171 +== Example Send & Get Messages via LoRaWAN in RPi ==
356 356  
357 -[[image:image-20220715001142-3.png||height="145" width="220"]]
173 +Connect the LA66 LoRa Shield to the RPI
358 358  
175 +[[image:image-20220602153333-4.png]]
359 359  
360 -(((
361 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
362 -)))
177 +Log in to the RPI's terminal and connect to the serial port
363 363  
364 -(((
365 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.3 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
366 -)))
179 +[[image:image-20220602153146-3.png]]
367 367  
368 -(((
369 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
370 -)))
181 +Press the reset switch RST on the LA66 LoRa Shield.
182 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
371 371  
372 -(((
373 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
374 -)))
184 +[[image:image-20220602154928-5.png]]
375 375  
376 -(((
377 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
378 -)))
186 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
379 379  
380 -
381 -
382 -== 3.2  Features ==
383 -
384 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
385 -* Ultra-long RF range
386 -* Support LoRaWAN v1.0.4 protocol
387 -* Support peer-to-peer protocol
388 -* TCXO crystal to ensure RF performance on low temperature
389 -* Spring RF antenna
390 -* Available in different frequency LoRaWAN frequency bands.
391 -* World-wide unique OTAA keys.
392 -* AT Command via UART-TTL interface
393 -* Firmware upgradable via UART interface
394 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
395 -
396 -== 3.3  Specification ==
397 -
398 -* CPU: 32-bit 48 MHz
399 -* Flash: 256KB
400 -* RAM: 64KB
401 -* Input Power Range: 5v
402 -* Frequency Range: 150 MHz ~~ 960 MHz
403 -* Maximum Power +22 dBm constant RF output
404 -* High sensitivity: -148 dBm
405 -* Temperature:
406 -** Storage: -55 ~~ +125℃
407 -** Operating: -40 ~~ +85℃
408 -* Humidity:
409 -** Storage: 5 ~~ 95% (Non-Condensing)
410 -** Operating: 10 ~~ 95% (Non-Condensing)
411 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
412 -* LoRa Rx current: <9 mA
413 -
414 -== 3.4  Pin Mapping & LED ==
415 -
416 -
417 -
418 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
419 -
420 -
421 -(((
422 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
423 -)))
424 -
425 -
426 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
427 -
428 -
429 -[[image:image-20220723100027-1.png]]
430 -
431 -
432 -Open the serial port tool
433 -
434 -[[image:image-20220602161617-8.png]]
435 -
436 -[[image:image-20220602161718-9.png||height="457" width="800"]]
437 -
438 -
439 -
440 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
441 -
442 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
443 -
444 -
445 -[[image:image-20220602161935-10.png||height="498" width="800"]]
446 -
447 -
448 -
449 -(% style="color:blue" %)**3. See Uplink Command**
450 -
451 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
452 -
453 453  example: AT+SENDB=01,02,8,05820802581ea0a5
454 454  
455 -[[image:image-20220602162157-11.png||height="497" width="800"]]
190 +[[image:image-20220602160339-6.png]]
456 456  
457 -
458 -
459 -(% style="color:blue" %)**4. Check to see if TTN received the message**
460 -
461 -[[image:image-20220602162331-12.png||height="420" width="800"]]
462 -
463 -
464 -
465 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
466 -
467 -
468 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
469 -
470 -(**Raspberry Pi example: **[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_Raspberry%20Pi.py]])
471 -
472 -(% style="color:red" %)**Preconditions:**
473 -
474 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
475 -
476 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
477 -
478 -
479 -
480 -(% style="color:blue" %)**Steps for usage:**
481 -
482 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
483 -
484 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
485 -
486 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
487 -
488 -
489 -
490 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
491 -
492 -
493 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
494 -
495 -
496 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
497 -
498 -[[image:image-20220723100439-2.png]]
499 -
500 -
501 -
502 -(% style="color:blue" %)**2. Install Minicom in RPi.**
503 -
504 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
505 -
506 - (% style="background-color:yellow" %)**apt update**
507 -
508 - (% style="background-color:yellow" %)**apt install minicom**
509 -
510 -
511 -Use minicom to connect to the RPI's terminal
512 -
513 -[[image:image-20220602153146-3.png||height="439" width="500"]]
514 -
515 -
516 -
517 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
518 -
519 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
520 -
521 -
522 -[[image:image-20220602154928-5.png||height="436" width="500"]]
523 -
524 -
525 -
526 -(% style="color:blue" %)**4. Send Uplink message**
527 -
528 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
529 -
530 -example: AT+SENDB=01,02,8,05820802581ea0a5
531 -
532 -
533 -[[image:image-20220602160339-6.png||height="517" width="600"]]
534 -
535 -
536 -
537 537  Check to see if TTN received the message
538 538  
539 -[[image:image-20220602160627-7.png||height="369" width="800"]]
194 +[[image:image-20220602160627-7.png||height="468" width="1013"]]
540 540  
196 +=== Install Minicom ===
541 541  
198 +Enter the following command in the RPI terminal
542 542  
543 -== 3.8  Example: Use of LA66 USB LoRaWAN Module and DRAGINO-LA66-APP. ==
200 +apt update
544 544  
545 -=== 3.8.1 DRAGINO-LA66-APP ===
202 +[[image:image-20220602143155-1.png]]
546 546  
547 -[[image:image-20220723102027-3.png]]
204 +apt install minicom
548 548  
549 -==== Overview: ====
206 +[[image:image-20220602143744-2.png]]
550 550  
551 -DRAGINO-LA66-APP is a mobile APP for LA66 USB LoRaWAN Module. DRAGINO-LA66-APP can obtain the positioning information of the mobile phone and send it to the LoRaWAN platform through the LA66 USB LoRaWAN Module.
208 +=== Use AT Command to send an uplink message. ===
552 552  
553 -View the communication signal strength between the node and the gateway through the RSSI value(DRAGINO-LA66-APP currently only supports Android system)
210 +=== Send PC's CPU/RAM usage to TTN via script. ===
554 554  
555 -==== Conditions of Use: ====
212 +==== Take python as an example: ====
556 556  
557 -Requires a type-c to USB adapter
214 +===== Preconditions: =====
558 558  
559 -[[image:image-20220723104754-4.png]]
216 +1.LA66 LoRa Shield works fine
560 560  
561 -==== Use of APP: ====
218 +2.LA66 LoRa Shield is registered with TTN
562 562  
563 -Function and page introduction
220 +===== Steps for usage =====
564 564  
565 -[[image:image-20220723113448-7.png||height="1481" width="670"]]
222 +1.After connecting the line, connect it to the PC, turn SW1 to FLASH, and press the RST switch. As shown in the figure below
566 566  
567 -1.Display LA66 USB LoRaWAN Module connection status
224 +[[image:image-20220602114148-1.png]]
568 568  
569 -2.Check and reconnect
226 +2.Run the script and see the TTN
570 570  
571 -3.Turn send timestamps on or off
228 +[[image:image-20220602115852-3.png]]
572 572  
573 -4.Display LoRaWan connection status
574 574  
575 -5.Check LoRaWan connection status
576 576  
577 -6.The RSSI value of the node when the ACK is received
232 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
578 578  
579 -7.Node's Signal Strength Icon
580 580  
581 -8.Set the packet sending interval of the node in seconds
582 -
583 -9.AT command input box
584 -
585 -10.Send AT command button
586 -
587 -11.Node log box
588 -
589 -12.clear log button
590 -
591 -13.exit button
592 -
593 -LA66 USB LoRaWAN Module not connected
594 -
595 -[[image:image-20220723110520-5.png||height="903" width="677"]]
596 -
597 -Connect LA66 USB LoRaWAN Module
598 -
599 -[[image:image-20220723110626-6.png||height="906" width="680"]]
600 -
601 -=== 3.8.2 Use DRAGINO-LA66-APP to obtain positioning information and send it to TTNV3 through LA66 USB LoRaWAN Module and integrate it into Node-RED ===
602 -
603 -1.Register LA66 USB LoRaWAN Module to TTNV3
604 -
605 -[[image:image-20220723134549-8.png]]
606 -
607 -2.Open Node-RED,And import the JSON file to generate the flow
608 -
609 -Sample JSON file please go to this link to download:放置JSON文件的链接
610 -
611 -For the usage of Node-RED, please refer to: [[http:~~/~~/8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/>>http://8.211.40.43:8080/xwiki/bin/view/Main/Node-RED/]]
612 -
613 -The following is the positioning effect map
614 -
615 -[[image:image-20220723144339-1.png]]
616 -
617 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
618 -
619 -The LA66 USB LoRaWAN Module is the same as the LA66 LoRaWAN Shield update method
620 -
621 -Just use the yellow jumper cap to short the BOOT corner and the RX corner, and then press the RESET button (without the jumper cap, you can directly short the BOOT corner and the RX corner with a wire to achieve the same effect)
622 -
623 -[[image:image-20220723150132-2.png]]
624 -
625 -
626 -= 4.  Order Info =
627 -
628 -
629 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
630 -
631 -
632 -(% style="color:blue" %)**XXX**(%%): The default frequency band
633 -
634 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
635 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
636 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
637 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
638 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
639 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
640 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
641 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
642 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
643 -
644 -= 5.  Reference =
645 -
646 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
235 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
image-20220602161617-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -7.7 KB
Content
image-20220602161718-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -23.9 KB
Content
image-20220602161935-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -29.7 KB
Content
image-20220602162157-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -30.3 KB
Content
image-20220602162331-12.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -162.4 KB
Content
image-20220602171217-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -650.5 KB
Content
image-20220602171233-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -650.5 KB
Content
image-20220715000242-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -820.7 KB
Content
image-20220715001142-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -508.1 KB
Content
image-20220718094030-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -193.3 KB
Content
image-20220718094138-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -100.3 KB
Content
image-20220718094750-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -97.9 KB
Content
image-20220718094950-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -97.7 KB
Content
image-20220718095457-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20220719093156-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -381.2 KB
Content
image-20220719093358-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -649.5 KB
Content
image-20220720111850-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -380.3 KB
Content
image-20220723100027-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20220723100439-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -749.8 KB
Content
image-20220723102027-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -28.7 KB
Content
image-20220723104754-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -231.5 KB
Content
image-20220723110520-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -3.2 MB
Content
image-20220723110626-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -3.6 MB
Content
image-20220723113448-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -298.5 KB
Content
image-20220723134549-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -392.3 KB
Content
image-20220723144339-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -324.7 KB
Content
image-20220723150132-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -698.8 KB
Content
image-20220723165950-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -278.4 KB
Content
image-20220723170210-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -883.0 KB
Content
image-20220723170545-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -31.1 KB
Content
image-20220723170750-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -119.0 KB
Content
image-20220723171228-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -34.2 KB
Content
image-20220723172235-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -262.3 KB
Content
image-20220723172502-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -112.0 KB
Content
image-20220723172938-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -104.8 KB
Content
image-20220723173341-10.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -117.9 KB
Content
image-20220723173950-11.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Lu
Size
... ... @@ -1,1 +1,0 @@
1 -121.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0