Last modified by Mengting Qiu on 2025/06/10 18:53

Show last authors
1
2
3 [[image:1656035424980-692.png||data-xwiki-image-style-alignment="center" height="533" width="386"]]
4
5
6
7
8
9
10 **Table of Contents:**
11
12 {{toc/}}
13
14
15
16
17
18
19
20
21
22 = 1. Introduction =
23
24 == 1.1 Overview ==
25
26
27 (((
28 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:blue" %)**weather and climate**(%%). They consist of a (% style="color:blue" %)**main process device (WSC1-L) and various sensors**.
29 )))
30
31 (((
32 The sensors include various type such as: (% style="color:blue" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
33 )))
34
35 (((
36 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:blue" %)**12v solar power**(%%) and have a (% style="color:blue" %)**built-in Li-ion backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
37 )))
38
39 (((
40 WSC1-L is full compatible with(% style="color:blue" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
41 )))
42
43
44 = 2. How to use =
45
46 == 2.1 Installation ==
47
48
49 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
50
51
52 [[image:1656041948552-849.png]]
53
54
55 (% style="color:blue" %)** Wiring:**
56
57 ~1. WSC1-L and sensors all powered by solar power via MPPT
58
59 2. WSC1-L and sensors connect to each other via RS485/Modbus.
60
61 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
62
63
64 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
65
66 [[image:1656042136605-251.png]]
67
68
69 (% style="color:red" %)**Notice 1:**
70
71 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
72 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
73 * Weather sensors won't work if solar panel and storage battery fails.
74
75 (% style="color:red" %)**Notice 2:**
76
77 Due to shipment and importation limitation, user is better to purchase below parts locally:
78
79 * Solar Panel
80 * Storage Battery
81 * MPPT Solar Recharger
82 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
83 * Cabinet.
84
85 == 2.2 How it works? ==
86
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109 [[image:1656042612899-422.png]]
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128
129 **Create the application.**
130
131 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
132
133 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
134
135
136 **Add devices to the created Application.**
137
138 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
139
140 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
141
142
143 **Enter end device specifics manually.**
144
145 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
146
147
148 **Add DevEUI and AppKey.**
149
150 **Customize a platform ID for the device.**
151
152 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
153
154
155 (% style="color:blue" %)**Step 2**(%%): Add decoder.
156
157 In TTN, user can add a custom payload so it shows friendly reading.
158
159 Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/Weather%20Station>>https://github.com/dragino/dragino-end-node-decoder/tree/main/Weather%20Station]]
160
161 Below is TTN screen shot:
162
163 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
164
165 [[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
166
167
168 (((
169 (% style="color:blue" %)**Step 3**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
170 )))
171
172 [[image:1656042745346-283.png]]
173
174
175 == 2.4 Uplink Payload ==
176
177
178 Uplink payloads include two types: Valid Sensor Value and other status / control command.
179
180 * Valid Sensor Value: Use FPORT=2
181 * Other control command: Use FPORT other than 2.
182
183 === 2.4.1 Uplink FPORT~=5, Device Status ===
184
185
186 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
187
188
189 (((
190 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
191 )))
192
193 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
194 |=(% style="width: 70px;background-color:#4F81BD;color:white" %)**Size(**bytes)|=(% style="width: 60px;background-color:#4F81BD;color:white" %)1|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**3**
195 |(% style="width:99px" %)Value|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
196
197 [[image:1656043061044-343.png]]
198
199
200 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
201
202
203 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
204
205 For WSC1-L, this value is 0x0D.
206
207
208 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
209
210 0x0100, Means: v1.0.0 version.
211
212
213 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
214
215 0x01: EU868
216
217 0x02: US915
218
219 0x03: IN865
220
221 0x04: AU915
222
223 0x05: KZ865
224
225 0x06: RU864
226
227 0x07: AS923
228
229 0x08: AS923-1
230
231 0x09: AS923-2
232
233 0x0a: AS923-3
234
235
236 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
237
238 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
239
240
241 ==== (% style="color:#037691" %)**BAT:**(%%) ====
242
243 (((
244 shows the battery voltage for WSC1-L MCU.
245 )))
246
247 (((
248 Ex1: 0x0BD6/1000 = 3.03 V
249 )))
250
251
252 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
253
254 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
255 |Byte3|Byte2|Byte1
256
257 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
258
259 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
260 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:110px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
261 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
262 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
263 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
264 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
265 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
266
267 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
268
269 External sensors detected by WSC1-L include :
270
271 custom sensor A1,
272
273 PAR sensor (WSS-07),
274
275 Total Solar Radiation sensor (WSS-06),
276
277 CO2/PM2.5/PM10 (WSS-03),
278
279 Wind Speed/Direction (WSS-02)
280
281
282 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
283
284 (% style="color:#037691" %)**Downlink:0x26 01**
285
286 [[image:1656049673488-415.png]]
287
288
289 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
290
291
292 ==== 2.4.2.1 paylaod before firmware V1.3.1(including v1.3.1) ====
293
294 (((
295 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
296 )))
297
298 (((
299 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
300 )))
301
302 (((
303 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
304 )))
305
306
307 (% style="color:#4472c4" %)** Uplink Payload**:
308
309 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
310 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
311
312 (% style="color:#4472c4" %)** Sensor Segment Define**:
313
314 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
315 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
316
317 (% style="color:#4472c4" %)**Sensor Type Table:**
318
319 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
320 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
321 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
322 Speed: 0 ~~ 60m/s
323 Level: 0 ~~ 17
324 )))|(% style="width:122px" %)0x03 |(% style="width:904px" %)(((
325 (((
326 0x0024/10=3.6m/s (0x02FE: No Sensor, 0x02EE: Value Error)
327 )))
328
329 (((
330 0x02=2 (0x14: No Sensor, 0x15: Value Error)
331 )))
332 )))
333 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
334 Angel: 0 ~~ 360°
335 Direction: 16 positions
336 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
337 (((
338 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
339 )))
340
341 (((
342 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
343 )))
344 )))
345 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
346 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
347 )))
348 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
349 (((
350 0x00 (00) No Rain or snow detected
351 )))
352
353 (((
354 (0x02: No Sensor,0x03: Value Error)
355 )))
356 )))
357 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
358 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
359 )))
360 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
361 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
362 )))
363 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
364 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
365 )))
366 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
367 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
368 )))
369 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
370 0mm~100mm(Rainfall in the last 24 hours)
371 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
372 (((
373 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
374 )))
375
376 (((
377 (0x03FE: No Sensor,0x03FF: Value Error)
378 )))
379 )))
380 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
381 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
382 )))
383 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
384 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
385 )))
386 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
387 0~2500μmol/m^^2^^•s
388 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
389 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
390 )))
391 |(% style="width:103px" %)(((
392 Total Solar Radiation
393 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
394 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
395 )))
396
397 (((
398 Below is an example payload:  [[image:image-20220624140615-3.png]]
399 )))
400
401
402
403
404 (((
405 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
406 )))
407
408 * (((
409 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
410 )))
411
412 (((
413 Uplink 1:  [[image:image-20220624140735-4.png]]
414 )))
415
416
417
418
419 (((
420 Uplink 2:  [[image:image-20220624140842-5.png]]
421
422 )))
423
424 * (((
425 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
426 )))
427
428 (((
429 Uplink 1:  [[image:image-20220624141025-6.png]]
430 )))
431
432
433
434
435 Uplink 2:  [[image:image-20220624141100-7.png]]
436
437
438
439 ==== 2.4.2.2 paylaod since firmware V1.3.1 ====
440
441
442 (% style="color:red" %)**Note: Since firmware V1.3.1, [[MSP mode>>||anchor="H3.8SettheMSPmode28SincefirmwareV1.3.129"]] has been added for WSS-02. Thus the wind speed paylaod length increases(Add 4 bytes for maximum wind speed and average wind speed).**
443
444 (((
445 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
446 )))
447
448 (% style="color:#4472c4" %)** Uplink Payload**:
449
450 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:464px" %)
451 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
452
453 (% style="color:#4472c4" %)** Sensor Segment Define**:
454
455 (% border="1" cellspacing="10" style="background-color:#f2f2f2; width:330px" %)
456 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
457
458 (% style="color:#4472c4" %)**Sensor Type Table:**
459
460 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
461 |(% style="background-color:#4f81bd; color:white; width:80px" %)**Sensor Type**|(% style="background-color:#4f81bd; color:white; width:65px" %)**Type Code**|(% style="background-color:#4f81bd; color:white; width:97px" %)**Range**|(% style="background-color:#4f81bd; color:white; width:78px" %)**Length( Bytes)**|(% style="background-color:#4f81bd; color:white; width:190px" %)**Example**
462 |(% style="width:103px" %)Wind Speed|(% style="width:91px" %)0x01|(% style="width:158px" %)(((
463 ①Speed: 0 ~~ 60m/s
464
465 ②(% style="color:#4472c4" %)**Maximum wind speed: **(%%)0 ~~ 60m/s
466
467 ③(% style="color:#4472c4" %)**Average wind speed:**(%%) 0 ~~ 60m/s
468 ④Level: 0 ~~ 17
469 )))|(% style="width:122px" %)0x07 |(% style="width:904px" %)(((
470 (((
471 ①0x0015/10=2.1m/s (0x02FE: No Sensor, 0x02EE: Value Error)
472
473 ②0x0024/10=3.6m/s
474
475 ③0x000E/10=1.4m/s
476 )))
477
478 (((
479 ④0x02=2 (0x14: No Sensor, 0x15: Value Error)
480 )))
481 )))
482 |(% style="width:103px" %)Wind Direction|(% style="width:91px" %)0x02|(% style="width:158px" %)(((
483 Angel: 0 ~~ 360°
484 Direction: 16 positions
485 )))|(% style="width:122px" %)0x03|(% style="width:904px" %)(((
486 (((
487 0x02C9/10=66.6°(0x0EFE: No Sensor,0x0EFF: Value Error)
488 )))
489
490 (((
491 0X03=3(ENE) (0x14: No Sensor,0x15: Value Error)
492 )))
493 )))
494 |(% style="width:103px" %)Illumination|(% style="width:91px" %)0x03|(% style="width:158px" %)0~200000kLux|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
495 0x04D2*10=12340kLux (0x4EFE: No Sensor,0x4EFF: Value Error)
496 )))
497 |(% style="width:103px" %)Rain / Snow|(% style="width:91px" %)0x04|(% style="width:158px" %)0A: No, 01 Yes.|(% style="width:122px" %)0x01|(% style="width:904px" %)(((
498 (((
499 0x00 (00) No Rain or snow detected
500 )))
501
502 (((
503 (0x02: No Sensor,0x03: Value Error)
504 )))
505 )))
506 |(% style="width:103px" %)CO2|(% style="width:91px" %)0x05|(% style="width:158px" %)0~5000ppm|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
507 0x0378=888ppm (0x14FE: No Sensor,0x14FF: Value Error)
508 )))
509 |(% style="width:103px" %)Temperature|(% style="width:91px" %)0x06|(% style="width:158px" %)-30℃~70℃|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
510 0xFFDD/10=-3.5℃ (0x02FE: No Sensor,0x02FF: Value Error)
511 )))
512 |(% style="width:103px" %)Humidity|(% style="width:91px" %)0x07|(% style="width:158px" %)0~100%RH|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
513 0x0164/10=35.6%RH (0x03FE: No Sensor,0x03FF: Value Error)
514 )))
515 |(% style="width:103px" %)Pressure|(% style="width:91px" %)0x08|(% style="width:158px" %)10~1100hPa|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
516 0x2748/10=1005.6hPa    (0x00: No Sensor,0x01: Value Error)
517 )))
518 |(% style="width:103px" %)Rain Gauge|(% style="width:91px" %)0x09|(% style="width:158px" %)(((
519 0mm~100mm(Rainfall in the last 24 hours)
520 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
521 (((
522 0x0050/10=8mm (Rainfall within the 24 hours:8.0mm)
523 )))
524
525 (((
526 (0x03FE: No Sensor,0x03FF: Value Error)
527 )))
528 )))
529 |(% style="width:103px" %)PM2.5|(% style="width:91px" %)0x0A|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
530 0x0023=35μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
531 )))
532 |(% style="width:103px" %)PM10|(% style="width:91px" %)0x0B|(% style="width:158px" %)0~1000μg/m^^3^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
533 0x002D=45μg/m^^3  ^^(0x03FE: No Sensor,0x03FF: Value Error)
534 )))
535 |(% style="width:103px" %)PAR|(% style="width:91px" %)0x0C|(% style="width:158px" %)(((
536 0~2500μmol/m^^2^^•s
537 )))|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
538 0x00B3=179μmol/m^^2^^•s (0x09FE: No Sensor,0x09FF: Value Error)
539 )))
540 |(% style="width:103px" %)(((
541 Total Solar Radiation
542 )))|(% style="width:91px" %)0x0D|(% style="width:158px" %)0~2000W/m^^2^^|(% style="width:122px" %)0x02|(% style="width:904px" %)(((
543 0x0073/10=11.5W/m^^2^^(0x4EFE: No Sensor,0x4EFF: Value Error)
544 )))
545
546 === 2.4.3 Decoder in TTN V3 ===
547
548
549 (((
550 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
551 )))
552
553 (((
554 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
555 )))
556
557 (((
558 and put as below:
559 )))
560
561 [[image:1656051152438-578.png]]
562
563
564 == 2.5 Show data on Application Server ==
565
566
567 (((
568 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
569 )))
570
571 (((
572 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
573 )))
574
575 (((
576 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
577 )))
578
579 [[image:1656051197172-131.png]]
580
581
582 **Add TagoIO:**
583
584 [[image:1656051223585-631.png]]
585
586
587 **Authorization:**
588
589 [[image:1656051248318-368.png]]
590
591
592 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
593
594 [[image:1656051277767-168.png]]
595
596
597 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
598
599
600 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
601
602 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
603 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
604
605 There are two kinds of commands to configure WSC1-L, they are:
606
607 * (% style="color:blue" %)**General Commands**.
608
609 These commands are to configure:
610
611 * General system settings like: uplink interval.
612 * LoRaWAN protocol & radio related command.
613
614 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
615
616 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
617
618
619 * (% style="color:blue" %)**Commands special design for WSC1-L**
620
621 These commands only valid for WSC1-L, as below:
622
623
624 == 3.1 Set Transmit Interval Time ==
625
626
627 Feature: Change LoRaWAN End Node Transmit Interval.
628
629 (% style="color:#037691" %)**AT Command: AT+TDC**
630
631 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:501px" %)
632 |(% style="background-color:#4f81bd; color:white; width:155px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:166px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:180px" %)**Response**
633 |(% style="width:155px" %)AT+TDC=?|(% style="width:162px" %)Show current transmit Interval|(% style="width:177px" %)(((
634 30000
635 OK
636 the interval is 30000ms = 30s
637 )))
638 |(% style="width:155px" %)AT+TDC=60000|(% style="width:162px" %)Set Transmit Interval|(% style="width:177px" %)(((
639 OK
640 Set transmit interval to 60000ms = 60 seconds
641 )))
642
643 (% style="color:#037691" %)**Downlink Command: 0x01**
644
645 Format: Command Code (0x01) followed by 3 bytes time value.
646
647 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
648
649 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
650 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
651
652 == 3.2 Set Emergency Mode ==
653
654
655 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
656
657 (% style="color:#037691" %)**AT Command:**
658
659 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:466px" %)
660 |(% style="background-color:#4f81bd; color:white; width:156px" %)**Command Example**|(% style="background-color:#4f81bd; color:white; width:225px" %)**Function**|(% style="background-color:#4f81bd; color:white; width:85px" %)**Response**
661 |(% style="width:155px" %)AT+ALARMMOD=1|(% style="width:224px" %)Enter emergency mode. Uplink every 1 minute|(% style="width:84px" %)(((
662 OK
663
664 )))
665 |(% style="width:155px" %)AT+ALARMMOD=0|(% style="width:224px" %)Exit emergency mode. Uplink base on TDC time|(% style="width:84px" %)(((
666 OK
667 )))
668
669 (% style="color:#037691" %)**Downlink Command:**
670
671 * 0xE101     Same as: AT+ALARMMOD=1
672 * 0xE100     Same as: AT+ALARMMOD=0
673
674 == 3.3 Add or Delete RS485 Sensor ==
675
676
677 (((
678 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
679 )))
680
681 (((
682 (% style="color:#037691" %)**AT Command: **
683 )))
684
685 (((
686 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
687 )))
688
689 * (((
690 Type_Code range:  A1 ~~ A4
691 )))
692 * (((
693 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
694 )))
695 * (((
696 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
697 )))
698 * (((
699 Read_Length:  RS485 response frame length supposed to receive. Max can receive
700 )))
701 * (((
702 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
703 )))
704 * (((
705 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
706 )))
707 * (((
708 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
709 )))
710
711 (((
712 **Example:**
713 )))
714
715 (((
716 User need to change external sensor use the type code as address code.
717 )))
718
719 (((
720 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
721 )))
722
723 [[image:image-20220624143553-10.png]]
724
725
726 The response frame of the sensor is as follows:
727
728 [[image:image-20220624143618-11.png]]
729
730
731 **Then the following parameters should be:**
732
733 * Address_Code range: A1
734 * Query_Length: 8
735 * Query_Command: A103000000019CAA
736 * Read_Length: 8
737 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
738 * has_CRC: 1
739 * timeout: 1500 (Fill in the test according to the actual situation)
740
741 **So the input command is:**
742
743 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
744
745
746 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
747
748 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:351px" %)
749 |=(% style="width: 95px;background-color:#4F81BD;color:white" %)Type Code|=(% style="width: 122px;background-color:#4F81BD;color:white" %)Length (Bytes)|=(% style="width: 134px;background-color:#4F81BD;color:white" %)Measured Value
750 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
751
752 **Related commands:**
753
754 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
755
756 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
757
758
759 (% style="color:#037691" %)**Downlink Command:  **
760
761 **delete custom sensor A1:**
762
763 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
764
765 **Remove all custom sensors**
766
767 * 0xE5FF  
768
769 == 3.4 RS485 Test Command ==
770
771
772 (% style="color:#037691" %)**AT Command:**
773
774 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:494px" %)
775 |=(% style="width: 160px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 248px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
776 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
777 Send command to 485 sensor. Range : no more than 10 bytes
778 )))|(% style="width:85px" %)OK
779
780 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
781
782 AT+RSWRITE=0103000001840A
783
784 If there is output from sensor, The console will show the output data
785
786
787 (% style="color:#037691" %)**Downlink Command:**
788
789 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
790
791 == 3.5 RS485 response timeout ==
792
793
794 Feature: Set or get extended time to receive 485 sensor data.
795
796 (% style="color:#037691" %)**AT Command:**
797
798 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:433px" %)
799 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 190px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 86px;background-color:#4F81BD;color:white" %)**Response**
800 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
801 Set response timeout to: Range : 0~~10000
802 )))|(% style="width:85px" %)OK
803
804 (% style="color:#037691" %)**Downlink Command:**
805
806 Format: Command Code (0xE0) followed by 3 bytes time value.
807
808 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
809
810 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
811 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
812
813 == 3.6 Set Sensor Type ==
814
815
816 (((
817 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
818 )))
819
820 (((
821 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
822
823 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
824 |(% rowspan="2" %)Byte3|Bit23|Bit22|Bit21|Bit20|Bit19|Bit18|Bit17|Bit16
825 | |A4|A3|A2|A1| | |
826 |(% rowspan="2" %)Byte2|Bit15|Bit14|Bit13|Bit12|Bit11|Bit10|Bit9|Bit8
827 | | |Solar Radiation|PAR|PM10|PM2.5|(((
828 Rain
829 Gauge
830 )))|(((
831 Air
832 Pressure
833 )))
834 |(% rowspan="2" %)Byte1|Bit7|Bit6|Bit5|Bit4|Bit3|Bit2|Bit1|Bit0
835 |Humidity|Temperature|CO2|(((
836 Rain/Snow
837 Detect
838 )))|illuminance|(((
839 Wind
840 Direction
841 )))|Wind Speed|BAT
842 )))
843
844
845 (% style="color:#037691" %)**AT Command:**
846
847 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:377px" %)
848 |=(% style="width: 157px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 132px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 88px;background-color:#4F81BD;color:white" %)**Response**
849 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
850
851 Eg: The setting command **AT+STYPE=80221** means:
852
853 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:495px" %)
854 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
855 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
856 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
857 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
858 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
859 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
860
861 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
862
863
864 (% style="color:#037691" %)**Downlink Command:**
865
866 * 0xE400080221  Same as: AT+STYPE=80221
867
868 (% style="color:red" %)**Note:**
869
870 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
871
872
873 == 3.7  Set the registers read by the rain gauge(Since firmware V1.3) ==
874
875
876 (% style="color:#037691" %)**AT Command:**
877
878 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
879 |=(% style="width: 230px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 232px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 48px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
880 |(% style="width:240px" %)(((
881 AT+RAINFALLSWITCH=10(Value:3,4,5,6,8,10)
882 )))|(% style="width:232px" %)(((
883 Set the registers read by the rain gauge
884 )))|(% style="width:38px" %)OK
885
886 (% style="color:#037691" %)**Downlink Command:**
887
888 * 0xE703  Same as: AT+RAINFALLSWITCH=3
889
890 Value Definition:
891
892 * **3**: The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
893 * **4**: Hourly rainfall: 0.2mm
894 * **5**: Rainfall in last hour: 0.2mm
895 * **6**: 24-hour maximum rainfall 10.0mm
896 * **8**: 24-hour minimum rainfall:0.0mm
897 * **10**: Rainfall in 24 hours: 8.0mm (Rainfall in the last 24 hours)
898
899 == 3.8 Set the MSP mode(Since firmware V1.3.1) ==
900
901
902 (% style="color:red" %)**Note: This feature is available for WSS-02.**
903
904 This function is used for the continuous collection of wind speed.
905
906 When MSP mode is turned on (AT+MSP=1), WSC1-L will collect real-time wind speed **every 5 seconds**. Then it will judge the maximum wind speed in this period according to the wind speed collected in TDC time, and calculate the average wind speed according to the wind speed data collected in TDC time and the number of data groups.
907
908 (% style="color:#037691" %)**AT Command: AT+MSP**
909
910 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
911 |=(% style="width: 158px; background-color: rgb(79, 129, 189); color: white;" %)**Command Example**|=(% style="width: 214px; background-color: rgb(79, 129, 189); color: white;" %)**Function**|=(% style="width: 136px; background-color: rgb(79, 129, 189); color: white;" %)**Response**
912 |(% style="width:158px" %)(((
913 AT+MSP=?
914 )))|(% style="width:214px" %)Query whether MSP mode is on|(% style="width:136px" %)(((
915 0(default)
916
917 OK
918 )))
919 |(% style="width:158px" %)AT+MSP=0|(% style="width:214px" %)Disable the MSP mode|(% style="width:136px" %)OK
920 |(% style="width:158px" %)AT+MSP=1|(% style="width:214px" %)Enable the MSP mode|(% style="width:136px" %)OK
921
922 (% style="color:#037691" %)**Downlink Command: 0X34**
923
924 * Downlink payload: 34 00  ~/~/ Equal to AT+MSP=0
925 * Downlink payload: 34 01  ~/~/ Equal to AT+MSP=1
926
927 = 4. Power consumption and battery =
928
929 == 4.1 Total Power Consumption ==
930
931
932 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
933
934
935 == 4.2 Reduce power consumption ==
936
937
938 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
939
940
941 == 4.3 Battery ==
942
943
944 (((
945 All sensors are only power by external power source. If external power source is off. All sensor won't work.
946 )))
947
948 (((
949 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
950 )))
951
952
953 = 5. Main Process Unit WSC1-L =
954
955 == 5.1 Features ==
956
957
958 * Wall Attachable.
959 * LoRaWAN v1.0.3 Class A protocol.
960 * RS485 / Modbus protocol
961 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
962 * AT Commands to change parameters
963 * Remote configure parameters via LoRaWAN Downlink
964 * Firmware upgradable via program port
965 * Powered by external 12v battery
966 * Back up rechargeable 1000mAh battery
967 * IP Rating: IP65
968 * Support default sensors or 3rd party RS485 sensors
969
970 == 5.2 Power Consumption ==
971
972
973 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
974
975
976 == 5.3 Storage & Operation Temperature ==
977
978
979 -20°C to +60°C
980
981
982 == 5.4 Pin Mapping ==
983
984
985 [[image:1656054149793-239.png]]
986
987
988 == 5.5 Mechanical ==
989
990
991 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
992
993
994 == 5.6 Connect to RS485 Sensors ==
995
996
997 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
998
999
1000 [[image:1656054389031-379.png]]
1001
1002
1003 Hardware Design for the Converter Board please see:
1004
1005 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
1006
1007
1008 = 6. Weather Sensors =
1009
1010 == 6.1 Rain Gauge ~-~- WSS-01 ==
1011
1012
1013 (((
1014 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
1015 )))
1016
1017 (((
1018 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
1019 )))
1020
1021 (((
1022 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
1023 )))
1024
1025 (((
1026 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
1027 )))
1028
1029 (((
1030 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
1031 )))
1032
1033
1034 === 6.1.1 Feature ===
1035
1036
1037 * RS485 Rain Gauge
1038 * Small dimension, easy to install
1039 * Vents under funnel, avoid leaf or other things to avoid rain flow.
1040 * ABS enclosure.
1041 * Horizontal adjustable.
1042
1043 === 6.1.2 Specification ===
1044
1045
1046 * Resolution: 0.2mm
1047 * Accuracy: ±3%
1048 * Range: 0 ~~ 100mm
1049 * Rainfall strength: 0mm ~~ 4mm/min (max 8mm/min)
1050 * Input Power: DC 5 ~~ 24v
1051 * Interface: RS485
1052 * Working Temperature: 0℃ ~~ 70℃ (incorrect below 0 degree, because water become ICE)
1053 * Working Humidity: <100% (no dewing)
1054 * Power Consumption: 4mA @ 12v.
1055
1056 === 6.1.3 Dimension ===
1057
1058
1059 [[image:1656054957406-980.png]]
1060
1061
1062 === 6.1.4 Pin Mapping ===
1063
1064
1065 [[image:1656054972828-692.png]]
1066
1067
1068 === 6.1.5 Installation Notice ===
1069
1070
1071 (((
1072 Do not power on while connect the cables. Double check the wiring before power on.
1073 )))
1074
1075 (((
1076 Installation Photo as reference:
1077 )))
1078
1079
1080 (((
1081 (% style="color:#4472c4" %)** Install on Ground:**
1082 )))
1083
1084 (((
1085 WSS-01 Rain Gauge include screws so can install in ground directly .
1086 )))
1087
1088
1089 (((
1090 (% style="color:#4472c4" %)** Install on pole:**
1091 )))
1092
1093 (((
1094 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
1095 )))
1096
1097 [[image:image-20220624152218-1.png||height="526" width="276"]]
1098
1099 WS-K2: Bracket Kit for Pole installation
1100
1101
1102 WSSC-K2 dimension document, please see:
1103
1104 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
1105
1106
1107 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
1108
1109
1110 [[image:1656055444035-179.png]]
1111
1112
1113 (((
1114 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
1115 )))
1116
1117 (((
1118 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
1119 )))
1120
1121 (((
1122 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
1123 )))
1124
1125
1126 === 6.2.1 Feature ===
1127
1128
1129 * RS485 wind speed / direction sensor
1130 * PC enclosure, resist corrosion
1131
1132 === 6.2.2 Specification ===
1133
1134
1135 * Wind speed range: 0 ~~ 60m/s
1136 * Wind direction range: 0 ~~ 360°
1137 * Start wind speed: ≤0.3 m/s
1138 * Accuracy: ±(0.3+0.03V) m/s , ±1°
1139 * Input Power: DC 5 ~~ 24v
1140 * Interface: RS485
1141 * Working Temperature: -30℃ ~~ 70℃
1142 * Working Humidity: <100% (no dewing)
1143 * Power Consumption: 13mA @12v.
1144 * Cable Length: 2 meters
1145
1146 === 6.2.3 Dimension ===
1147
1148
1149 [[image:image-20220624152813-2.png]]
1150
1151
1152 === 6.2.4 Pin Mapping ===
1153
1154
1155 [[image:1656056281231-994.png]]
1156
1157
1158 === 6.2.5  Angle Mapping ===
1159
1160
1161 [[image:1656056303845-585.png]]
1162
1163
1164 === 6.2.6  Installation Notice ===
1165
1166
1167 (((
1168 Do not power on while connect the cables. Double check the wiring before power on.
1169 )))
1170
1171 (((
1172 The sensor must be installed with below direction, towards North.
1173
1174
1175 )))
1176
1177 [[image:image-20220624153901-3.png]]
1178
1179
1180 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
1181
1182
1183 (((
1184 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
1185 )))
1186
1187 (((
1188 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
1189 )))
1190
1191 (((
1192 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
1193 )))
1194
1195
1196 === 6.3.1 Feature ===
1197
1198
1199 * RS485 CO2, PM2.5, PM10 sensor
1200 * NDIR to measure CO2 with Internal Temperature Compensation
1201 * Laser Beam Scattering to PM2.5 and PM10
1202
1203 === 6.3.2 Specification ===
1204
1205
1206 * CO2 Range: 0 ~~ 5000ppm, accuracy: ±3%F•S(25℃)
1207 * CO2 resolution: 1ppm
1208 * PM2.5/PM10 Range: 0 ~~ 1000μg/m3 , accuracy ±3%F•S(25℃)
1209 * PM2.5/PM10 resolution: 1μg/m3
1210 * Input Power: DC 7 ~~ 24v
1211 * Preheat time: 3min
1212 * Interface: RS485
1213 * Working Temperature:
1214 ** CO2: 0℃ ~~ 50℃;
1215 ** PM2.5/PM10: -30 ~~ 50℃
1216 * Working Humidity:
1217 ** PM2.5/PM10: 15 ~~ 80%RH (no dewing)
1218 ** CO2: 0 ~~ 95%RH
1219 * Power Consumption: 50mA@ 12v.
1220
1221 === 6.3.3 Dimension ===
1222
1223
1224 [[image:1656056708366-230.png]]
1225
1226
1227 === 6.3.4 Pin Mapping ===
1228
1229
1230 [[image:1656056722648-743.png]]
1231
1232
1233 === 6.3.5 Installation Notice ===
1234
1235
1236 Do not power on while connect the cables. Double check the wiring before power on.
1237
1238 [[image:1656056751153-304.png]]
1239
1240
1241 [[image:1656056766224-773.png]]
1242
1243
1244 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1245
1246
1247 (((
1248 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1249 )))
1250
1251 (((
1252 WSS-04 has auto heating feature, this ensures measurement more reliable.
1253 )))
1254
1255 (((
1256 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1257 )))
1258
1259
1260 === 6.4.1 Feature ===
1261
1262
1263 * RS485 Rain/Snow detect sensor
1264 * Surface heating to dry
1265 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1266
1267 === 6.4.2 Specification ===
1268
1269
1270 * Detect if there is rain or snow
1271 * Input Power: DC 12 ~~ 24v
1272 * Interface: RS485
1273 * Working Temperature: -30℃ ~~ 70℃
1274 * Working Humidity: 10 ~~ 90%RH
1275 * Power Consumption:
1276 ** No heating: 12mA @ 12v,
1277 ** heating: 94ma @ 12v.
1278
1279 === 6.4.3 Dimension ===
1280
1281
1282 [[image:1656056844782-155.png]]
1283
1284
1285 === 6.4.4 Pin Mapping ===
1286
1287
1288 [[image:1656056855590-754.png]]
1289
1290
1291 === 6.4.5 Installation Notice ===
1292
1293
1294 Do not power on while connect the cables. Double check the wiring before power on.
1295
1296 (((
1297 Install with 15°degree.
1298 )))
1299
1300 [[image:1656056873783-780.png]]
1301
1302
1303 [[image:1656056883736-804.png]]
1304
1305
1306 === 6.4.6 Heating ===
1307
1308
1309 (((
1310 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1311 )))
1312
1313
1314 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1315
1316
1317 (((
1318 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1319 )))
1320
1321 (((
1322 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1323 )))
1324
1325
1326 === 6.5.1 Feature ===
1327
1328
1329 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1330
1331 === 6.5.2 Specification ===
1332
1333
1334 * Input Power: DC 12 ~~ 24v
1335 * Interface: RS485
1336 * Temperature Sensor Spec:
1337 ** Range: -30 ~~ 70℃
1338 ** resolution 0.1℃
1339 ** Accuracy: ±0.5℃
1340 * Humidity Sensor Spec:
1341 ** Range: 0 ~~ 100% RH
1342 ** resolution 0.1 %RH
1343 ** Accuracy: ±3% RH
1344 * Pressure Sensor Spec:
1345 ** Range: 10 ~~ 1100hPa
1346 ** Resolution: 0.1hPa
1347 ** Accuracy: ±0.1hPa
1348 * Illuminate sensor:
1349 ** Range: 0~~2/20/200kLux
1350 ** Resolution: 10 Lux
1351 ** Accuracy: ±3%FS
1352 * Working Temperature: -30℃ ~~ 70℃
1353 * Working Humidity: 10 ~~ 90%RH
1354 * Power Consumption: 4mA @ 12v
1355
1356 === 6.5.3 Dimension ===
1357
1358
1359 [[image:1656057170639-522.png]]
1360
1361
1362 === 6.5.4 Pin Mapping ===
1363
1364
1365 [[image:1656057181899-910.png]]
1366
1367
1368 === 6.5.5 Installation Notice ===
1369
1370
1371 Do not power on while connect the cables. Double check the wiring before power on.
1372
1373 [[image:1656057199955-514.png]]
1374
1375 [[image:1656057212438-475.png]]
1376
1377
1378 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1379
1380
1381 (((
1382 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1383 )))
1384
1385 (((
1386 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1387 )))
1388
1389 (((
1390 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1391 )))
1392
1393
1394 === 6.6.1 Feature ===
1395
1396
1397 * RS485 Total Solar Radiation sensor
1398 * Measure Total Radiation between 0.3 ~~ 3μm(300 ~~ 3000nm)
1399 * Measure Reflected Radiation if sense area towards ground.
1400
1401 === 6.6.2 Specification ===
1402
1403
1404 * Input Power: DC 5 ~~ 24v
1405 * Interface: RS485
1406 * Detect spectrum: 0.3 ~~ 3μm(300~3000nm)
1407 * Measure strength range: 0 ~~ 2000W/m2
1408 * Resolution: 0.1W/m2
1409 * Accuracy: ±3%
1410 * Yearly Stability: ≤±2%
1411 * Cosine response: ≤7% (@ Sun angle 10°)
1412 * Temperature Effect: ±2% (-10℃ ~~ 40℃)
1413 * Working Temperature: -40℃ ~~ 70℃
1414 * Working Humidity: 10 ~~ 90%RH
1415 * Power Consumption: 4mA @ 12v
1416
1417 === 6.6.3 Dimension ===
1418
1419
1420 [[image:1656057348695-898.png]]
1421
1422
1423 === 6.6.4 Pin Mapping ===
1424
1425
1426 [[image:1656057359343-744.png]]
1427
1428
1429 === 6.6.5 Installation Notice ===
1430
1431
1432 Do not power on while connect the cables. Double check the wiring before power on.
1433
1434 [[image:1656057369259-804.png]]
1435
1436 [[image:1656057377943-564.png]]
1437
1438
1439 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1440
1441
1442 (((
1443 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1444 )))
1445
1446 (((
1447 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1448 )))
1449
1450 (((
1451 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1452 )))
1453
1454
1455 === 6.7.1 Feature ===
1456
1457
1458 (((
1459 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1460 )))
1461
1462 (((
1463 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1464 )))
1465
1466
1467 === 6.7.2 Specification ===
1468
1469
1470 * Input Power: DC 5 ~~ 24v
1471 * Interface: RS485
1472 * Response Spectrum: 400~~700nm
1473 * Measure range: 0 ~~ 2500μmol/m2•s
1474 * Resolution: 1μmol/m2•s
1475 * Accuracy: ±2%
1476 * Yearly Stability: ≤ ±2%
1477 * Working Temperature: -30℃ ~~ 75℃
1478 * Working Humidity: 10 ~~ 90%RH
1479 * Power Consumption: 3mA @ 12v
1480
1481 === 6.7.3 Dimension ===
1482
1483
1484 [[image:1656057538793-888.png]]
1485
1486
1487 === 6.7.4 Pin Mapping ===
1488
1489
1490 [[image:1656057548116-203.png]]
1491
1492
1493 === 6.7.5 Installation Notice ===
1494
1495
1496 Do not power on while connect the cables. Double check the wiring before power on.
1497
1498 [[image:1656057557191-895.png]]
1499
1500 [[image:1656057565783-251.png]]
1501
1502
1503 = 7. FAQ =
1504
1505 == 7.1 What else do I need to purchase to build Weather Station? ==
1506
1507
1508 Below is the installation photo and structure:
1509
1510
1511 [[image:1656057598349-319.png]]
1512
1513
1514 [[image:1656057608049-693.png]]
1515
1516
1517 == 7.2 How to upgrade firmware for WSC1-L? ==
1518
1519
1520 (((
1521 Firmware Location & Change log: [[https:~~/~~/www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0>>https://www.dropbox.com/sh/j6uco1uirwqbng1/AAAwGoxamL5xNJR5Z6CTqGXha?dl=0]]
1522 )))
1523
1524 (((
1525 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1526 )))
1527
1528
1529 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1530
1531
1532 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1533
1534
1535 == 7.4 Can I add my weather sensors? ==
1536
1537
1538 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1539
1540
1541 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1542
1543
1544 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1545
1546
1547 == 7.6  How to change the data read by the rain gauge? ==
1548
1549
1550 Users can run the AT+RAINFALLSWITCH command to query the data of the rain gauge.
1551
1552 AT+RAINFALLSWITCH=10(Range: 3,4,5,6,8,10)
1553
1554 **Rainfall query value:**
1555
1556 3:The total rainfall after the sensor is powered on  (for example  Total rainfall: 166.5mm)
1557
1558 4:Current Hourly rainfall: etc 0.2mm
1559
1560 5:Rainfall in last hour: etc 0.2mm
1561
1562 6:24-hour maximum rainfall: etc  10.0mm
1563
1564 8:24-hour minimum rainfall: etc  0.0mm
1565
1566 10:Rainfall in 24 hours: 8.0mm  (Rainfall in the last 24 hours)
1567
1568
1569 = 8. Trouble Shooting =
1570
1571 == 8.1 AT Command input doesn't work ==
1572
1573
1574 (((
1575 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1576 )))
1577
1578
1579 == 8.2  Possible reasons why the device is unresponsive: ==
1580
1581
1582 ~1. Check whether the battery voltage is lower than 2.8V
1583 2. Check whether the jumper of the device is correctly connected
1584
1585 [[image:image-20240330173709-1.png]]
1586
1587
1588 3. Check whether the switch here of the device is at the ISP(The switch can operate normally only when it is in RUN)
1589
1590 [[image:image-20240330173724-2.png]]
1591
1592
1593 == 8.3  The rain gauge keeps showing an incorrect value of 102.2 ==
1594
1595 When the rain gauge keeps showing wrong values, it means that the device has exceeded its maximum range.
1596 Customer need to use RS485-USB to reset it
1597
1598 Wiring method:
1599 RS485-USB A<~-~-~-~-~-~-->rain gauge RS485A
1600 RS485-USB B<~-~-~-~-~-~-->rain gauge RS485B
1601
1602
1603 Use the reset command:
1604
1605 06 06 00 37 00 03 79 B2
1606
1607 [[image:image-20250219164620-1.png]]
1608
1609
1610
1611
1612
1613 = 9. Order Info =
1614
1615 == 9.1 Main Process Unit ==
1616
1617
1618 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1619
1620 (% style="color:blue" %)**XX**(%%): The default frequency band
1621
1622 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1623 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1624 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1625 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1626 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1627 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1628 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1629 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1630
1631 == 9.2 Sensors ==
1632
1633
1634 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:500px" %)
1635 |=(% style="width: 300px;background-color:#4F81BD;color:white" %)**Sensor Model**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**Part Number**
1636 |(% style="width:462px" %)Rain Gauge|(% style="width:120px" %)WSS-01
1637 |(% style="width:462px" %)Rain Gauge installation Bracket for Pole|(% style="width:120px" %)WS-K2
1638 |(% style="width:462px" %)Wind Speed Direction 2 in 1 Sensor|(% style="width:120px" %)WSS-02
1639 |(% style="width:462px" %)CO2/PM2.5/PM10 3 in 1 Sensor|(% style="width:120px" %)WSS-03
1640 |(% style="width:462px" %)Rain/Snow Detect Sensor|(% style="width:120px" %)WSS-04
1641 |(% style="width:462px" %)Temperature, Humidity, illuminance and Pressure 4 in 1 sensor|(% style="width:120px" %)WSS-05
1642 |(% style="width:462px" %)Total Solar Radiation Sensor|(% style="width:120px" %)WSS-06
1643 |(% style="width:462px" %)PAR (Photosynthetically Available Radiation)|(% style="width:120px" %)WSS-07
1644
1645 = 10. Support =
1646
1647
1648 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1649
1650 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1651
1652 = 11. Appendix I: Field Installation Photo =
1653
1654
1655 [[image:1656058346362-132.png||height="685" width="732"]]
1656
1657 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1658
1659
1660
1661 (% style="color:blue" %)**Wind Speed/Direction**
1662
1663 [[image:1656058373174-421.png||height="356" width="731"]]
1664
1665
1666
1667 (% style="color:blue" %)**Total Solar Radiation sensor**
1668
1669 [[image:1656058397364-282.png||height="453" width="732"]]
1670
1671
1672
1673 (% style="color:blue" %)**PAR Sensor**
1674
1675 [[image:1656058416171-615.png]]
1676
1677
1678
1679 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1680
1681 [[image:1656058441194-827.png||height="672" width="523"]]
1682
1683
1684
1685 (% style="color:blue" %)**Rain / Snow Detect**
1686
1687 [[image:1656058451456-166.png]]
1688
1689
1690
1691 (% style="color:blue" %)**Rain Gauge**
1692
1693 [[image:1656058463455-569.png||height="499" width="550"]]
1694
1695