Last modified by Mengting Qiu on 2025/07/09 16:00

Show last authors
1
2
3 [[image:1656035424980-692.png||data-xwiki-image-style-alignment="center" height="533" width="386"]]
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 Overview ==
25
26
27 (((
28 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
29 )))
30
31 (((
32 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
33 )))
34
35 (((
36 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in Li-ion backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
37 )))
38
39 (((
40 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
41 )))
42
43
44 = 2. How to use =
45
46 == 2.1 Installation ==
47
48
49 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
50
51
52 [[image:1656041948552-849.png]]
53
54
55 (% style="color:blue" %)** Wiring:**
56
57 ~1. WSC1-L and sensors all powered by solar power via MPPT
58
59 2. WSC1-L and sensors connect to each other via RS485/Modbus.
60
61 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
62
63
64 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
65
66 [[image:1656042136605-251.png]]
67
68
69 (% style="color:red" %)**Notice 1:**
70
71 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
72 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
73 * Weather sensors won't work if solar panel and storage battery fails.
74
75 (% style="color:red" %)**Notice 2:**
76
77 Due to shipment and importation limitation, user is better to purchase below parts locally:
78
79 * Solar Panel
80 * Storage Battery
81 * MPPT Solar Recharger
82 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
83 * Cabinet.
84
85 == 2.2 How it works? ==
86
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109 [[image:1656042612899-422.png]]
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128
129 **Create the application.**
130
131 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
132
133 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
134
135
136 **Add devices to the created Application.**
137
138 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
139
140 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
141
142
143 **Enter end device specifics manually.**
144
145 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
146
147
148 **Add DevEUI and AppKey.**
149
150 **Customize a platform ID for the device.**
151
152 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
153
154
155 (% style="color:blue" %)**Step 2**(%%): Add decoder.
156
157 In TTN, user can add a custom payload so it shows friendly reading.
158
159 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/Weather%20Station>>https://github.com/dragino/dragino-end-node-decoder/tree/main/Weather%20Station]]
160
161 Below is TTN screen shot:
162
163 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
164
165 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
166
167
168 (((
169 (% style="color:blue" %)**Step 3**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
170 )))
171
172 [[image:1656042745346-283.png]]
173
174
175 == 2.4 Uplink Payload ==
176
177
178 Uplink payloads include two types: Valid Sensor Value and other status / control command.
179
180 * Valid Sensor Value: Use FPORT=2
181 * Other control command: Use FPORT other than 2.
182
183 === 2.4.1 Uplink FPORT~=5, Device Status ===
184
185
186 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
187
188
189 (((
190 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
191 )))
192
193 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
194 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 60px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**3**
195 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
196
197 [[image:1656043061044-343.png]]
198
199
200 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
201
202
203 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
204
205 For WSC1-L, this value is 0x0D.
206
207
208 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
209
210 0x0100, Means: v1.0.0 version.
211
212
213 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
214
215 0x01: EU868
216
217 0x02: US915
218
219 0x03: IN865
220
221 0x04: AU915
222
223 0x05: KZ865
224
225 0x06: RU864
226
227 0x07: AS923
228
229 0x08: AS923-1
230
231 0x09: AS923-2
232
233 0x0a: AS923-3
234
235
236 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
237
238 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
239
240
241 ==== (% style="color:#037691" %)**BAT:**(%%) ====
242
243 (((
244 shows the battery voltage for WSC1-L MCU.
245 )))
246
247 (((
248 Ex1: 0x0BD6/1000 = 3.03 V
249 )))
250
251
252 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
253
254 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
255 |Byte3|Byte2|Byte1
256
257 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
258
259 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
260 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:110px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
261 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
262 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
263 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
264 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
265 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
266
267 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
268
269 External sensors detected by WSC1-L include :
270
271 custom sensor A1,
272
273 PAR sensor (WSS-07),
274
275 Total Solar Radiation sensor (WSS-06),
276
277 CO2/PM2.5/PM10 (WSS-03),
278
279 Wind Speed/Direction (WSS-02)
280
281
282 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
283
284 (% style="color:#037691" %)**Downlink:0x26 01**
285
286 [[image:1656049673488-415.png]]
287
288
289 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
290
291
292 ==== 2.4.2.1 paylaod before firmware V1.3.1 ====
293
294 (((
295 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
296 )))
297
298 (((
299 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
300 )))
301
302 (((
303 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
304 )))
305
306
307 (% style="color:#4472c4" %)** Uplink Payload**:
308
309 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
310 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
311
312 (% style="color:#4472c4" %)** Sensor Segment Define**:
313
314 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
315 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
316
317 (% style="color:#4472c4" %)**Sensor Type Table:**
318
319 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
320 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
321 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
322 Speed: 0 ~~ 60m/s
323 Level: 0 ~~ 17
324 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
325 (((
326 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
327 )))
328
329 (((
330 0x02=2 (0x14: No Sensor, 0x15: Value Error)
331 )))
332 )))
333 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
334 Angel: 0 ~~ 360°
335 Direction: 16 positions
336 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
337 (((
338 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
339 )))
340
341 (((
342 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
343 )))
344 )))
345 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
346 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
347 )))
348 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
349 (((
350 0x00 (00) No Rain or snow detected
351 )))
352
353 (((
354 (0x02: No Sensor,0x03: Value Error)
355 )))
356 )))
357 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
358 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
359 )))
360 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
361 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
362 )))
363 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
364 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
365 )))
366 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
367 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
368 )))
369 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
370 0mm~100mm(Rainfall in the last 24 hours)
371 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
372 (((
373 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
374 )))
375
376 (((
377 (0x03FE: No Sensor,0x03FF: Value Error)
378 )))
379 )))
380 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
381 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
382 )))
383 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
384 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
385 )))
386 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
387 0~2500μmol/m^^2^^•s
388 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
389 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
390 )))
391 |(% style="width:103px" %)(((
392 Total Solar Radiation
393 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
394 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
395 )))
396
397 (((
398 Below is an example payload:  [[image:image-20220624140615-3.png]]
399 )))
400
401
402
403
404
405 (((
406 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
407 )))
408
409 * (((
410 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
411 )))
412
413 (((
414 Uplink 1:  [[image:image-20220624140735-4.png]]
415 )))
416
417
418
419
420
421 (((
422 Uplink 2:  [[image:image-20220624140842-5.png]]
423
424 )))
425
426 * (((
427 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
428 )))
429
430 (((
431 Uplink 1:  [[image:image-20220624141025-6.png]]
432 )))
433
434
435
436
437
438 Uplink 2:  [[image:image-20220624141100-7.png]]
439
440
441
442 ==== 2.4.2.2 paylaod since firmware V1.3.1 ====
443
444
445 (% style="color:red" %)**Note: Since firmware V1.3.1, [[MSP mode>>||anchor="H3.8SettheMSPmode28SincefirmwareV1.3.129"]] has been added for WSS-02. Thus the wind speed paylaod length increases(Add 4 bytes for maximum wind speed and average wind speed).**
446
447 (((
448 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
449 )))
450
451 (% style="color:#4472c4" %)** Uplink Payload**:
452
453 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
454 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
455
456 (% style="color:#4472c4" %)** Sensor Segment Define**:
457
458 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
459 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
460
461 (% style="color:#4472c4" %)**Sensor Type Table:**
462
463 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
464 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
465 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
466 ①Speed: 0 ~~ 60m/s
467
468 ②(% style="color:#4472c4" %)**Maximum wind speed: **(%%)0 ~~ 60m/s
469
470 ③(% style="color:#4472c4" %)**Average wind speed:**(%%) 0 ~~ 60m/s
471 ④Level: 0 ~~ 17
472 )))|(% style="width:122px" %)0x07 |(% style="width:904px" %)(((
473 (((
474 ①0x0015/10=2.1m/s (0x02FE: No Sensor, 0x02EE: Value Error)
475
476 ②0x0024/10=3.6m/s
477
478 ③0x000E/10=1.4m/s
479 )))
480
481 (((
482 ④0x02=2 (0x14: No Sensor, 0x15: Value Error)
483 )))
484 )))
485 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
486 Angel: 0 ~~ 360°
487 Direction: 16 positions
488 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
489 (((
490 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
491 )))
492
493 (((
494 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
495 )))
496 )))
497 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
498 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
499 )))
500 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
501 (((
502 0x00 (00) No Rain or snow detected
503 )))
504
505 (((
506 (0x02: No Sensor,0x03: Value Error)
507 )))
508 )))
509 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
510 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
511 )))
512 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
513 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
514 )))
515 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
516 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
517 )))
518 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
519 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
520 )))
521 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
522 0mm~100mm(Rainfall in the last 24 hours)
523 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
524 (((
525 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
526 )))
527
528 (((
529 (0x03FE: No Sensor,0x03FF: Value Error)
530 )))
531 )))
532 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
533 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
534 )))
535 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
536 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
537 )))
538 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
539 0~2500μmol/m^^2^^•s
540 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
541 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
542 )))
543 |(% style="width:103px" %)(((
544 Total Solar Radiation
545 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
546 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
547 )))
548
549 === 2.4.3 Decoder in TTN V3 ===
550
551
552 (((
553 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
554 )))
555
556 (((
557 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
558 )))
559
560 (((
561 and put as below:
562 )))
563
564 [[image:1656051152438-578.png]]
565
566
567 == 2.5 Show data on Application Server ==
568
569
570 (((
571 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
572 )))
573
574 (((
575 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
576 )))
577
578 (((
579 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
580 )))
581
582 [[image:1656051197172-131.png]]
583
584
585 **Add TagoIO:**
586
587 [[image:1656051223585-631.png]]
588
589
590 **Authorization:**
591
592 [[image:1656051248318-368.png]]
593
594
595 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
596
597 [[image:1656051277767-168.png]]
598
599
600 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
601
602
603 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
604
605 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
606 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
607
608 There are two kinds of commands to configure WSC1-L, they are:
609
610 * (% style="color:blue" %)**General Commands**.
611
612 These commands are to configure:
613
614 * General system settings like: uplink interval.
615 * LoRaWAN protocol & radio related command.
616
617 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
618
619 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
620
621
622 * (% style="color:blue" %)**Commands special design for WSC1-L**
623
624 These commands only valid for WSC1-L, as below:
625
626
627 == 3.1 Set Transmit Interval Time ==
628
629
630 Feature: Change LoRaWAN End Node Transmit Interval.
631
632 (% style="color:#037691" %)**AT Command: AT+TDC**
633
634 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
635 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
636 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
637 30000
638 OK
639 the interval is 30000ms = 30s
640 )))
641 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
642 OK
643 Set transmit interval to 60000ms = 60 seconds
644 )))
645
646 (% style="color:#037691" %)**Downlink Command: 0x01**
647
648 Format: Command Code (0x01) followed by 3 bytes time value.
649
650 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
651
652 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
653 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
654
655 == 3.2 Set Emergency Mode ==
656
657
658 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
659
660 (% style="color:#037691" %)**AT Command:**
661
662 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
663 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
664 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
665 OK
666
667 )))
668 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
669 OK
670 )))
671
672 (% style="color:#037691" %)**Downlink Command:**
673
674 * 0xE101     Same as: AT+ALARMMOD=1
675 * 0xE100     Same as: AT+ALARMMOD=0
676
677 == 3.3 Add or Delete RS485 Sensor ==
678
679
680 (((
681 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
682 )))
683
684 (((
685 (% style="color:#037691" %)**AT Command: **
686 )))
687
688 (((
689 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
690 )))
691
692 * (((
693 Type_Code range:  A1 ~~ A4
694 )))
695 * (((
696 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
697 )))
698 * (((
699 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
700 )))
701 * (((
702 Read_Length:  RS485 response frame length supposed to receive. Max can receive
703 )))
704 * (((
705 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
706 )))
707 * (((
708 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
709 )))
710 * (((
711 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
712 )))
713
714 (((
715 **Example:**
716 )))
717
718 (((
719 User need to change external sensor use the type code as address code.
720 )))
721
722 (((
723 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
724 )))
725
726 [[image:image-20220624143553-10.png]]
727
728
729 The response frame of the sensor is as follows:
730
731 [[image:image-20220624143618-11.png]]
732
733
734 **Then the following parameters should be:**
735
736 * Address_Code range: A1
737 * Query_Length: 8
738 * Query_Command: A103000000019CAA
739 * Read_Length: 8
740 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
741 * has_CRC: 1
742 * timeout: 1500 (Fill in the test according to the actual situation)
743
744 **So the input command is:**
745
746 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
747
748
749 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
750
751 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
752 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
753 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
754
755 **Related commands:**
756
757 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
758
759 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
760
761
762 (% style="color:#037691" %)**Downlink Command:  **
763
764 **delete custom sensor A1:**
765
766 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
767
768 **Remove all custom sensors**
769
770 * 0xE5FF  
771
772 == 3.4 RS485 Test Command ==
773
774
775 (% style="color:#037691" %)**AT Command:**
776
777 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
778 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
779 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
780 Send command to 485 sensor. Range : no more than 10 bytes
781 )))|(% style="width:85px" %)OK
782
783 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
784
785 AT+RSWRITE=0103000001840A
786
787 If there is output from sensor, The console will show the output data
788
789
790 (% style="color:#037691" %)**Downlink Command:**
791
792 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
793
794 == 3.5 RS485 response timeout ==
795
796
797 Feature: Set or get extended time to receive 485 sensor data.
798
799 (% style="color:#037691" %)**AT Command:**
800
801 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
802 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
803 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
804 Set response timeout to: Range : 0~~10000
805 )))|(% style="width:85px" %)OK
806
807 (% style="color:#037691" %)**Downlink Command:**
808
809 Format: Command Code (0xE0) followed by 3 bytes time value.
810
811 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
812
813 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
814 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
815
816 == 3.6 Set Sensor Type ==
817
818
819 (((
820 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
821 )))
822
823 (((
824 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
825
826 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
827 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
828 | |A4|A3|A2|A1| | |
829 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
830 | | |Solar Radiation|PAR|PM10|PM2.5|(((
831 Rain
832 Gauge
833 )))|(((
834 Air
835 Pressure
836 )))
837 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
838 |Humidity|Temperature|CO2|(((
839 Rain/Snow
840 Detect
841 )))|illuminance|(((
842 Wind
843 Direction
844 )))|Wind Speed|BAT
845 )))
846
847
848 (% style="color:#037691" %)**AT Command:**
849
850 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:377px" %)
851 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 132px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
852 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
853
854 Eg: The setting command **AT+STYPE=80221** means:
855
856 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:495px" %)
857 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
858 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
859 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
860 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
861 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
862 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
863
864 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
865
866
867 (% style="color:#037691" %)**Downlink Command:**
868
869 * 0xE400080221  Same as: AT+STYPE=80221
870
871 (% style="color:red" %)**Note:**
872
873 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
874
875
876 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
877
878
879 (% style="color:#037691" %)**AT Command:**
880
881 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
882 |=(% style="width: 230px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 232px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
883 |(% style="width:240px" %)(((
884 AT+RAINFALLSWITCH=10(Value:3,4,5,6,8,10)
885 )))|(% style="width:232px" %)(((
886 Set the registers read by the rain gauge
887 )))|(% style="width:38px" %)OK
888
889 (% style="color:#037691" %)**Downlink Command:**
890
891 * 0xE703  Same as: AT+RAINFALLSWITCH=3
892
893 Value Definition:
894
895 * **3**: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
896 * **4**: Hourly rainfall: 0.2mm
897 * **5**: Rainfall in last hour: 0.2mm
898 * **6**: 24-hour maximum rainfall 10.0mm
899 * **8**: 24-hour minimum rainfall:0.0mm
900 * **10**: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
901
902 == 3.8 Set the MSP mode(Since firmware V1.3.1) ==
903
904
905 (% style="color:red" %)**Note: This feature is available for WSS-02.**
906
907 This function is used for the continuous collection of wind speed.
908
909 When MSP mode is turned on (AT+MSP=1), WSC1-L will collect real-time wind speed **every 5 seconds**. Then it will judge the maximum wind speed in this period according to the wind speed collected in TDC time, and calculate the average wind speed according to the wind speed data collected in TDC time and the number of data groups.
910
911 (% style="color:#037691" %)**AT Command: AT+MSP**
912
913 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
914 |=(% style="width: 158px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 214px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 136px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
915 |(% style="width:158px" %)(((
916 AT+MSP=?
917 )))|(% style="width:214px" %)Query whether MSP mode is on|(% style="width:136px" %)(((
918 0(default)
919
920 OK
921 )))
922 |(% style="width:158px" %)AT+MSP=0|(% style="width:214px" %)Disable the MSP mode|(% style="width:136px" %)OK
923 |(% style="width:158px" %)AT+MSP=1|(% style="width:214px" %)Enable the MSP mode|(% style="width:136px" %)OK
924
925 (% style="color:#037691" %)**Downlink Command: 0X34**
926
927 * Downlink payload: 34 00  ~/~/ Equal to AT+MSP=0
928 * Downlink payload: 34 01  ~/~/ Equal to AT+MSP=1
929
930 = 4. Power consumption and battery =
931
932 == 4.1 Total Power Consumption ==
933
934
935 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
936
937
938 == 4.2 Reduce power consumption ==
939
940
941 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
942
943
944 == 4.3 Battery ==
945
946
947 (((
948 All sensors are only power by external power source. If external power source is off. All sensor won't work.
949 )))
950
951 (((
952 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
953 )))
954
955
956 = 5. Main Process Unit WSC1-L =
957
958 == 5.1 Features ==
959
960
961 * Wall Attachable.
962 * LoRaWAN v1.0.3 Class A protocol.
963 * RS485 / Modbus protocol
964 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
965 * AT Commands to change parameters
966 * Remote configure parameters via LoRaWAN Downlink
967 * Firmware upgradable via program port
968 * Powered by external 12v battery
969 * Back up rechargeable 1000mAh battery
970 * IP Rating: IP65
971 * Support default sensors or 3rd party RS485 sensors
972
973 == 5.2 Power Consumption ==
974
975
976 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
977
978
979 == 5.3 Storage & Operation Temperature ==
980
981
982 -20°C to +60°C
983
984
985 == 5.4 Pin Mapping ==
986
987
988 [[image:1656054149793-239.png]]
989
990
991 == 5.5 Mechanical ==
992
993
994 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
995
996
997 == 5.6 Connect to RS485 Sensors ==
998
999
1000 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
1001
1002
1003 [[image:1656054389031-379.png]]
1004
1005
1006 Hardware Design for the Converter Board please see:
1007
1008 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
1009
1010
1011 = 6. Weather Sensors =
1012
1013 == 6.1 Rain Gauge ~-~- WSS-01 ==
1014
1015
1016 (((
1017 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
1018 )))
1019
1020 (((
1021 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
1022 )))
1023
1024 (((
1025 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
1026 )))
1027
1028 (((
1029 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
1030 )))
1031
1032 (((
1033 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
1034 )))
1035
1036
1037 === 6.1.1 Feature ===
1038
1039
1040 * RS485 Rain Gauge
1041 * Small dimension, easy to install
1042 * Vents under funnel, avoid leaf or other things to avoid rain flow.
1043 * ABS enclosure.
1044 * Horizontal adjustable.
1045
1046 === 6.1.2 Specification ===
1047
1048
1049 * Resolution: 0.2mm
1050 * Accuracy: ±3%
1051 * Range: 0 ~~ 100mm
1052 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
1053 * Input Power: DC 5 ~~ 24v
1054 * Interface: RS485
1055 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
1056 * Working Humidity: <100% (no dewing)
1057 * Power Consumption: 4mA @ 12v.
1058
1059 === 6.1.3 Dimension ===
1060
1061
1062 [[image:1656054957406-980.png]]
1063
1064
1065 === 6.1.4 Pin Mapping ===
1066
1067
1068 [[image:1656054972828-692.png]]
1069
1070
1071 === 6.1.5 Installation Notice ===
1072
1073
1074 (((
1075 Do not power on while connect the cables. Double check the wiring before power on.
1076 )))
1077
1078 (((
1079 Installation Photo as reference:
1080 )))
1081
1082
1083 (((
1084 (% style="color:#4472c4" %)** Install on Ground:**
1085 )))
1086
1087 (((
1088 WSS-01 Rain Gauge include screws so can install in ground directly .
1089 )))
1090
1091
1092 (((
1093 (% style="color:#4472c4" %)** Install on pole:**
1094 )))
1095
1096 (((
1097 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
1098 )))
1099
1100 [[image:image-20220624152218-1.png||height="526" width="276"]]
1101
1102 WS-K2: Bracket Kit for Pole installation
1103
1104
1105 WSSC-K2 dimension document, please see:
1106
1107 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
1108
1109
1110 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
1111
1112
1113 [[image:1656055444035-179.png]]
1114
1115
1116 (((
1117 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
1118 )))
1119
1120 (((
1121 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
1122 )))
1123
1124 (((
1125 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
1126 )))
1127
1128
1129 === 6.2.1 Feature ===
1130
1131
1132 * RS485 wind speed / direction sensor
1133 * PC enclosure, resist corrosion
1134
1135 === 6.2.2 Specification ===
1136
1137
1138 * Wind speed range: 0 ~~ 60m/s
1139 * Wind direction range: 0 ~~ 360°
1140 * Start wind speed: ≤0.3 m/s
1141 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1142 * Input Power: DC 5 ~~ 24v
1143 * Interface: RS485
1144 * Working Temperature: -30℃ ~~ 70℃
1145 * Working Humidity: <100% (no dewing)
1146 * Power Consumption: 13mA @12v.
1147 * Cable Length: 2 meters
1148
1149 === 6.2.3 Dimension ===
1150
1151
1152 [[image:image-20220624152813-2.png]]
1153
1154
1155 === 6.2.4 Pin Mapping ===
1156
1157
1158 [[image:1656056281231-994.png]]
1159
1160
1161 === 6.2.5  Angle Mapping ===
1162
1163
1164 [[image:1656056303845-585.png]]
1165
1166
1167 === 6.2.6  Installation Notice ===
1168
1169
1170 (((
1171 Do not power on while connect the cables. Double check the wiring before power on.
1172 )))
1173
1174 (((
1175 The sensor must be installed with below direction, towards North.
1176
1177
1178 )))
1179
1180 [[image:image-20220624153901-3.png]]
1181
1182
1183 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1184
1185
1186 (((
1187 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1188 )))
1189
1190 (((
1191 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1192 )))
1193
1194 (((
1195 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1196 )))
1197
1198
1199 === 6.3.1 Feature ===
1200
1201
1202 * RS485 CO2, PM2.5, PM10 sensor
1203 * NDIR to measure CO2 with Internal Temperature Compensation
1204 * Laser Beam Scattering to PM2.5 and PM10
1205
1206 === 6.3.2 Specification ===
1207
1208
1209 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1210 * CO2 resolution: 1ppm
1211 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1212 * PM2.5/PM10 resolution: 1μg/m3
1213 * Input Power: DC 7 ~~ 24v
1214 * Preheat time: 3min
1215 * Interface: RS485
1216 * Working Temperature:
1217 ** CO2: 0℃ ~~ 50℃;
1218 ** PM2.5/PM10: -30 ~~ 50℃
1219 * Working Humidity:
1220 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1221 ** CO2: 0 ~~ 95%RH
1222 * Power Consumption: 50mA@ 12v.
1223
1224 === 6.3.3 Dimension ===
1225
1226
1227 [[image:1656056708366-230.png]]
1228
1229
1230 === 6.3.4 Pin Mapping ===
1231
1232
1233 [[image:1656056722648-743.png]]
1234
1235
1236 === 6.3.5 Installation Notice ===
1237
1238
1239 Do not power on while connect the cables. Double check the wiring before power on.
1240
1241 [[image:1656056751153-304.png]]
1242
1243
1244 [[image:1656056766224-773.png]]
1245
1246
1247 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1248
1249
1250 (((
1251 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1252 )))
1253
1254 (((
1255 WSS-04 has auto heating feature, this ensures measurement more reliable.
1256 )))
1257
1258 (((
1259 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1260 )))
1261
1262
1263 === 6.4.1 Feature ===
1264
1265
1266 * RS485 Rain/Snow detect sensor
1267 * Surface heating to dry
1268 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1269
1270 === 6.4.2 Specification ===
1271
1272
1273 * Detect if there is rain or snow
1274 * Input Power: DC 12 ~~ 24v
1275 * Interface: RS485
1276 * Working Temperature: -30℃ ~~ 70℃
1277 * Working Humidity: 10 ~~ 90%RH
1278 * Power Consumption:
1279 ** No heating: 12mA @ 12v,
1280 ** heating: 94ma @ 12v.
1281
1282 === 6.4.3 Dimension ===
1283
1284
1285 [[image:1656056844782-155.png]]
1286
1287
1288 === 6.4.4 Pin Mapping ===
1289
1290
1291 [[image:1656056855590-754.png]]
1292
1293
1294 === 6.4.5 Installation Notice ===
1295
1296
1297 Do not power on while connect the cables. Double check the wiring before power on.
1298
1299 (((
1300 Install with 15°degree.
1301 )))
1302
1303 [[image:1656056873783-780.png]]
1304
1305
1306 [[image:1656056883736-804.png]]
1307
1308
1309 === 6.4.6 Heating ===
1310
1311
1312 (((
1313 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1314 )))
1315
1316
1317 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1318
1319
1320 (((
1321 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1322 )))
1323
1324 (((
1325 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1326 )))
1327
1328
1329 === 6.5.1 Feature ===
1330
1331
1332 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1333
1334 === 6.5.2 Specification ===
1335
1336
1337 * Input Power: DC 12 ~~ 24v
1338 * Interface: RS485
1339 * Temperature Sensor Spec:
1340 ** Range: -30 ~~ 70℃
1341 ** resolution 0.1℃
1342 ** Accuracy: ±0.5℃
1343 * Humidity Sensor Spec:
1344 ** Range: 0 ~~ 100% RH
1345 ** resolution 0.1 %RH
1346 ** Accuracy: ±3% RH
1347 * Pressure Sensor Spec:
1348 ** Range: 10 ~~ 1100hPa
1349 ** Resolution: 0.1hPa
1350 ** Accuracy: ±0.1hPa
1351 * Illuminate sensor:
1352 ** Range: 0~~2/20/200kLux
1353 ** Resolution: 10 Lux
1354 ** Accuracy: ±3%FS
1355 * Working Temperature: -30℃ ~~ 70℃
1356 * Working Humidity: 10 ~~ 90%RH
1357 * Power Consumption: 4mA @ 12v
1358
1359 === 6.5.3 Dimension ===
1360
1361
1362 [[image:1656057170639-522.png]]
1363
1364
1365 === 6.5.4 Pin Mapping ===
1366
1367
1368 [[image:1656057181899-910.png]]
1369
1370
1371 === 6.5.5 Installation Notice ===
1372
1373
1374 Do not power on while connect the cables. Double check the wiring before power on.
1375
1376 [[image:1656057199955-514.png]]
1377
1378 [[image:1656057212438-475.png]]
1379
1380
1381 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1382
1383
1384 (((
1385 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1386 )))
1387
1388 (((
1389 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1390 )))
1391
1392 (((
1393 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1394 )))
1395
1396
1397 === 6.6.1 Feature ===
1398
1399
1400 * RS485 Total Solar Radiation sensor
1401 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1402 * Measure Reflected Radiation if sense area towards ground.
1403
1404 === 6.6.2 Specification ===
1405
1406
1407 * Input Power: DC 5 ~~ 24v
1408 * Interface: RS485
1409 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1410 * Measure strength range: 0 ~~ 2000W/m2
1411 * Resolution: 0.1W/m2
1412 * Accuracy: ±3%
1413 * Yearly Stability: ≤±2%
1414 * Cosine response: ≤7% (@ Sun angle 10°)
1415 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1416 * Working Temperature: -40℃ ~~ 70℃
1417 * Working Humidity: 10 ~~ 90%RH
1418 * Power Consumption: 4mA @ 12v
1419
1420 === 6.6.3 Dimension ===
1421
1422
1423 [[image:1656057348695-898.png]]
1424
1425
1426 === 6.6.4 Pin Mapping ===
1427
1428
1429 [[image:1656057359343-744.png]]
1430
1431
1432 === 6.6.5 Installation Notice ===
1433
1434
1435 Do not power on while connect the cables. Double check the wiring before power on.
1436
1437 [[image:1656057369259-804.png]]
1438
1439 [[image:1656057377943-564.png]]
1440
1441
1442 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1443
1444
1445 (((
1446 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1447 )))
1448
1449 (((
1450 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1451 )))
1452
1453 (((
1454 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1455 )))
1456
1457
1458 === 6.7.1 Feature ===
1459
1460
1461 (((
1462 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1463 )))
1464
1465 (((
1466 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1467 )))
1468
1469
1470 === 6.7.2 Specification ===
1471
1472
1473 * Input Power: DC 5 ~~ 24v
1474 * Interface: RS485
1475 * Response Spectrum: 400~~700nm
1476 * Measure range: 0 ~~ 2500μmol/m2•s
1477 * Resolution: 1μmol/m2•s
1478 * Accuracy: ±2%
1479 * Yearly Stability: ≤ ±2%
1480 * Working Temperature: -30℃ ~~ 75℃
1481 * Working Humidity: 10 ~~ 90%RH
1482 * Power Consumption: 3mA @ 12v
1483
1484 === 6.7.3 Dimension ===
1485
1486
1487 [[image:1656057538793-888.png]]
1488
1489
1490 === 6.7.4 Pin Mapping ===
1491
1492
1493 [[image:1656057548116-203.png]]
1494
1495
1496 === 6.7.5 Installation Notice ===
1497
1498
1499 Do not power on while connect the cables. Double check the wiring before power on.
1500
1501 [[image:1656057557191-895.png]]
1502
1503 [[image:1656057565783-251.png]]
1504
1505
1506 = 7. FAQ =
1507
1508 == 7.1 What else do I need to purchase to build Weather Station? ==
1509
1510
1511 Below is the installation photo and structure:
1512
1513
1514 [[image:1656057598349-319.png]]
1515
1516
1517 [[image:1656057608049-693.png]]
1518
1519
1520 == 7.2 How to upgrade firmware for WSC1-L? ==
1521
1522
1523 (((
1524 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1525 )))
1526
1527 (((
1528 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1529 )))
1530
1531
1532 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1533
1534
1535 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1536
1537
1538 == 7.4 Can I add my weather sensors? ==
1539
1540
1541 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1542
1543
1544 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1545
1546
1547 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1548
1549
1550 == 7.6  How to change the data read by the rain gauge? ==
1551
1552
1553 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1554
1555 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1556
1557 **Rainfall query value:**
1558
1559 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1560
1561 4:Current Hourly rainfall: etc 0.2mm
1562
1563 5:Rainfall in last hour: etc 0.2mm
1564
1565 6:24-hour maximum rainfall: etc  10.0mm
1566
1567 8:24-hour minimum rainfall: etc  0.0mm
1568
1569 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1570
1571
1572 = 8. Trouble Shooting =
1573
1574 == 8.1 AT Command input doesn't work ==
1575
1576
1577 (((
1578 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1579 )))
1580
1581
1582 == 8.2  Possible reasons why the device is unresponsive: ==
1583
1584
1585 ~1. Check whether the battery voltage is lower than 2.8V
1586 2. Check whether the jumper of the device is correctly connected
1587
1588 [[image:image-20240330173709-1.png]]
1589
1590
1591 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1592
1593 [[image:image-20240330173724-2.png]]
1594
1595
1596 == 8.3  The rain gauge keeps showing an incorrect value of 102.2 ==
1597
1598 When the rain gauge keeps showing wrong values, it means that the device has exceeded its maximum range.
1599 Customer need to use RS485-USB to reset it
1600
1601 Wiring method:
1602 RS485-USB A<~-~-~-~-~-~-->rain gauge RS485A
1603 RS485-USB B<~-~-~-~-~-~-->rain gauge RS485B
1604
1605
1606 Use the reset command:
1607
1608 06 06 00 37 00 03 79 B2
1609
1610 [[image:image-20250219164620-1.png]]
1611
1612
1613
1614
1615
1616 = 9. Order Info =
1617
1618 == 9.1 Main Process Unit ==
1619
1620
1621 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1622
1623 (% style="color:blue" %)**XX**(%%): The default frequency band
1624
1625 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1626 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1627 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1628 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1629 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1630 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1631 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1632 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1633
1634 == 9.2 Sensors ==
1635
1636
1637 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1638 |=(% style="width: 300px;background-color:#4F81BD;color:white" %)**Sensor Model**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Part Number**
1639 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1640 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1641 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1642 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1643 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1644 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1645 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1646 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1647
1648 = 10. Support =
1649
1650
1651 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1652
1653 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1654
1655 = 11. Appendix I: Field Installation Photo =
1656
1657
1658 [[image:1656058346362-132.png||height="685" width="732"]]
1659
1660 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1661
1662
1663
1664 (% style="color:blue" %)**Wind Speed/Direction**
1665
1666 [[image:1656058373174-421.png||height="356" width="731"]]
1667
1668
1669
1670 (% style="color:blue" %)**Total Solar Radiation sensor**
1671
1672 [[image:1656058397364-282.png||height="453" width="732"]]
1673
1674
1675
1676 (% style="color:blue" %)**PAR Sensor**
1677
1678 [[image:1656058416171-615.png]]
1679
1680
1681
1682 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1683
1684 [[image:1656058441194-827.png||height="672" width="523"]]
1685
1686
1687
1688 (% style="color:blue" %)**Rain / Snow Detect**
1689
1690 [[image:1656058451456-166.png]]
1691
1692
1693
1694 (% style="color:blue" %)**Rain Gauge**
1695
1696 [[image:1656058463455-569.png||height="499" width="550"]]
1697
1698