<
From version < 100.5 >
edited by Xiaoling
on 2022/07/19 11:45
To version < 65.1 >
edited by Edwin Chen
on 2022/07/02 23:30
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,544 +1,264 @@
1 -
2 -
3 -**Table of Contents:**
4 -
1 +{{box cssClass="floatinginfobox" title="**Contents**"}}
5 5  {{toc/}}
3 +{{/box}}
6 6  
5 += LA66 LoRaWAN Module =
7 7  
7 +== What is LA66 LoRaWAN Module ==
8 8  
9 -= 1.  LA66 LoRaWAN Module =
10 -
11 -
12 -== 1.1  What is LA66 LoRaWAN Module ==
13 -
14 -
15 -(((
16 -(((
17 -[[image:image-20220719093358-2.png||height="145" width="220"]](% style="color:blue" %)** **
18 -)))
19 -
20 -(((
21 -
22 -)))
23 -
24 -(((
25 25  (% style="color:blue" %)**Dragino LA66**(%%) is a small wireless LoRaWAN module that offers a very compelling mix of long-range, low power consumption, and secure data transmission. It is designed to facilitate developers to quickly deploy industrial-level LoRaWAN and IoT solutions. It helps users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to create and connect your things everywhere.
26 -)))
27 -)))
28 28  
29 -(((
30 -(((
31 31  (% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
32 -)))
33 -)))
34 34  
35 -(((
36 -(((
37 37  Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
38 -)))
39 39  
40 -(((
41 41  Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
42 -)))
43 -)))
44 44  
45 -(((
46 -(((
47 47  LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
48 -)))
49 -)))
50 50  
19 +== Features ==
51 51  
52 52  
53 -== 1.2  Features ==
22 +== Specification ==
54 54  
55 -* Support LoRaWAN v1.0.4 protocol
56 -* Support peer-to-peer protocol
57 -* TCXO crystal to ensure RF performance on low temperature
58 -* SMD Antenna pad and i-pex antenna connector
59 -* Available in different frequency LoRaWAN frequency bands.
60 -* World-wide unique OTAA keys.
61 -* AT Command via UART-TTL interface
62 -* Firmware upgradable via UART interface
63 -* Ultra-long RF range
24 +[[image:image-20220517072526-1.png]]
64 64  
65 -== 1.3  Specification ==
26 +Input Power Range: 1.8v ~~ 3.7v
66 66  
67 -* CPU: 32-bit 48 MHz
68 -* Flash: 256KB
69 -* RAM: 64KB
70 -* Input Power Range: 1.8v ~~ 3.7v
71 -* Power Consumption: < 4uA.
72 -* Frequency Range: 150 MHz ~~ 960 MHz
73 -* Maximum Power +22 dBm constant RF output
74 -* High sensitivity: -148 dBm
75 -* Temperature:
76 -** Storage: -55 ~~ +125℃
77 -** Operating: -40 ~~ +85℃
78 -* Humidity:
79 -** Storage: 5 ~~ 95% (Non-Condensing)
80 -** Operating: 10 ~~ 95% (Non-Condensing)
81 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
82 -* LoRa Rx current: <9 mA
83 -* I/O Voltage: 3.3v
28 +Power Consumption: < 4uA.
84 84  
85 -== 1.4  AT Command ==
30 +Frequency Range: 150 MHz ~~ 960 MHz
86 86  
32 +Maximum Power +22 dBm constant RF output
87 87  
88 -AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
34 +High sensitivity: -148 dBm
89 89  
36 +Temperature:
90 90  
38 +* Storage: -55 ~~ +125℃
39 +* Operating: -40 ~~ +85℃
91 91  
92 -== 1.5  Dimension ==
41 +Humidity:
93 93  
94 -[[image:image-20220718094750-3.png]]
43 +* Storage: 5 ~~ 95% (Non-Condensing)
44 +* Operating: 10 ~~ 95% (Non-Condensing)
95 95  
46 +LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
96 96  
48 +LoRa Rx current: <9 mA
97 97  
50 +I/O Voltage: 3.3v
98 98  
99 -== 1.6  Pin Mapping ==
100 100  
53 +== AT Command ==
101 101  
102 -[[image:image-20220719093156-1.png]]
55 +AT Command is valid over Main TXD and Main RXD. Serial Baud Rate is 9600. AT commands can be found in AT Command documents.
103 103  
104 104  
58 +== Pin Mapping ==
105 105  
106 -== 1.7  Land Pattern ==
60 +[[image:image-20220523101537-1.png]]
107 107  
62 +== Land Pattern ==
63 +
108 108  [[image:image-20220517072821-2.png]]
109 109  
110 110  
67 +== Part Number ==
111 111  
112 -= 2.  LA66 LoRaWAN Shield =
69 +Part Number: **LA66-XXX**
113 113  
71 +**XX**: The default frequency band
114 114  
115 -== 2.1  Overview ==
73 +* **AS923**: LoRaWAN AS923 band
74 +* **AU915**: LoRaWAN AU915 band
75 +* **EU433**: LoRaWAN EU433 band
76 +* **EU868**: LoRaWAN EU868 band
77 +* **KR920**: LoRaWAN KR920 band
78 +* **US915**: LoRaWAN US915 band
79 +* **IN865**: LoRaWAN IN865 band
80 +* **CN470**: LoRaWAN CN470 band
116 116  
82 += LA66 LoRaWAN Shield =
117 117  
118 -(((
119 -[[image:image-20220715000826-2.png||height="145" width="220"]]
120 -)))
84 +LA66 LoRaWAN Shield is the Arduino Breakout PCB to fast test the features of LA66 module and turn Arduino to support LoRaWAN.
121 121  
122 -(((
123 -
124 -)))
86 +== Pin Mapping & LED ==
125 125  
126 -(((
127 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%) is the Arduino shield base on LA66. Users can use LA66 LoRaWAN Shield to rapidly add LoRaWAN or peer-to-peer LoRa wireless function to  Arduino projects.
128 -)))
88 +== Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
129 129  
130 -(((
131 -(((
132 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely.  This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
133 -)))
134 -)))
90 +== Example: Join TTN network and send an uplink message, get downlink message. ==
135 135  
136 -(((
137 -(((
138 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
139 -)))
140 -)))
92 +== Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
141 141  
142 -(((
143 -(((
144 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
145 -)))
146 -)))
94 +== Upgrade Firmware of LA66 LoRaWAN Shield ==
147 147  
148 -(((
149 -(((
150 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
151 -)))
152 -)))
96 +=== what needs to be used ===
153 153  
98 +1.LA66 LoRaWAN Shield that needs to be upgraded
154 154  
100 +2.Arduino
155 155  
156 -== 2. Features ==
102 +3.USB TO TTL
157 157  
158 -* Arduino Shield base on LA66 LoRaWAN module
159 -* Support LoRaWAN v1.0.4 protocol
160 -* Support peer-to-peer protocol
161 -* TCXO crystal to ensure RF performance on low temperature
162 -* SMA connector
163 -* Available in different frequency LoRaWAN frequency bands.
164 -* World-wide unique OTAA keys.
165 -* AT Command via UART-TTL interface
166 -* Firmware upgradable via UART interface
167 -* Ultra-long RF range
104 +[[image:image-20220602100052-2.png]]
168 168  
169 -== 2.3  Specification ==
106 +=== Wiring Schematic ===
170 170  
171 -* CPU: 32-bit 48 MHz
172 -* Flash: 256KB
173 -* RAM: 64KB
174 -* Input Power Range: 1.8v ~~ 3.7v
175 -* Power Consumption: < 4uA.
176 -* Frequency Range: 150 MHz ~~ 960 MHz
177 -* Maximum Power +22 dBm constant RF output
178 -* High sensitivity: -148 dBm
179 -* Temperature:
180 -** Storage: -55 ~~ +125℃
181 -** Operating: -40 ~~ +85℃
182 -* Humidity:
183 -** Storage: 5 ~~ 95% (Non-Condensing)
184 -** Operating: 10 ~~ 95% (Non-Condensing)
185 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
186 -* LoRa Rx current: <9 mA
187 -* I/O Voltage: 3.3v
108 +[[image:image-20220602101311-3.png]]
188 188  
189 -== 2.4  Pin Mapping & LED ==
110 +LA66 LoRaWAN Shield  >>>>>>>>>>>>USB TTL
190 190  
112 +GND  >>>>>>>>>>>>GND
191 191  
114 +TXD  >>>>>>>>>>>>TXD
192 192  
193 -== 2.5  Example: Use AT Command to communicate with LA66 module via Arduino UNO. ==
116 +RXD  >>>>>>>>>>>>RXD
194 194  
118 +JP6 of LA66 LoRaWAN Shield needs to be connected with yellow jumper cap
195 195  
120 +Connect to the PC after connecting the wires
196 196  
197 -== 2.6  Example: Join TTN network and send an uplink message, get downlink message. ==
122 +[[image:image-20220602102240-4.png]]
198 198  
124 +=== Upgrade steps ===
199 199  
126 +==== Dial the SW1 of the LA66 LoRaWAN Shield to the ISP's location as shown in the figure below ====
200 200  
201 -== 2.7  Example: Log Temperature Sensor(DHT11) and send data to TTN, show it in DataCake. ==
128 +[[image:image-20220602102824-5.png]]
202 202  
130 +==== Press the RST switch on the LA66 LoRaWAN Shield once ====
203 203  
132 +[[image:image-20220602104701-12.png]]
204 204  
205 -== 2.8  Upgrade Firmware of LA66 LoRaWAN Shield ==
134 +==== Open the upgrade application software ====
206 206  
136 +Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]
207 207  
208 -=== 2.8.1  Items needed for update ===
209 -
210 -1. LA66 LoRaWAN Shield
211 -1. Arduino
212 -1. USB TO TTL Adapter
213 -
214 -[[image:image-20220602100052-2.png||height="385" width="600"]]
215 -
216 -
217 -=== 2.8.2  Connection ===
218 -
219 -
220 -[[image:image-20220602101311-3.png||height="276" width="600"]]
221 -
222 -
223 -(((
224 -(% style="color:blue" %)**LA66 LoRaWAN Shield**(%%)  **<->** (% style="color:blue" %)**USB TTL**
225 -)))
226 -
227 -(((
228 -(% style="background-color:yellow" %)**GND  <-> GND
229 -TXD  <->  TXD
230 -RXD  <->  RXD**
231 -)))
232 -
233 -
234 -Put a jumper cap on JP6 of LA66 LoRaWAN Shield. ( the jumper is to power on LA66 module)
235 -
236 -Connect USB TTL Adapter to PC after connecting the wires
237 -
238 -
239 -[[image:image-20220602102240-4.png||height="304" width="600"]]
240 -
241 -
242 -=== 2.8.3  Upgrade steps ===
243 -
244 -
245 -==== 1.  Switch SW1 to put in ISP position ====
246 -
247 -
248 -[[image:image-20220602102824-5.png||height="306" width="600"]]
249 -
250 -
251 -
252 -==== 2.  Press the RST switch once ====
253 -
254 -
255 -[[image:image-20220602104701-12.png||height="285" width="600"]]
256 -
257 -
258 -
259 -==== 3.  Open the Upgrade tool (Tremo Programmer) in PC and Upgrade ====
260 -
261 -
262 -(((
263 -(% style="color:blue" %)**1. Software download link:  [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/>>https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Utility/LSN50N/]]**
264 -)))
265 -
266 -
267 267  [[image:image-20220602103227-6.png]]
268 268  
269 -
270 270  [[image:image-20220602103357-7.png]]
271 271  
142 +===== Select the COM port corresponding to USB TTL =====
272 272  
273 -
274 -(% class="wikigeneratedid" id="HSelecttheCOMportcorrespondingtoUSBTTL" %)
275 -(% style="color:blue" %)**2. Select the COM port corresponding to USB TTL**
276 -
277 -
278 278  [[image:image-20220602103844-8.png]]
279 279  
146 +===== Select the bin file to burn =====
280 280  
281 -
282 -(% class="wikigeneratedid" id="HSelectthebinfiletoburn" %)
283 -(% style="color:blue" %)**3. Select the bin file to burn**
284 -
285 -
286 286  [[image:image-20220602104144-9.png]]
287 287  
288 -
289 289  [[image:image-20220602104251-10.png]]
290 290  
291 -
292 292  [[image:image-20220602104402-11.png]]
293 293  
154 +===== Click to start the download =====
294 294  
295 -
296 -(% class="wikigeneratedid" id="HClicktostartthedownload" %)
297 -(% style="color:blue" %)**4. Click to start the download**
298 -
299 299  [[image:image-20220602104923-13.png]]
300 300  
158 +===== The following figure appears to prove that the burning is in progress =====
301 301  
302 -
303 -(% class="wikigeneratedid" id="HThefollowingfigureappearstoprovethattheburningisinprogress" %)
304 -(% style="color:blue" %)**5. Check update process**
305 -
306 -
307 307  [[image:image-20220602104948-14.png]]
308 308  
162 +===== The following picture appears to prove that the burning is successful =====
309 309  
310 -
311 -(% class="wikigeneratedid" id="HThefollowingpictureappearstoprovethattheburningissuccessful" %)
312 -(% style="color:blue" %)**The following picture shows that the burning is successful**
313 -
314 314  [[image:image-20220602105251-15.png]]
315 315  
166 += LA66 USB LoRaWAN Adapter =
316 316  
168 +LA66 USB LoRaWAN Adapter is the USB Adapter for LA66, it combines a USB TTL Chip and LA66 module which can easy to test the LoRaWAN feature by using PC or embedded device which has USB Interface.
317 317  
318 -= 3.  LA66 USB LoRaWAN Adapter =
170 +Before use, please make sure that the computer has installed the CP2102 driver
319 319  
172 +== Pin Mapping & LED ==
320 320  
321 -== 3.1  Overview ==
174 +== Example Send & Get Messages via LoRaWAN in PC ==
322 322  
176 +Connect the LA66 LoRa Shield to the PC
323 323  
324 -[[image:image-20220715001142-3.png||height="145" width="220"]]
178 +[[image:image-20220602171217-1.png||height="615" width="915"]]
325 325  
326 -
327 -(((
328 -(% style="color:blue" %)**LA66 USB LoRaWAN Adapter**(%%) is designed to fast turn USB devices to support LoRaWAN wireless features. It combines a CP2101 USB TTL Chip and LA66 LoRaWAN module which can easy to add LoRaWAN wireless feature to PC / Mobile phone or an embedded device that has USB Interface.
329 -)))
330 -
331 -(((
332 -(% style="color:blue" %)**LA66**(%%) is a ready-to-use module that includes the (% style="color:blue" %)**LoRaWAN v1.0.4 protocol**(%%). The LoRaWAN stack used in LA66 is used in more than 1 million LoRaWAN End Devices deployed world widely. This mature LoRaWAN stack greatly reduces the risk to make stable LoRaWAN Sensors to support different LoRaWAN servers and different countries' standards. External MCU can use AT command to call LA66 and start to transmit data via the LoRaWAN protocol.
333 -)))
334 -
335 -(((
336 -Each LA66 module includes a (% style="color:blue" %)**world-unique OTAA key**(%%) for LoRaWAN registration.
337 -)))
338 -
339 -(((
340 -Besides the support of the LoRaWAN protocol, LA66 also supports (% style="color:blue" %)**open-source peer-to-peer LoRa Protocol**(%%) for the none-LoRaWAN application.
341 -)))
342 -
343 -(((
344 -LA66 is equipped with (% style="color:blue" %)**TCXO crystal**(%%) which ensures the module can achieve stable performance in extreme temperatures.
345 -)))
346 -
347 -
348 -
349 -== 3.2  Features ==
350 -
351 -* LoRaWAN USB adapter base on LA66 LoRaWAN module
352 -* Ultra-long RF range
353 -* Support LoRaWAN v1.0.4 protocol
354 -* Support peer-to-peer protocol
355 -* TCXO crystal to ensure RF performance on low temperature
356 -* Spring RF antenna
357 -* Available in different frequency LoRaWAN frequency bands.
358 -* World-wide unique OTAA keys.
359 -* AT Command via UART-TTL interface
360 -* Firmware upgradable via UART interface
361 -* Open Source Mobile App for LoRaWAN signal detect and GPS tracking.
362 -
363 -
364 -
365 -== 3.3  Specification ==
366 -
367 -* CPU: 32-bit 48 MHz
368 -* Flash: 256KB
369 -* RAM: 64KB
370 -* Input Power Range: 5v
371 -* Frequency Range: 150 MHz ~~ 960 MHz
372 -* Maximum Power +22 dBm constant RF output
373 -* High sensitivity: -148 dBm
374 -* Temperature:
375 -** Storage: -55 ~~ +125℃
376 -** Operating: -40 ~~ +85℃
377 -* Humidity:
378 -** Storage: 5 ~~ 95% (Non-Condensing)
379 -** Operating: 10 ~~ 95% (Non-Condensing)
380 -* LoRa Tx Current: <90 mA at +17 dBm, 108 mA at +22 dBm
381 -* LoRa Rx current: <9 mA
382 -
383 -
384 -
385 -== 3.4  Pin Mapping & LED ==
386 -
387 -
388 -
389 -== 3.5  Example: Send & Get Messages via LoRaWAN in PC ==
390 -
391 -
392 -(((
393 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
394 -)))
395 -
396 -
397 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN adapter to PC**
398 -
399 -
400 -[[image:image-20220602171217-1.png||height="538" width="800"]]
401 -
402 -
403 403  Open the serial port tool
404 404  
405 405  [[image:image-20220602161617-8.png]]
406 406  
407 -[[image:image-20220602161718-9.png||height="457" width="800"]]
184 +[[image:image-20220602161718-9.png||height="529" width="927"]]
408 408  
186 +Press the reset switch RST on the LA66 LoRa Shield.
409 409  
188 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
410 410  
411 -(% style="color:blue" %)**2. Press the reset switch RST on the LA66 USB LoRaWAN Adapter to reset it.**
190 +[[image:image-20220602161935-10.png]]
412 412  
413 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully Join the LoRaWAN network
192 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
414 414  
415 -
416 -[[image:image-20220602161935-10.png||height="498" width="800"]]
417 -
418 -
419 -
420 -(% style="color:blue" %)**3. See Uplink Command**
421 -
422 -Command format: (% style="color:#4472c4" %)** AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
423 -
424 424  example: AT+SENDB=01,02,8,05820802581ea0a5
425 425  
426 -[[image:image-20220602162157-11.png||height="497" width="800"]]
196 +[[image:image-20220602162157-11.png]]
427 427  
198 +Check to see if TTN received the message
428 428  
200 +[[image:image-20220602162331-12.png||height="547" width="1044"]]
429 429  
430 -(% style="color:blue" %)**4. Check to see if TTN received the message**
202 +== Example Send & Get Messages via LoRaWAN in RPi ==
431 431  
432 -[[image:image-20220602162331-12.png||height="420" width="800"]]
204 +Connect the LA66 LoRa Shield to the RPI
433 433  
206 +[[image:image-20220602171233-2.png||height="592" width="881"]]
434 434  
208 +Log in to the RPI's terminal and connect to the serial port
435 435  
436 -== 3.6  Example: Send PC's CPU/RAM usage to TTN via python ==
210 +[[image:image-20220602153146-3.png]]
437 437  
212 +Press the reset switch RST on the LA66 LoRa Shield.
213 +The following picture appears to prove that the LA66 LoRa Shield successfully entered the network
438 438  
439 -**Use python as an example:**[[https:~~/~~/github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py>>https://github.com/dragino/LA66/blob/main/Send_information_to_TTN_WindosPC.py]]
215 +[[image:image-20220602154928-5.png]]
440 440  
217 +send instructions: AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>
441 441  
442 -(% style="color:red" %)**Preconditions:**
443 -
444 -(% style="color:red" %)**1. LA66 USB LoRaWAN Adapter works fine**
445 -
446 -(% style="color:red" %)**2. LA66 USB LoRaWAN Adapter  is registered with TTN**
447 -
448 -
449 -
450 -(% style="color:blue" %)**Steps for usage:**
451 -
452 -(% style="color:blue" %)**1.**(%%) Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
453 -
454 -(% style="color:blue" %)**2.**(%%) Run the python script in PC and see the TTN
455 -
456 -[[image:image-20220602115852-3.png||height="450" width="1187"]]
457 -
458 -
459 -
460 -== 3.7  Example: Send & Get Messages via LoRaWAN in RPi ==
461 -
462 -
463 -Assume user already input the LA66 USB LoRaWAN Adapter OTAA Keys in TTN and there is already TTN network coverage.
464 -
465 -
466 -(% style="color:blue" %)**1. Connect the LA66 USB LoRaWAN Adapter to the Raspberry Pi**
467 -
468 -[[image:image-20220602171233-2.png||height="538" width="800"]]
469 -
470 -
471 -
472 -(% style="color:blue" %)**2. Install Minicom in RPi.**
473 -
474 -(% id="cke_bm_509388S" style="display:none" %) (%%)Enter the following command in the RPi terminal
475 -
476 - (% style="background-color:yellow" %)**apt update**
477 -
478 - (% style="background-color:yellow" %)**apt install minicom**
479 -
480 -
481 -Use minicom to connect to the RPI's terminal
482 -
483 -[[image:image-20220602153146-3.png||height="439" width="500"]]
484 -
485 -
486 -
487 -(% style="color:blue" %)**3. Press the reset switch RST on the LA66 USB LoRaWAN Adapter.**
488 -
489 -The following picture appears to prove that the LA66 USB LoRaWAN Adapter successfully entered the network.
490 -
491 -
492 -[[image:image-20220602154928-5.png||height="436" width="500"]]
493 -
494 -
495 -
496 -(% style="color:blue" %)**4. Send Uplink message**
497 -
498 -Format: (% style="color:#4472c4" %)**AT+SENDB=<confirn_status>,<Fport>,<data_len>,<data>**
499 -
500 500  example: AT+SENDB=01,02,8,05820802581ea0a5
501 501  
221 +[[image:image-20220602160339-6.png]]
502 502  
503 -[[image:image-20220602160339-6.png||height="517" width="600"]]
223 +Check to see if TTN received the message
504 504  
225 +[[image:image-20220602160627-7.png||height="468" width="1013"]]
505 505  
227 +=== Install Minicom ===
506 506  
507 -Check to see if TTN received the message
229 +Enter the following command in the RPI terminal
508 508  
509 -[[image:image-20220602160627-7.png||height="369" width="800"]]
231 +apt update
510 510  
233 +[[image:image-20220602143155-1.png]]
511 511  
235 +apt install minicom
512 512  
513 -== 3.8  Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
237 +[[image:image-20220602143744-2.png]]
514 514  
239 +=== Send PC's CPU/RAM usage to TTN via script. ===
515 515  
241 +==== Take python as an example: ====
516 516  
517 -== 3.9  Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
243 +===== Preconditions: =====
518 518  
245 +1.LA66 USB LoRaWAN Adapter works fine
519 519  
247 +2.LA66 USB LoRaWAN Adapter  is registered with TTN
520 520  
249 +===== Steps for usage =====
521 521  
522 -= 4.  Order Info =
251 +1.Press the reset switch RESET on the LA66 USB LoRaWAN Adapter
523 523  
253 +2.Run the script and see the TTN
524 524  
525 -**Part Number:**  (% style="color:blue" %)**LA66-XXX**(%%), (% style="color:blue" %)**LA66-LoRaWAN-Shield-XXX** (%%) **or**  (% style="color:blue" %)**LA66-USB-LoRaWAN-Adapter-XXX**
255 +[[image:image-20220602115852-3.png]]
526 526  
527 527  
528 -(% style="color:blue" %)**XXX**(%%): The default frequency band
529 529  
530 -* (% style="color:red" %)**AS923**(%%):  LoRaWAN AS923 band
531 -* (% style="color:red" %)**AU915**(%%):  LoRaWAN AU915 band
532 -* (% style="color:red" %)**EU433**(%%):  LoRaWAN EU433 band
533 -* (% style="color:red" %)**EU868**(%%):  LoRaWAN EU868 band
534 -* (% style="color:red" %)**KR920**(%%):  LoRaWAN KR920 band
535 -* (% style="color:red" %)**US915**(%%):  LoRaWAN US915 band
536 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
537 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
538 -* (% style="color:red" %)**PP**(%%):  Peer to Peer LoRa Protocol
259 +== Example: LA66 USB Module got a message from LA66 LoRa Shield and send the sensor data to NodeRed. ==
539 539  
540 540  
262 +== Upgrade Firmware of LA66 USB LoRaWAN Adapter ==
541 541  
542 -= 5.  Reference =
543 -
544 -* Hardware Design File for LA66 LoRaWAN Shield, LA66 USB LoRaWAN Adapter : [[Download>>https://www.dropbox.com/sh/a3wbmdcvqjxaqw5/AADZfvAiykJTK624RgMquH86a?dl=0]]
264 +
image-20220715000242-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -172.4 KB
Content
image-20220715000826-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -820.7 KB
Content
image-20220715001142-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -508.1 KB
Content
image-20220718094030-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -193.3 KB
Content
image-20220718094138-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -100.3 KB
Content
image-20220718094750-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -97.9 KB
Content
image-20220718094950-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -97.7 KB
Content
image-20220718095457-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.0 KB
Content
image-20220719093156-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -381.2 KB
Content
image-20220719093358-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -649.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0