Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:1656035424980-692.png||height="533" width="386"]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20
21
22
23 = 1. Introduction =
24
25 == 1.1 Overview ==
26
27
28 (((
29 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
30 )))
31
32 (((
33 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
34 )))
35
36 (((
37 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in Li-ion backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
38 )))
39
40 (((
41 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
42 )))
43
44
45 = 2. How to use =
46
47 == 2.1 Installation ==
48
49
50 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
51
52
53 [[image:1656041948552-849.png]]
54
55
56 (% style="color:blue" %)** Wiring:**
57
58 ~1. WSC1-L and sensors all powered by solar power via MPPT
59
60 2. WSC1-L and sensors connect to each other via RS485/Modbus.
61
62 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
63
64
65 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
66
67 [[image:1656042136605-251.png]]
68
69
70 (% style="color:red" %)**Notice 1:**
71
72 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
73 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
74 * Weather sensors won't work if solar panel and storage battery fails.
75
76 (% style="color:red" %)**Notice 2:**
77
78 Due to shipment and importation limitation, user is better to purchase below parts locally:
79
80 * Solar Panel
81 * Storage Battery
82 * MPPT Solar Recharger
83 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
84 * Cabinet.
85
86 == 2.2 How it works? ==
87
88
89 (((
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91 )))
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107
108 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110 [[image:1656042612899-422.png]]
111
112
113 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
114
115
116 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
117
118 Each WSC1-L is shipped with a sticker with the default device EUI as below:
119
120 [[image:image-20230426084533-1.png||height="231" width="497"]]
121
122
123 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
124
125 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
126
127 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
128
129
130 **Create the application.**
131
132 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
133
134 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
135
136
137 **Add devices to the created Application.**
138
139 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
140
141 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
142
143
144 **Enter end device specifics manually.**
145
146 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
147
148
149 **Add DevEUI and AppKey.**
150
151 **Customize a platform ID for the device.**
152
153 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
154
155
156 (% style="color:blue" %)**Step 2**(%%): Add decoder.
157
158 In TTN, user can add a custom payload so it shows friendly reading.
159
160 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/Weather%20Station>>https://github.com/dragino/dragino-end-node-decoder/tree/main/Weather%20Station]]
161
162 Below is TTN screen shot:
163
164 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
165
166 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
167
168
169 (((
170 (% style="color:blue" %)**Step 3**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
171 )))
172
173 [[image:1656042745346-283.png]]
174
175
176 == 2.4 Uplink Payload ==
177
178
179 Uplink payloads include two types: Valid Sensor Value and other status / control command.
180
181 * Valid Sensor Value: Use FPORT=2
182 * Other control command: Use FPORT other than 2.
183
184 === 2.4.1 Uplink FPORT~=5, Device Status ===
185
186
187 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
188
189
190 (((
191 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
192 )))
193
194 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
195 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 60px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**3**
196 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
197
198 [[image:1656043061044-343.png]]
199
200
201 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
202
203
204 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
205
206 For WSC1-L, this value is 0x0D.
207
208
209 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
210
211 0x0100, Means: v1.0.0 version.
212
213
214 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
215
216 0x01: EU868
217
218 0x02: US915
219
220 0x03: IN865
221
222 0x04: AU915
223
224 0x05: KZ865
225
226 0x06: RU864
227
228 0x07: AS923
229
230 0x08: AS923-1
231
232 0x09: AS923-2
233
234 0x0a: AS923-3
235
236
237 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
238
239 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
240
241
242 ==== (% style="color:#037691" %)**BAT:**(%%) ====
243
244 (((
245 shows the battery voltage for WSC1-L MCU.
246 )))
247
248 (((
249 Ex1: 0x0BD6/1000 = 3.03 V
250 )))
251
252
253 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
254
255 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
256 |Byte3|Byte2|Byte1
257
258 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
259
260 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
261 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:110px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
262 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
263 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
264 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
265 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
266 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
267
268 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
269
270 External sensors detected by WSC1-L include :
271
272 custom sensor A1,
273
274 PAR sensor (WSS-07),
275
276 Total Solar Radiation sensor (WSS-06),
277
278 CO2/PM2.5/PM10 (WSS-03),
279
280 Wind Speed/Direction (WSS-02)
281
282
283 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
284
285 (% style="color:#037691" %)**Downlink:0x26 01**
286
287 [[image:1656049673488-415.png]]
288
289
290 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
291
292
293 ==== 2.4.2.1 paylaod before firmware V1.3.1(including v1.3.1) ====
294
295 (((
296 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
297 )))
298
299 (((
300 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
301 )))
302
303 (((
304 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
305 )))
306
307
308 (% style="color:#4472c4" %)** Uplink Payload**:
309
310 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
311 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
312
313 (% style="color:#4472c4" %)** Sensor Segment Define**:
314
315 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
316 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
317
318 (% style="color:#4472c4" %)**Sensor Type Table:**
319
320 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
321 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
322 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
323 Speed: 0 ~~ 60m/s
324 Level: 0 ~~ 17
325 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
326 (((
327 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
328 )))
329
330 (((
331 0x02=2 (0x14: No Sensor, 0x15: Value Error)
332 )))
333 )))
334 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
335 Angel: 0 ~~ 360°
336 Direction: 16 positions
337 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
338 (((
339 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
340 )))
341
342 (((
343 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
344 )))
345 )))
346 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
347 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
348 )))
349 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
350 (((
351 0x00 (00) No Rain or snow detected
352 )))
353
354 (((
355 (0x02: No Sensor,0x03: Value Error)
356 )))
357 )))
358 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
359 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
360 )))
361 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
362 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
363 )))
364 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
365 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
366 )))
367 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
368 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
369 )))
370 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
371 0mm~100mm(Rainfall in the last 24 hours)
372 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
373 (((
374 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
375 )))
376
377 (((
378 (0x03FE: No Sensor,0x03FF: Value Error)
379 )))
380 )))
381 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
382 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
383 )))
384 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
385 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
386 )))
387 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
388 0~2500μmol/m^^2^^•s
389 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
390 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
391 )))
392 |(% style="width:103px" %)(((
393 Total Solar Radiation
394 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
395 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
396 )))
397
398 (((
399 Below is an example payload:  [[image:image-20220624140615-3.png]]
400 )))
401
402
403 (((
404 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
405 )))
406
407 * (((
408 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
409 )))
410
411 (((
412 Uplink 1:  [[image:image-20220624140735-4.png]]
413 )))
414
415
416 (((
417 Uplink 2:  [[image:image-20220624140842-5.png]]
418
419 )))
420
421 * (((
422 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
423 )))
424
425 (((
426 Uplink 1:  [[image:image-20220624141025-6.png]]
427 )))
428
429
430 Uplink 2:  [[image:image-20220624141100-7.png]]
431
432
433
434 ==== 2.4.2.2 paylaod since firmware V1.3.1 ====
435
436
437 (% style="color:red" %)**Note: Since firmware V1.3.1, [[MSP mode>>||anchor="H3.8SettheMSPmode28SincefirmwareV1.3.129"]] has been added for WSS-02. Thus the wind speed paylaod length increases(Add 4 bytes for maximum wind speed and average wind speed).**
438
439 (((
440 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
441 )))
442
443 (% style="color:#4472c4" %)** Uplink Payload**:
444
445 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
446 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
447
448 (% style="color:#4472c4" %)** Sensor Segment Define**:
449
450 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
451 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
452
453 (% style="color:#4472c4" %)**Sensor Type Table:**
454
455 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
456 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
457 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
458 ①Speed: 0 ~~ 60m/s
459
460 ②(% style="color:#4472c4" %)**Maximum wind speed: **(%%)0 ~~ 60m/s
461
462 ③(% style="color:#4472c4" %)**Average wind speed:**(%%) 0 ~~ 60m/s
463 ④Level: 0 ~~ 17
464 )))|(% style="width:122px" %)0x07 |(% style="width:904px" %)(((
465 (((
466 ①0x0015/10=2.1m/s (0x02FE: No Sensor, 0x02EE: Value Error)
467
468 ②0x0024/10=3.6m/s
469
470 ③0x000E/10=1.4m/s
471 )))
472
473 (((
474 ④0x02=2 (0x14: No Sensor, 0x15: Value Error)
475 )))
476 )))
477 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
478 Angel: 0 ~~ 360°
479 Direction: 16 positions
480 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
481 (((
482 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
483 )))
484
485 (((
486 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
487 )))
488 )))
489 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
490 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
491 )))
492 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
493 (((
494 0x00 (00) No Rain or snow detected
495 )))
496
497 (((
498 (0x02: No Sensor,0x03: Value Error)
499 )))
500 )))
501 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
502 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
503 )))
504 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
505 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
506 )))
507 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
508 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
509 )))
510 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
511 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
512 )))
513 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
514 0mm~100mm(Rainfall in the last 24 hours)
515 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
516 (((
517 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
518 )))
519
520 (((
521 (0x03FE: No Sensor,0x03FF: Value Error)
522 )))
523 )))
524 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
525 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
526 )))
527 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
528 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
529 )))
530 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
531 0~2500μmol/m^^2^^•s
532 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
533 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
534 )))
535 |(% style="width:103px" %)(((
536 Total Solar Radiation
537 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
538 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
539 )))
540
541 === 2.4.3 Decoder in TTN V3 ===
542
543
544 (((
545 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
546 )))
547
548 (((
549 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
550 )))
551
552 (((
553 and put as below:
554 )))
555
556 [[image:1656051152438-578.png]]
557
558
559 == 2.5 Show data on Application Server ==
560
561
562 (((
563 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
564 )))
565
566 (((
567 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
568 )))
569
570 (((
571 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
572 )))
573
574 [[image:1656051197172-131.png]]
575
576
577 **Add TagoIO:**
578
579 [[image:1656051223585-631.png]]
580
581
582 **Authorization:**
583
584 [[image:1656051248318-368.png]]
585
586
587 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
588
589 [[image:1656051277767-168.png]]
590
591
592 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
593
594
595 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
596
597 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
598 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
599
600 There are two kinds of commands to configure WSC1-L, they are:
601
602 * (% style="color:blue" %)**General Commands**.
603
604 These commands are to configure:
605
606 * General system settings like: uplink interval.
607 * LoRaWAN protocol & radio related command.
608
609 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
610
611 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
612
613
614 * (% style="color:blue" %)**Commands special design for WSC1-L**
615
616 These commands only valid for WSC1-L, as below:
617
618
619 == 3.1 Set Transmit Interval Time ==
620
621
622 Feature: Change LoRaWAN End Node Transmit Interval.
623
624 (% style="color:#037691" %)**AT Command: AT+TDC**
625
626 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
627 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
628 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
629 30000
630 OK
631 the interval is 30000ms = 30s
632 )))
633 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
634 OK
635 Set transmit interval to 60000ms = 60 seconds
636 )))
637
638 (% style="color:#037691" %)**Downlink Command: 0x01**
639
640 Format: Command Code (0x01) followed by 3 bytes time value.
641
642 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
643
644 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
645 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
646
647 == 3.2 Set Emergency Mode ==
648
649
650 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
651
652 (% style="color:#037691" %)**AT Command:**
653
654 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
655 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
656 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
657 OK
658
659 )))
660 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
661 OK
662 )))
663
664 (% style="color:#037691" %)**Downlink Command:**
665
666 * 0xE101     Same as: AT+ALARMMOD=1
667 * 0xE100     Same as: AT+ALARMMOD=0
668
669 == 3.3 Add or Delete RS485 Sensor ==
670
671
672 (((
673 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
674 )))
675
676 (((
677 (% style="color:#037691" %)**AT Command: **
678 )))
679
680 (((
681 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
682 )))
683
684 * (((
685 Type_Code range:  A1 ~~ A4
686 )))
687 * (((
688 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
689 )))
690 * (((
691 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
692 )))
693 * (((
694 Read_Length:  RS485 response frame length supposed to receive. Max can receive
695 )))
696 * (((
697 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
698 )))
699 * (((
700 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
701 )))
702 * (((
703 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
704 )))
705
706 (((
707 **Example:**
708 )))
709
710 (((
711 User need to change external sensor use the type code as address code.
712 )))
713
714 (((
715 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
716 )))
717
718 [[image:image-20220624143553-10.png]]
719
720
721 The response frame of the sensor is as follows:
722
723 [[image:image-20220624143618-11.png]]
724
725
726 **Then the following parameters should be:**
727
728 * Address_Code range: A1
729 * Query_Length: 8
730 * Query_Command: A103000000019CAA
731 * Read_Length: 8
732 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
733 * has_CRC: 1
734 * timeout: 1500 (Fill in the test according to the actual situation)
735
736 **So the input command is:**
737
738 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
739
740
741 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
742
743 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
744 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
745 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
746
747 **Related commands:**
748
749 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
750
751 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
752
753
754 (% style="color:#037691" %)**Downlink Command:  **
755
756 **delete custom sensor A1:**
757
758 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
759
760 **Remove all custom sensors**
761
762 * 0xE5FF  
763
764 == 3.4 RS485 Test Command ==
765
766
767 (% style="color:#037691" %)**AT Command:**
768
769 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
770 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
771 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
772 Send command to 485 sensor. Range : no more than 10 bytes
773 )))|(% style="width:85px" %)OK
774
775 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
776
777 AT+RSWRITE=0103000001840A
778
779 If there is output from sensor, The console will show the output data
780
781
782 (% style="color:#037691" %)**Downlink Command:**
783
784 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
785
786 == 3.5 RS485 response timeout ==
787
788
789 Feature: Set or get extended time to receive 485 sensor data.
790
791 (% style="color:#037691" %)**AT Command:**
792
793 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
794 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
795 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
796 Set response timeout to: Range : 0~~10000
797 )))|(% style="width:85px" %)OK
798
799 (% style="color:#037691" %)**Downlink Command:**
800
801 Format: Command Code (0xE0) followed by 3 bytes time value.
802
803 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
804
805 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
806 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
807
808 == 3.6 Set Sensor Type ==
809
810
811 (((
812 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
813 )))
814
815 (((
816 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
817
818 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
819 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
820 | |A4|A3|A2|A1| | |
821 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
822 | | |Solar Radiation|PAR|PM10|PM2.5|(((
823 Rain
824 Gauge
825 )))|(((
826 Air
827 Pressure
828 )))
829 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
830 |Humidity|Temperature|CO2|(((
831 Rain/Snow
832 Detect
833 )))|illuminance|(((
834 Wind
835 Direction
836 )))|Wind Speed|BAT
837 )))
838
839
840 (% style="color:#037691" %)**AT Command:**
841
842 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:377px" %)
843 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 132px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
844 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
845
846 Eg: The setting command **AT+STYPE=80221** means:
847
848 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:495px" %)
849 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
850 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
851 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
852 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
853 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
854 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
855
856 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
857
858
859 (% style="color:#037691" %)**Downlink Command:**
860
861 * 0xE400080221  Same as: AT+STYPE=80221
862
863 (% style="color:red" %)**Note:**
864
865 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
866
867
868 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
869
870
871 (% style="color:#037691" %)**AT Command:**
872
873 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
874 |=(% style="width: 230px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 232px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
875 |(% style="width:240px" %)(((
876 AT+RAINFALLSWITCH=10(Value:3,4,5,6,8,10)
877 )))|(% style="width:232px" %)(((
878 Set the registers read by the rain gauge
879 )))|(% style="width:38px" %)OK
880
881 (% style="color:#037691" %)**Downlink Command:**
882
883 * 0xE703  Same as: AT+RAINFALLSWITCH=3
884
885 Value Definition:
886
887 * **3**: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
888 * **4**: Hourly rainfall: 0.2mm
889 * **5**: Rainfall in last hour: 0.2mm
890 * **6**: 24-hour maximum rainfall 10.0mm
891 * **8**: 24-hour minimum rainfall:0.0mm
892 * **10**: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
893
894 == 3.8 Set the MSP mode(Since firmware V1.3.1) ==
895
896
897 (% style="color:red" %)**Note: This feature is available for WSS-02.**
898
899 This function is used for the continuous collection of wind speed.
900
901 When MSP mode is turned on (AT+MSP=1), WSC1-L will collect real-time wind speed **every 5 seconds**. Then it will judge the maximum wind speed in this period according to the wind speed collected in TDC time, and calculate the average wind speed according to the wind speed data collected in TDC time and the number of data groups.
902
903 (% style="color:#037691" %)**AT Command: AT+MSP**
904
905 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
906 |=(% style="width: 158px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 214px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 136px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
907 |(% style="width:158px" %)(((
908 AT+MSP=?
909 )))|(% style="width:214px" %)Query whether MSP mode is on|(% style="width:136px" %)(((
910 0(default)
911
912 OK
913 )))
914 |(% style="width:158px" %)AT+MSP=0|(% style="width:214px" %)Disable the MSP mode|(% style="width:136px" %)OK
915 |(% style="width:158px" %)AT+MSP=1|(% style="width:214px" %)Enable the MSP mode|(% style="width:136px" %)OK
916
917 (% style="color:#037691" %)**Downlink Command: 0X34**
918
919 * Downlink payload: 34 00  ~/~/ Equal to AT+MSP=0
920 * Downlink payload: 34 01  ~/~/ Equal to AT+MSP=1
921
922 = 4. Power consumption and battery =
923
924 == 4.1 Total Power Consumption ==
925
926
927 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
928
929
930 == 4.2 Reduce power consumption ==
931
932
933 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
934
935
936 == 4.3 Battery ==
937
938
939 (((
940 All sensors are only power by external power source. If external power source is off. All sensor won't work.
941 )))
942
943 (((
944 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
945 )))
946
947
948 = 5. Main Process Unit WSC1-L =
949
950 == 5.1 Features ==
951
952
953 * Wall Attachable.
954 * LoRaWAN v1.0.3 Class A protocol.
955 * RS485 / Modbus protocol
956 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
957 * AT Commands to change parameters
958 * Remote configure parameters via LoRaWAN Downlink
959 * Firmware upgradable via program port
960 * Powered by external 12v battery
961 * Back up rechargeable 1000mAh battery
962 * IP Rating: IP65
963 * Support default sensors or 3rd party RS485 sensors
964
965 == 5.2 Power Consumption ==
966
967
968 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
969
970
971 == 5.3 Storage & Operation Temperature ==
972
973
974 -20°C to +60°C
975
976
977 == 5.4 Pin Mapping ==
978
979
980 [[image:1656054149793-239.png]]
981
982
983 == 5.5 Mechanical ==
984
985
986 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
987
988
989 == 5.6 Connect to RS485 Sensors ==
990
991
992 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
993
994
995 [[image:1656054389031-379.png]]
996
997
998 Hardware Design for the Converter Board please see:
999
1000 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
1001
1002
1003 = 6. Weather Sensors =
1004
1005 == 6.1 Rain Gauge ~-~- WSS-01 ==
1006
1007
1008 (((
1009 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
1010 )))
1011
1012 (((
1013 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
1014 )))
1015
1016 (((
1017 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
1018 )))
1019
1020 (((
1021 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
1022 )))
1023
1024 (((
1025 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
1026 )))
1027
1028
1029 === 6.1.1 Feature ===
1030
1031
1032 * RS485 Rain Gauge
1033 * Small dimension, easy to install
1034 * Vents under funnel, avoid leaf or other things to avoid rain flow.
1035 * ABS enclosure.
1036 * Horizontal adjustable.
1037
1038 === 6.1.2 Specification ===
1039
1040
1041 * Resolution: 0.2mm
1042 * Accuracy: ±3%
1043 * Range: 0 ~~ 100mm
1044 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
1045 * Input Power: DC 5 ~~ 24v
1046 * Interface: RS485
1047 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
1048 * Working Humidity: <100% (no dewing)
1049 * Power Consumption: 4mA @ 12v.
1050
1051 === 6.1.3 Dimension ===
1052
1053
1054 [[image:1656054957406-980.png]]
1055
1056
1057 === 6.1.4 Pin Mapping ===
1058
1059
1060 [[image:1656054972828-692.png]]
1061
1062
1063 === 6.1.5 Installation Notice ===
1064
1065
1066 (((
1067 Do not power on while connect the cables. Double check the wiring before power on.
1068 )))
1069
1070 (((
1071 Installation Photo as reference:
1072 )))
1073
1074
1075 (((
1076 (% style="color:#4472c4" %)** Install on Ground:**
1077 )))
1078
1079 (((
1080 WSS-01 Rain Gauge include screws so can install in ground directly .
1081 )))
1082
1083
1084 (((
1085 (% style="color:#4472c4" %)** Install on pole:**
1086 )))
1087
1088 (((
1089 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
1090 )))
1091
1092 [[image:image-20220624152218-1.png||height="526" width="276"]]
1093
1094 WS-K2: Bracket Kit for Pole installation
1095
1096
1097 WSSC-K2 dimension document, please see:
1098
1099 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
1100
1101
1102 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
1103
1104
1105 [[image:1656055444035-179.png]]
1106
1107
1108 (((
1109 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
1110 )))
1111
1112 (((
1113 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
1114 )))
1115
1116 (((
1117 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
1118 )))
1119
1120
1121 === 6.2.1 Feature ===
1122
1123
1124 * RS485 wind speed / direction sensor
1125 * PC enclosure, resist corrosion
1126
1127 === 6.2.2 Specification ===
1128
1129
1130 * Wind speed range: 0 ~~ 60m/s
1131 * Wind direction range: 0 ~~ 360°
1132 * Start wind speed: ≤0.3 m/s
1133 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1134 * Input Power: DC 5 ~~ 24v
1135 * Interface: RS485
1136 * Working Temperature: -30℃ ~~ 70℃
1137 * Working Humidity: <100% (no dewing)
1138 * Power Consumption: 13mA ~~ 12v.
1139 * Cable Length: 2 meters
1140
1141 === 6.2.3 Dimension ===
1142
1143
1144 [[image:image-20220624152813-2.png]]
1145
1146
1147 === 6.2.4 Pin Mapping ===
1148
1149
1150 [[image:1656056281231-994.png]]
1151
1152
1153 === 6.2.5  Angle Mapping ===
1154
1155
1156 [[image:1656056303845-585.png]]
1157
1158
1159 === 6.2.6  Installation Notice ===
1160
1161
1162 (((
1163 Do not power on while connect the cables. Double check the wiring before power on.
1164 )))
1165
1166 (((
1167 The sensor must be installed with below direction, towards North.
1168
1169
1170 )))
1171
1172 [[image:image-20220624153901-3.png]]
1173
1174
1175 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1176
1177
1178 (((
1179 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1180 )))
1181
1182 (((
1183 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1184 )))
1185
1186 (((
1187 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1188 )))
1189
1190
1191 === 6.3.1 Feature ===
1192
1193
1194 * RS485 CO2, PM2.5, PM10 sensor
1195 * NDIR to measure CO2 with Internal Temperature Compensation
1196 * Laser Beam Scattering to PM2.5 and PM10
1197
1198 === 6.3.2 Specification ===
1199
1200
1201 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1202 * CO2 resolution: 1ppm
1203 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1204 * PM2.5/PM10 resolution: 1μg/m3
1205 * Input Power: DC 7 ~~ 24v
1206 * Preheat time: 3min
1207 * Interface: RS485
1208 * Working Temperature:
1209 ** CO2: 0℃ ~~ 50℃;
1210 ** PM2.5/PM10: -30 ~~ 50℃
1211 * Working Humidity:
1212 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1213 ** CO2: 0 ~~ 95%RH
1214 * Power Consumption: 50mA@ 12v.
1215
1216 === 6.3.3 Dimension ===
1217
1218
1219 [[image:1656056708366-230.png]]
1220
1221
1222 === 6.3.4 Pin Mapping ===
1223
1224
1225 [[image:1656056722648-743.png]]
1226
1227
1228 === 6.3.5 Installation Notice ===
1229
1230
1231 Do not power on while connect the cables. Double check the wiring before power on.
1232
1233
1234 [[image:1656056751153-304.png]]
1235
1236
1237 [[image:1656056766224-773.png]]
1238
1239
1240 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1241
1242
1243 (((
1244 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1245 )))
1246
1247 (((
1248 WSS-04 has auto heating feature, this ensures measurement more reliable.
1249 )))
1250
1251 (((
1252 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1253 )))
1254
1255
1256 === 6.4.1 Feature ===
1257
1258
1259 * RS485 Rain/Snow detect sensor
1260 * Surface heating to dry
1261 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1262
1263 === 6.4.2 Specification ===
1264
1265
1266 * Detect if there is rain or snow
1267 * Input Power: DC 12 ~~ 24v
1268 * Interface: RS485
1269 * Working Temperature: -30℃ ~~ 70℃
1270 * Working Humidity: 10 ~~ 90%RH
1271 * Power Consumption:
1272 ** No heating: 12mA @ 12v,
1273 ** heating: 94ma @ 12v.
1274
1275 === 6.4.3 Dimension ===
1276
1277
1278 [[image:1656056844782-155.png]]
1279
1280
1281 === 6.4.4 Pin Mapping ===
1282
1283
1284 [[image:1656056855590-754.png]]
1285
1286
1287 === 6.4.5 Installation Notice ===
1288
1289
1290 Do not power on while connect the cables. Double check the wiring before power on.
1291
1292 (((
1293 Install with 15°degree.
1294 )))
1295
1296 [[image:1656056873783-780.png]]
1297
1298
1299 [[image:1656056883736-804.png]]
1300
1301
1302 === 6.4.6 Heating ===
1303
1304
1305 (((
1306 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1307 )))
1308
1309
1310 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1311
1312
1313 (((
1314 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1315 )))
1316
1317 (((
1318 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1319 )))
1320
1321
1322 === 6.5.1 Feature ===
1323
1324
1325 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1326
1327 === 6.5.2 Specification ===
1328
1329
1330 * Input Power: DC 12 ~~ 24v
1331 * Interface: RS485
1332 * Temperature Sensor Spec:
1333 ** Range: -30 ~~ 70℃
1334 ** resolution 0.1℃
1335 ** Accuracy: ±0.5℃
1336 * Humidity Sensor Spec:
1337 ** Range: 0 ~~ 100% RH
1338 ** resolution 0.1 %RH
1339 ** Accuracy: 3% RH
1340 * Pressure Sensor Spec:
1341 ** Range: 10 ~~ 1100hPa
1342 ** Resolution: 0.1hPa
1343 ** Accuracy: ±0.1hPa
1344 * Illuminate sensor:
1345 ** Range: 0~~2/20/200kLux
1346 ** Resolution: 10 Lux
1347 ** Accuracy: ±3%FS
1348 * Working Temperature: -30℃ ~~ 70℃
1349 * Working Humidity: 10 ~~ 90%RH
1350 * Power Consumption: 4mA @ 12v
1351
1352 === 6.5.3 Dimension ===
1353
1354
1355 [[image:1656057170639-522.png]]
1356
1357
1358 === 6.5.4 Pin Mapping ===
1359
1360
1361 [[image:1656057181899-910.png]]
1362
1363
1364 === 6.5.5 Installation Notice ===
1365
1366
1367 Do not power on while connect the cables. Double check the wiring before power on.
1368
1369 [[image:1656057199955-514.png]]
1370
1371 [[image:1656057212438-475.png]]
1372
1373
1374 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1375
1376
1377 (((
1378 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1379 )))
1380
1381 (((
1382 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1383 )))
1384
1385 (((
1386 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1387 )))
1388
1389
1390 === 6.6.1 Feature ===
1391
1392
1393 * RS485 Total Solar Radiation sensor
1394 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1395 * Measure Reflected Radiation if sense area towards ground.
1396
1397 === 6.6.2 Specification ===
1398
1399
1400 * Input Power: DC 5 ~~ 24v
1401 * Interface: RS485
1402 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1403 * Measure strength range: 0 ~~ 2000W/m2
1404 * Resolution: 0.1W/m2
1405 * Accuracy: ±3%
1406 * Yearly Stability: ≤±2%
1407 * Cosine response: ≤7% (@ Sun angle 10°)
1408 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1409 * Working Temperature: -40℃ ~~ 70℃
1410 * Working Humidity: 10 ~~ 90%RH
1411 * Power Consumption: 4mA @ 12v
1412
1413 === 6.6.3 Dimension ===
1414
1415
1416 [[image:1656057348695-898.png]]
1417
1418
1419 === 6.6.4 Pin Mapping ===
1420
1421
1422 [[image:1656057359343-744.png]]
1423
1424
1425 === 6.6.5 Installation Notice ===
1426
1427
1428 Do not power on while connect the cables. Double check the wiring before power on.
1429
1430 [[image:1656057369259-804.png]]
1431
1432 [[image:1656057377943-564.png]]
1433
1434
1435 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1436
1437
1438 (((
1439 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1440 )))
1441
1442 (((
1443 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1444 )))
1445
1446 (((
1447 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1448 )))
1449
1450
1451 === 6.7.1 Feature ===
1452
1453
1454 (((
1455 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1456 )))
1457
1458 (((
1459 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1460 )))
1461
1462
1463 === 6.7.2 Specification ===
1464
1465
1466 * Input Power: DC 5 ~~ 24v
1467 * Interface: RS485
1468 * Response Spectrum: 400~~700nm
1469 * Measure range: 0 ~~ 2500μmol/m2•s
1470 * Resolution: 1μmol/m2•s
1471 * Accuracy: ±2%
1472 * Yearly Stability: ≤ ±2%
1473 * Working Temperature: -30℃ ~~ 75℃
1474 * Working Humidity: 10 ~~ 90%RH
1475 * Power Consumption: 3mA @ 12v
1476
1477 === 6.7.3 Dimension ===
1478
1479
1480 [[image:1656057538793-888.png]]
1481
1482
1483 === 6.7.4 Pin Mapping ===
1484
1485
1486 [[image:1656057548116-203.png]]
1487
1488
1489 === 6.7.5 Installation Notice ===
1490
1491
1492 Do not power on while connect the cables. Double check the wiring before power on.
1493
1494 [[image:1656057557191-895.png]]
1495
1496 [[image:1656057565783-251.png]]
1497
1498
1499 = 7. FAQ =
1500
1501 == 7.1 What else do I need to purchase to build Weather Station? ==
1502
1503
1504 Below is the installation photo and structure:
1505
1506
1507 [[image:1656057598349-319.png]]
1508
1509
1510 [[image:1656057608049-693.png]]
1511
1512
1513 == 7.2 How to upgrade firmware for WSC1-L? ==
1514
1515
1516 (((
1517 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1518 )))
1519
1520 (((
1521 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1522 )))
1523
1524
1525 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1526
1527
1528 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1529
1530
1531 == 7.4 Can I add my weather sensors? ==
1532
1533
1534 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1535
1536
1537 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1538
1539
1540 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1541
1542
1543 == 7.6  How to change the data read by the rain gauge? ==
1544
1545
1546 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1547
1548 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1549
1550 **Rainfall query value:**
1551
1552 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1553
1554 4:Current Hourly rainfall: etc 0.2mm
1555
1556 5:Rainfall in last hour: etc 0.2mm
1557
1558 6:24-hour maximum rainfall: etc  10.0mm
1559
1560 8:24-hour minimum rainfall: etc  0.0mm
1561
1562 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1563
1564
1565 = 8. Trouble Shooting =
1566
1567 == 8.1 AT Command input doesn't work ==
1568
1569
1570 (((
1571 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1572 )))
1573
1574
1575 == 8.2  Possible reasons why the device is unresponsive: ==
1576
1577
1578 ~1. Check whether the battery voltage is lower than 2.8V
1579 2. Check whether the jumper of the device is correctly connected
1580
1581 [[image:image-20240330173709-1.png]]
1582
1583
1584 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1585
1586 [[image:image-20240330173724-2.png]]
1587
1588
1589 == 8.3  The rain gauge keeps showing an incorrect value of 102.2 ==
1590
1591 When the rain gauge keeps showing wrong values, it means that the device has exceeded its maximum range.
1592 Customer need to use RS485-USB to reset it
1593
1594 Wiring method:
1595 RS485-USB A<~-~-~-~-~-~-->rain gauge RS485A
1596 RS485-USB B<~-~-~-~-~-~-->rain gauge RS485B
1597
1598
1599 Use the reset command:
1600
1601 06 06 00 37 00 03 79 B2
1602
1603 [[image:image-20250219164620-1.png]]
1604
1605
1606
1607
1608
1609 = 9. Order Info =
1610
1611 == 9.1 Main Process Unit ==
1612
1613
1614 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1615
1616 (% style="color:blue" %)**XX**(%%): The default frequency band
1617
1618 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1619 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1620 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1621 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1622 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1623 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1624 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1625 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1626
1627 == 9.2 Sensors ==
1628
1629
1630 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1631 |=(% style="width: 300px;background-color:#4F81BD;color:white" %)**Sensor Model**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Part Number**
1632 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1633 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1634 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1635 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1636 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1637 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1638 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1639 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1640
1641 = 10. Support =
1642
1643
1644 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1645
1646 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1647
1648 = 11. Appendix I: Field Installation Photo =
1649
1650
1651 [[image:1656058346362-132.png||height="685" width="732"]]
1652
1653 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1654
1655
1656
1657 (% style="color:blue" %)**Wind Speed/Direction**
1658
1659 [[image:1656058373174-421.png||height="356" width="731"]]
1660
1661
1662
1663 (% style="color:blue" %)**Total Solar Radiation sensor**
1664
1665 [[image:1656058397364-282.png||height="453" width="732"]]
1666
1667
1668
1669 (% style="color:blue" %)**PAR Sensor**
1670
1671 [[image:1656058416171-615.png]]
1672
1673
1674
1675 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1676
1677 [[image:1656058441194-827.png||height="672" width="523"]]
1678
1679
1680
1681 (% style="color:blue" %)**Rain / Snow Detect**
1682
1683 [[image:1656058451456-166.png]]
1684
1685
1686
1687 (% style="color:blue" %)**Rain Gauge**
1688
1689 [[image:1656058463455-569.png||height="499" width="550"]]
1690
1691
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0