Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20230426084533-1.png||height="231" width="497"]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#f2f2f2; width:500px" %)
175 |=(% style="width: 70px;background-color:#D9E2F3" %)**Size(**bytes)|=(% style="width: 60px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)**1**|=(% style="width: 60px;background-color:#D9E2F3" %)**1**|=(% style="width: 50px;background-color:#D9E2F3" %)**2**|=(% style="width: 100px;background-color:#D9E2F3" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
185
186 For WSC1-L, this value is 0x0D.
187
188
189 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
190
191 0x0100, Means: v1.0.0 version.
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
218
219 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
220
221
222 ==== (% style="color:#037691" %)**BAT:**(%%) ====
223
224 (((
225 shows the battery voltage for WSC1-L MCU.
226 )))
227
228 (((
229 Ex1: 0x0BD6/1000 = 3.03 V
230 )))
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 (% border="1" cellspacing="5" style="background-color:#f2f2f2; width:520px" %)
241 |(% rowspan="2" style="width:53px" %)Byte3|(% style="width:71px" %)Bit23|(% style="width:113px" %)Bit22|(% style="width:112px" %)Bit21|(% style="width:113px" %)Bit20|(% style="width:112px" %)Bit19|(% style="width:70px" %)Bit18|(% style="width:72px" %)Bit17|(% style="width:53px" %)Bit16
242 |(% style="width:71px" %)N/A|(% style="width:113px" %)Customize-A4|(% style="width:112px" %)Customize-A3|(% style="width:113px" %)Customize-A2|(% style="width:112px" %)Customize-A1|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
243 |(% rowspan="2" style="width:53px" %)Byte2|(% style="width:71px" %)Bit15|(% style="width:113px" %)Bit14|(% style="width:112px" %)Bit13|(% style="width:113px" %)Bit12|(% style="width:112px" %)Bit11|(% style="width:70px" %)Bit10|(% style="width:72px" %)Bit9|(% style="width:53px" %)Bit8
244 |(% style="width:71px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:113px" %)N/A|(% style="width:112px" %)N/A|(% style="width:70px" %)N/A|(% style="width:72px" %)N/A|(% style="width:53px" %)N/A
245 |(% rowspan="2" style="width:53px" %)Byte1|(% style="width:71px" %)Bit7|(% style="width:113px" %)Bit6|(% style="width:112px" %)Bit5|(% style="width:113px" %)Bit4|(% style="width:112px" %)Bit3|(% style="width:70px" %)Bit2|(% style="width:72px" %)Bit1|(% style="width:53px" %)Bit0
246 |(% style="width:71px" %)WSS-07|(% style="width:113px" %)WSS-06|(% style="width:112px" %)WSS-05|(% style="width:113px" %)WSS-04|(% style="width:112px" %)WSS-03|(% style="width:70px" %)WSS-02|(% style="width:72px" %)WSS-01|(% style="width:53px" %)N/A
247
248 [[image:image-20220624134713-1.png]]
249
250
251 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
252
253 External sensors detected by WSC1-L include :
254
255 custom sensor A1,
256
257 PAR sensor (WSS-07),
258
259 Total Solar Radiation sensor (WSS-06),
260
261 CO2/PM2.5/PM10 (WSS-03),
262
263 Wind Speed/Direction (WSS-02)
264
265
266 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
267
268 (% style="color:#037691" %)**Downlink:0x26 01**
269
270 [[image:1656049673488-415.png]]
271
272
273 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
274
275
276 (((
277 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
278 )))
279
280 (((
281 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
282 )))
283
284
285 (((
286 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
287 )))
288
289
290 (% style="color:#4472c4" %)** Uplink Payload**:
291
292 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
293 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
294
295 (% style="color:#4472c4" %)** Sensor Segment Define**:
296
297 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
298 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
299
300 (% style="color:#4472c4" %)**Sensor Type Table:**
301
302 [[image:image-20220706154434-1.png]]
303
304
305 (((
306 Below is an example payload:  [[image:image-20220624140615-3.png]]
307 )))
308
309 (((
310
311 )))
312
313 (((
314 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
315 )))
316
317 * (((
318 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
319 )))
320
321 (((
322 Uplink 1:  [[image:image-20220624140735-4.png]]
323 )))
324
325
326 (((
327 Uplink 2:  [[image:image-20220624140842-5.png]]
328
329 )))
330
331 * (((
332 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
333 )))
334
335 (((
336 Uplink 1:  [[image:image-20220624141025-6.png]]
337 )))
338
339
340 Uplink 2:  [[image:image-20220624141100-7.png]]
341
342
343 === 2.4.3 Decoder in TTN V3 ===
344
345
346 (((
347 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
348 )))
349
350 (((
351 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
352 )))
353
354
355 (((
356 and put as below:
357 )))
358
359 [[image:1656051152438-578.png]]
360
361
362 == 2.5 Show data on Application Server ==
363
364
365 (((
366 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
367 )))
368
369 (((
370 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
371 )))
372
373 (((
374 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
375 )))
376
377 [[image:1656051197172-131.png]]
378
379
380
381 **Add TagoIO:**
382
383 [[image:1656051223585-631.png]]
384
385
386
387 **Authorization:**
388
389 [[image:1656051248318-368.png]]
390
391
392
393 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
394
395
396 [[image:1656051277767-168.png]]
397
398
399 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
400
401
402 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
403
404 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
405 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
406
407 There are two kinds of commands to configure WSC1-L, they are:
408
409 * (% style="color:#4472c4" %)**General Commands**.
410
411 These commands are to configure:
412
413 * General system settings like: uplink interval.
414 * LoRaWAN protocol & radio related command.
415
416 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
417
418 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
419
420
421 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
422
423 These commands only valid for WSC1-L, as below:
424
425
426 == 3.1 Set Transmit Interval Time ==
427
428
429 Feature: Change LoRaWAN End Node Transmit Interval.
430
431 (% style="color:#037691" %)**AT Command: AT+TDC**
432
433 [[image:image-20220624142619-8.png]]
434
435
436 (% style="color:#037691" %)**Downlink Command: 0x01**
437
438 Format: Command Code (0x01) followed by 3 bytes time value.
439
440 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
441
442 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
443 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
444
445 == 3.2 Set Emergency Mode ==
446
447
448 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
449
450 (% style="color:#037691" %)**AT Command:**
451
452 [[image:image-20220624142956-9.png]]
453
454
455 (% style="color:#037691" %)**Downlink Command:**
456
457 * 0xE101     Same as: AT+ALARMMOD=1
458 * 0xE100     Same as: AT+ALARMMOD=0
459
460 == 3.3 Add or Delete RS485 Sensor ==
461
462
463 (((
464 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
465 )))
466
467 (((
468 (% style="color:#037691" %)**AT Command: **
469 )))
470
471 (((
472 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
473 )))
474
475 * (((
476 Type_Code range:  A1 ~~ A4
477 )))
478 * (((
479 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
480 )))
481 * (((
482 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
483 )))
484 * (((
485 Read_Length:  RS485 response frame length supposed to receive. Max can receive
486 )))
487 * (((
488 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
489 )))
490 * (((
491 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
492 )))
493 * (((
494 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
495 )))
496
497 (((
498 **Example:**
499 )))
500
501 (((
502 User need to change external sensor use the type code as address code.
503 )))
504
505 (((
506 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
507 )))
508
509 [[image:image-20220624143553-10.png]]
510
511
512 The response frame of the sensor is as follows:
513
514 [[image:image-20220624143618-11.png]]
515
516
517 **Then the following parameters should be:**
518
519 * Address_Code range: A1
520 * Query_Length: 8
521 * Query_Command: A103000000019CAA
522 * Read_Length: 8
523 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
524 * has_CRC: 1
525 * timeout: 1500 (Fill in the test according to the actual situation)
526
527 **So the input command is:**
528
529 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
530
531
532 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
533
534 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
535 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
536 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
537
538 **Related commands:**
539
540 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
541
542 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
543
544
545 (% style="color:#037691" %)**Downlink Command:  **
546
547 **delete custom sensor A1:**
548
549 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
550
551 **Remove all custom sensors**
552
553 * 0xE5FF  
554
555 == 3.4 RS485 Test Command ==
556
557
558 (% style="color:#037691" %)**AT Command:**
559
560 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
561 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
562 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
563 (((
564 Send command to 485 sensor
565 )))
566
567 (((
568 Range : no more than 10 bytes
569 )))
570 )))|(% style="width:85px" %)OK
571
572 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
573
574 AT+RSWRITE=0103000001840A
575
576
577 (% style="color:#037691" %)**Downlink Command:**
578
579 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
580
581 == 3.5 RS485 response timeout ==
582
583
584 Feature: Set or get extended time to receive 485 sensor data.
585
586 (% style="color:#037691" %)**AT Command:**
587
588 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
589 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
590 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
591 (((
592 Set response timeout to:
593 )))
594
595 (((
596 Range : 0~~10000
597 )))
598 )))|(% style="width:85px" %)OK
599
600 (% style="color:#037691" %)**Downlink Command:**
601
602 Format: Command Code (0xE0) followed by 3 bytes time value.
603
604 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
605
606 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
607 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
608
609 == 3.6 Set Sensor Type ==
610
611
612 (((
613 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
614 )))
615
616 (((
617 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
618 )))
619
620 [[image:image-20220624144904-12.png]]
621
622
623 (% style="color:#037691" %)**AT Command:**
624
625 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
626 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
627 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
628
629 Eg: The setting command **AT+STYPE=80221** means:
630
631 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
632 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
633 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
634 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
635 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
636 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
637 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
638
639 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
640
641
642 (% style="color:#037691" %)**Downlink Command:**
643
644 * 0xE400080221  Same as: AT+STYPE=80221
645
646 (% style="color:red" %)**Note:**
647
648 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
649
650
651 = 4. Power consumption and battery =
652
653 == 4.1 Total Power Consumption ==
654
655
656 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
657
658
659 == 4.2 Reduce power consumption ==
660
661
662 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
663
664
665 == 4.3 Battery ==
666
667
668 (((
669 All sensors are only power by external power source. If external power source is off. All sensor won't work.
670 )))
671
672 (((
673 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
674 )))
675
676
677 = 5. Main Process Unit WSC1-L =
678
679 == 5.1 Features ==
680
681
682 * Wall Attachable.
683 * LoRaWAN v1.0.3 Class A protocol.
684 * RS485 / Modbus protocol
685 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
686 * AT Commands to change parameters
687 * Remote configure parameters via LoRaWAN Downlink
688 * Firmware upgradable via program port
689 * Powered by external 12v battery
690 * Back up rechargeable 1000mAh battery
691 * IP Rating: IP65
692 * Support default sensors or 3rd party RS485 sensors
693
694 == 5.2 Power Consumption ==
695
696
697 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
698
699
700 == 5.3 Storage & Operation Temperature ==
701
702
703 -20°C to +60°C
704
705
706 == 5.4 Pin Mapping ==
707
708
709 [[image:1656054149793-239.png]]
710
711
712 == 5.5 Mechanical ==
713
714
715 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
716
717
718 == 5.6 Connect to RS485 Sensors ==
719
720
721 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
722
723
724 [[image:1656054389031-379.png]]
725
726
727 Hardware Design for the Converter Board please see:
728
729 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
730
731
732 = 6. Weather Sensors =
733
734 == 6.1 Rain Gauge ~-~- WSS-01 ==
735
736
737 (((
738 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
739 )))
740
741 (((
742 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
743 )))
744
745 (((
746 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
747 )))
748
749 (((
750 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
751 )))
752
753 (((
754 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
755 )))
756
757
758 === 6.1.1 Feature ===
759
760
761 * RS485 Rain Gauge
762 * Small dimension, easy to install
763 * Vents under funnel, avoid leaf or other things to avoid rain flow.
764 * ABS enclosure.
765 * Horizontal adjustable.
766
767 === 6.1.2 Specification ===
768
769
770 * Resolution: 0.2mm
771 * Accuracy: ±3%
772 * Range: 0 ~~ 100mm
773 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
774 * Input Power: DC 5~~24v
775 * Interface: RS485
776 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
777 * Working Humidity: <100% (no dewing)
778 * Power Consumption: 4mA @ 12v.
779
780 === 6.1.3 Dimension ===
781
782
783 [[image:1656054957406-980.png]]
784
785
786 === 6.1.4 Pin Mapping ===
787
788
789 [[image:1656054972828-692.png]]
790
791
792 === 6.1.5 Installation Notice ===
793
794
795 (((
796 Do not power on while connect the cables. Double check the wiring before power on.
797 )))
798
799 (((
800 Installation Photo as reference:
801 )))
802
803
804 (((
805 (% style="color:#4472c4" %)** Install on Ground:**
806 )))
807
808 (((
809 WSS-01 Rain Gauge include screws so can install in ground directly .
810 )))
811
812
813 (((
814 (% style="color:#4472c4" %)** Install on pole:**
815 )))
816
817 (((
818 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
819 )))
820
821 [[image:image-20220624152218-1.png||height="526" width="276"]]
822
823 WS-K2: Bracket Kit for Pole installation
824
825
826 WSSC-K2 dimension document, please see:
827
828 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
829
830
831 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
832
833
834 [[image:1656055444035-179.png]]
835
836
837 (((
838 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
839 )))
840
841 (((
842 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
843 )))
844
845 (((
846 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
847 )))
848
849
850
851 === 6.2.1 Feature ===
852
853
854 * RS485 wind speed / direction sensor
855 * PC enclosure, resist corrosion
856
857 === 6.2.2 Specification ===
858
859
860 * Wind speed range: 0 ~~ 60m/s
861 * Wind direction range: 0 ~~ 360°
862 * Start wind speed: ≤0.3m/s
863 * Accuracy: ±(0.3+0.03V)m/s , ±1°
864 * Input Power: DC 5~~24v
865 * Interface: RS485
866 * Working Temperature: -30℃~70℃
867 * Working Humidity: <100% (no dewing)
868 * Power Consumption: 13mA ~~ 12v.
869 * Cable Length: 2 meters
870
871 === 6.2.3 Dimension ===
872
873
874 [[image:image-20220624152813-2.png]]
875
876
877 === 6.2.4 Pin Mapping ===
878
879
880 [[image:1656056281231-994.png]]
881
882
883 === 6.2.5  Angle Mapping ===
884
885
886 [[image:1656056303845-585.png]]
887
888
889 === 6.2.6  Installation Notice ===
890
891
892 (((
893 Do not power on while connect the cables. Double check the wiring before power on.
894 )))
895
896 (((
897 The sensor must be installed with below direction, towards North.
898
899
900 )))
901
902 [[image:image-20220624153901-3.png]]
903
904
905 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
906
907
908 (((
909 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
910 )))
911
912 (((
913 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
914 )))
915
916 (((
917 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
918 )))
919
920
921 === 6.3.1 Feature ===
922
923
924 * RS485 CO2, PM2.5, PM10 sensor
925 * NDIR to measure CO2 with Internal Temperature Compensation
926 * Laser Beam Scattering to PM2.5 and PM10
927
928 === 6.3.2 Specification ===
929
930
931 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
932 * CO2 resolution: 1ppm
933 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
934 * PM2.5/PM10 resolution: 1μg/m3
935 * Input Power: DC 7 ~~ 24v
936 * Preheat time: 3min
937 * Interface: RS485
938 * Working Temperature:
939 ** CO2: 0℃~50℃;
940 ** PM2.5/PM10: -30 ~~ 50℃
941 * Working Humidity:
942 ** PM2.5/PM10: 15~80%RH (no dewing)
943 ** CO2: 0~95%RH
944 * Power Consumption: 50mA@ 12v.
945
946 === 6.3.3 Dimension ===
947
948
949 [[image:1656056708366-230.png]]
950
951
952 === 6.3.4 Pin Mapping ===
953
954
955 [[image:1656056722648-743.png]]
956
957
958 === 6.3.5 Installation Notice ===
959
960
961 Do not power on while connect the cables. Double check the wiring before power on.
962
963
964 [[image:1656056751153-304.png]]
965
966
967 [[image:1656056766224-773.png]]
968
969
970 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
971
972
973 (((
974 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
975 )))
976
977 (((
978 WSS-04 has auto heating feature, this ensures measurement more reliable.
979 )))
980
981 (((
982 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
983 )))
984
985
986 === 6.4.1 Feature ===
987
988
989 * RS485 Rain/Snow detect sensor
990 * Surface heating to dry
991 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
992
993 === 6.4.2 Specification ===
994
995
996 * Detect if there is rain or snow
997 * Input Power: DC 12 ~~ 24v
998 * Interface: RS485
999 * Working Temperature: -30℃~70℃
1000 * Working Humidity: 10~90%RH
1001 * Power Consumption:
1002 ** No heating: 12mA @ 12v,
1003 ** heating: 94ma @ 12v.
1004
1005 === 6.4.3 Dimension ===
1006
1007
1008 [[image:1656056844782-155.png]]
1009
1010
1011 === 6.4.4 Pin Mapping ===
1012
1013
1014 [[image:1656056855590-754.png]]
1015
1016
1017 === 6.4.5 Installation Notice ===
1018
1019
1020 Do not power on while connect the cables. Double check the wiring before power on.
1021
1022
1023 (((
1024 Install with 15°degree.
1025 )))
1026
1027 [[image:1656056873783-780.png]]
1028
1029
1030 [[image:1656056883736-804.png]]
1031
1032
1033 === 6.4.6 Heating ===
1034
1035
1036 (((
1037 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1038 )))
1039
1040
1041 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1042
1043
1044 (((
1045 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1046 )))
1047
1048 (((
1049 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1050 )))
1051
1052
1053 === 6.5.1 Feature ===
1054
1055
1056 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1057
1058 === 6.5.2 Specification ===
1059
1060
1061 * Input Power: DC 12 ~~ 24v
1062 * Interface: RS485
1063 * Temperature Sensor Spec:
1064 ** Range: -30 ~~ 70℃
1065 ** resolution 0.1℃
1066 ** Accuracy: ±0.5℃
1067 * Humidity Sensor Spec:
1068 ** Range: 0 ~~ 100% RH
1069 ** resolution 0.1 %RH
1070 ** Accuracy: 3% RH
1071 * Pressure Sensor Spec:
1072 ** Range: 10~1100hPa
1073 ** Resolution: 0.1hPa
1074 ** Accuracy: ±0.1hPa
1075 * Illuminate sensor:
1076 ** Range: 0~2/20/200kLux
1077 ** Resolution: 10 Lux
1078 ** Accuracy: ±3%FS
1079 * Working Temperature: -30℃~70℃
1080 * Working Humidity: 10~90%RH
1081 * Power Consumption: 4mA @ 12v
1082
1083 === 6.5.3 Dimension ===
1084
1085
1086 [[image:1656057170639-522.png]]
1087
1088
1089 === 6.5.4 Pin Mapping ===
1090
1091
1092 [[image:1656057181899-910.png]]
1093
1094
1095 === 6.5.5 Installation Notice ===
1096
1097
1098 Do not power on while connect the cables. Double check the wiring before power on.
1099
1100 [[image:1656057199955-514.png]]
1101
1102
1103 [[image:1656057212438-475.png]]
1104
1105
1106 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1107
1108
1109 (((
1110 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1111 )))
1112
1113 (((
1114 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1115 )))
1116
1117 (((
1118 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1119 )))
1120
1121
1122 === 6.6.1 Feature ===
1123
1124
1125 * RS485 Total Solar Radiation sensor
1126 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1127 * Measure Reflected Radiation if sense area towards ground.
1128
1129 === 6.6.2 Specification ===
1130
1131
1132 * Input Power: DC 5 ~~ 24v
1133 * Interface: RS485
1134 * Detect spectrum: 0.3~3μm(300~3000nm)
1135 * Measure strength range: 0~2000W/m2
1136 * Resolution: 0.1W/m2
1137 * Accuracy: ±3%
1138 * Yearly Stability: ≤±2%
1139 * Cosine response: ≤7% (@ Sun angle 10°)
1140 * Temperature Effect: ±2%(-10℃~40℃)
1141 * Working Temperature: -40℃~70℃
1142 * Working Humidity: 10~90%RH
1143 * Power Consumption: 4mA @ 12v
1144
1145 === 6.6.3 Dimension ===
1146
1147
1148 [[image:1656057348695-898.png]]
1149
1150
1151 === 6.6.4 Pin Mapping ===
1152
1153
1154 [[image:1656057359343-744.png]]
1155
1156
1157 === 6.6.5 Installation Notice ===
1158
1159
1160 Do not power on while connect the cables. Double check the wiring before power on.
1161
1162
1163 [[image:1656057369259-804.png]]
1164
1165
1166 [[image:1656057377943-564.png]]
1167
1168
1169 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1170
1171
1172 (((
1173 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1174 )))
1175
1176 (((
1177 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1178 )))
1179
1180 (((
1181 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1182 )))
1183
1184
1185 === 6.7.1 Feature ===
1186
1187
1188 (((
1189 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1190 )))
1191
1192 (((
1193 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1194 )))
1195
1196
1197 === 6.7.2 Specification ===
1198
1199
1200 * Input Power: DC 5 ~~ 24v
1201 * Interface: RS485
1202 * Response Spectrum: 400~700nm
1203 * Measure range: 0~2500μmol/m2•s
1204 * Resolution: 1μmol/m2•s
1205 * Accuracy: ±2%
1206 * Yearly Stability: ≤±2%
1207 * Working Temperature: -30℃~75℃
1208 * Working Humidity: 10~90%RH
1209 * Power Consumption: 3mA @ 12v
1210
1211 === 6.7.3 Dimension ===
1212
1213
1214 [[image:1656057538793-888.png]]
1215
1216
1217 === 6.7.4 Pin Mapping ===
1218
1219
1220 [[image:1656057548116-203.png]]
1221
1222
1223 === 6.7.5 Installation Notice ===
1224
1225
1226 Do not power on while connect the cables. Double check the wiring before power on.
1227
1228
1229 [[image:1656057557191-895.png]]
1230
1231
1232 [[image:1656057565783-251.png]]
1233
1234
1235 = 7. FAQ =
1236
1237 == 7.1 What else do I need to purchase to build Weather Station? ==
1238
1239
1240 Below is the installation photo and structure:
1241
1242
1243 [[image:1656057598349-319.png]]
1244
1245
1246 [[image:1656057608049-693.png]]
1247
1248
1249 == 7.2 How to upgrade firmware for WSC1-L? ==
1250
1251
1252 (((
1253 Firmware Location & Change log:
1254
1255 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1256 )))
1257
1258
1259 (((
1260 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1261 )))
1262
1263
1264 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1265
1266
1267 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1268
1269
1270 == 7.4 Can I add my weather sensors? ==
1271
1272
1273 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1274
1275
1276 == 7.5 Where can i find the modbus command for the WSS sensors? ==
1277
1278 See this link for the [[modbus command set>>https://www.dropbox.com/s/rw90apbar029a4w/Weather_Sensors_Modbus_Command_List.xlsx?dl=0]].
1279
1280
1281 = 8. Trouble Shooting =
1282
1283 == 8.1 AT Command input doesn't work ==
1284
1285
1286 (((
1287 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1288 )))
1289
1290
1291 = 9. Order Info =
1292
1293 == 9.1 Main Process Unit ==
1294
1295
1296 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1297
1298 (% style="color:blue" %)**XX**(%%): The default frequency band
1299
1300 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1301 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1302 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1303 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1304 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1305 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1306 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1307 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1308
1309 == 9.2 Sensors ==
1310
1311
1312 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1313 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1314 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1315 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1316 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1317 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1318 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1319 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1320 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1321 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1322
1323 = 10. Support =
1324
1325
1326 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1327
1328 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1329
1330 = 11. Appendix I: Field Installation Photo =
1331
1332
1333 [[image:1656058346362-132.png||height="685" width="732"]]
1334
1335 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1336
1337
1338
1339 (% style="color:blue" %)**Wind Speed/Direction**
1340
1341 [[image:1656058373174-421.png||height="356" width="731"]]
1342
1343
1344
1345 (% style="color:blue" %)**Total Solar Radiation sensor**
1346
1347 [[image:1656058397364-282.png||height="453" width="732"]]
1348
1349
1350
1351 (% style="color:blue" %)**PAR Sensor**
1352
1353 [[image:1656058416171-615.png]]
1354
1355
1356
1357 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1358
1359 [[image:1656058441194-827.png||height="672" width="523"]]
1360
1361
1362
1363 (% style="color:blue" %)**Rain / Snow Detect**
1364
1365 [[image:1656058451456-166.png]]
1366
1367
1368
1369 (% style="color:blue" %)**Rain Gauge**
1370
1371 [[image:1656058463455-569.png||height="499" width="550"]]
1372
1373
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0