Version 97.2 by Xiaoling on 2023/04/26 08:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83 == 2.2 How it works? ==
84
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 (((
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93 )))
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
102
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20230426084533-1.png]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
127
128 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (((
152 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
153 )))
154
155
156 [[image:1656042745346-283.png]]
157
158 == 2.4 Uplink Payload ==
159
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167 === 2.4.1 Uplink FPORT~=5, Device Status ===
168
169
170 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
171
172
173 (((
174 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
175 )))
176
177 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
178 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
179 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
180
181 [[image:1656043061044-343.png]]
182
183
184 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
185
186
187 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
188
189 For WSC1-L, this value is 0x0D.
190
191
192 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
193
194 0x0100, Means: v1.0.0 version.
195
196
197 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
198
199 *0x01: EU868
200
201 *0x02: US915
202
203 *0x03: IN865
204
205 *0x04: AU915
206
207 *0x05: KZ865
208
209 *0x06: RU864
210
211 *0x07: AS923
212
213 *0x08: AS923-1
214
215 *0x09: AS923-2
216
217 *0x0a: AS923-3
218
219
220 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
221
222 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
223
224
225 ==== (% style="color:#037691" %)**BAT:**(%%) ====
226
227 (((
228 shows the battery voltage for WSC1-L MCU.
229 )))
230
231 (((
232 Ex1: 0x0BD6/1000 = 3.03 V
233 )))
234
235
236 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
237
238 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
239 |Byte3|Byte2|Byte1
240
241 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
242
243 [[image:image-20220624134713-1.png]]
244
245
246 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
247
248 External sensors detected by WSC1-L include :
249
250 custom sensor A1,
251
252 PAR sensor (WSS-07),
253
254 Total Solar Radiation sensor (WSS-06),
255
256 CO2/PM2.5/PM10 (WSS-03),
257
258 Wind Speed/Direction (WSS-02)
259
260
261 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
262
263 (% style="color:#037691" %)**Downlink:0x26 01**
264
265 [[image:1656049673488-415.png]]
266
267
268 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
269
270
271 (((
272 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
273 )))
274
275 (((
276 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
277 )))
278
279
280 (((
281 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
282 )))
283
284
285 (% style="color:#4472c4" %)** Uplink Payload**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
288 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
289
290 (% style="color:#4472c4" %)** Sensor Segment Define**:
291
292 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
293 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
294
295 (% style="color:#4472c4" %)**Sensor Type Table:**
296
297 [[image:image-20220706154434-1.png]]
298
299
300 (((
301 Below is an example payload:  [[image:image-20220624140615-3.png]]
302 )))
303
304 (((
305
306 )))
307
308 (((
309 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
310 )))
311
312 * (((
313 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
314 )))
315
316 (((
317 Uplink 1:  [[image:image-20220624140735-4.png]]
318 )))
319
320
321 (((
322 Uplink 2:  [[image:image-20220624140842-5.png]]
323
324 )))
325
326 * (((
327 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
328 )))
329
330 (((
331 Uplink 1:  [[image:image-20220624141025-6.png]]
332 )))
333
334
335 Uplink 2:  [[image:image-20220624141100-7.png]]
336
337
338 === 2.4.3 Decoder in TTN V3 ===
339
340
341 (((
342 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
343 )))
344
345 (((
346 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
347 )))
348
349
350 (((
351 and put as below:
352 )))
353
354 [[image:1656051152438-578.png]]
355
356
357 == 2.5 Show data on Application Server ==
358
359
360 (((
361 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
362 )))
363
364 (((
365 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
366 )))
367
368 (((
369 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
370 )))
371
372 [[image:1656051197172-131.png]]
373
374
375
376 **Add TagoIO:**
377
378 [[image:1656051223585-631.png]]
379
380
381
382 **Authorization:**
383
384 [[image:1656051248318-368.png]]
385
386
387
388 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
389
390
391 [[image:1656051277767-168.png]]
392
393
394 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
395
396
397 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
398
399 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
400 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
401
402 There are two kinds of commands to configure WSC1-L, they are:
403
404 * (% style="color:#4472c4" %)**General Commands**.
405
406 These commands are to configure:
407
408 * General system settings like: uplink interval.
409 * LoRaWAN protocol & radio related command.
410
411 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
412
413 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
414
415
416 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
417
418 These commands only valid for WSC1-L, as below:
419
420
421 == 3.1 Set Transmit Interval Time ==
422
423
424 Feature: Change LoRaWAN End Node Transmit Interval.
425
426 (% style="color:#037691" %)**AT Command: AT+TDC**
427
428 [[image:image-20220624142619-8.png]]
429
430
431 (% style="color:#037691" %)**Downlink Command: 0x01**
432
433 Format: Command Code (0x01) followed by 3 bytes time value.
434
435 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
436
437 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
438 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
439
440
441 == 3.2 Set Emergency Mode ==
442
443
444 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
445
446 (% style="color:#037691" %)**AT Command:**
447
448 [[image:image-20220624142956-9.png]]
449
450
451 (% style="color:#037691" %)**Downlink Command:**
452
453 * 0xE101     Same as: AT+ALARMMOD=1
454 * 0xE100     Same as: AT+ALARMMOD=0
455
456
457 == 3.3 Add or Delete RS485 Sensor ==
458
459
460 (((
461 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
462 )))
463
464 (((
465 (% style="color:#037691" %)**AT Command: **
466 )))
467
468 (((
469 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
470 )))
471
472 * (((
473 Type_Code range:  A1 ~~ A4
474 )))
475 * (((
476 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
477 )))
478 * (((
479 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
480 )))
481 * (((
482 Read_Length:  RS485 response frame length supposed to receive. Max can receive
483 )))
484 * (((
485 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
486 )))
487 * (((
488 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
489 )))
490 * (((
491 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
492 )))
493
494 (((
495 **Example:**
496 )))
497
498 (((
499 User need to change external sensor use the type code as address code.
500 )))
501
502 (((
503 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
504 )))
505
506 [[image:image-20220624143553-10.png]]
507
508
509 The response frame of the sensor is as follows:
510
511 [[image:image-20220624143618-11.png]]
512
513
514 **Then the following parameters should be:**
515
516 * Address_Code range: A1
517 * Query_Length: 8
518 * Query_Command: A103000000019CAA
519 * Read_Length: 8
520 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
521 * has_CRC: 1
522 * timeout: 1500 (Fill in the test according to the actual situation)
523
524 **So the input command is:**
525
526 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
527
528
529 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
530
531 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
532 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
533 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
534
535 **Related commands:**
536
537 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
538
539 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
540
541
542 (% style="color:#037691" %)**Downlink Command:  **
543
544 **delete custom sensor A1:**
545
546 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
547
548 **Remove all custom sensors**
549
550 * 0xE5FF  
551
552
553 == 3.4 RS485 Test Command ==
554
555
556 (% style="color:#037691" %)**AT Command:**
557
558 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
559 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
560 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
561 (((
562 Send command to 485 sensor
563 )))
564
565 (((
566 Range : no more than 10 bytes
567 )))
568 )))|(% style="width:85px" %)OK
569
570 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
571
572 AT+RSWRITE=0103000001840A
573
574
575 (% style="color:#037691" %)**Downlink Command:**
576
577 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
578
579
580 == 3.5 RS485 response timeout ==
581
582
583 Feature: Set or get extended time to receive 485 sensor data.
584
585 (% style="color:#037691" %)**AT Command:**
586
587 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
588 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
589 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
590 (((
591 Set response timeout to:
592 )))
593
594 (((
595 Range : 0~~10000
596 )))
597 )))|(% style="width:85px" %)OK
598
599 (% style="color:#037691" %)**Downlink Command:**
600
601 Format: Command Code (0xE0) followed by 3 bytes time value.
602
603 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
604
605 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
606 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
607
608
609 == 3.6 Set Sensor Type ==
610
611
612 (((
613 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
614 )))
615
616 (((
617 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
618 )))
619
620 [[image:image-20220624144904-12.png]]
621
622
623 (% style="color:#037691" %)**AT Command:**
624
625 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
626 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
627 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
628
629 Eg: The setting command **AT+STYPE=80221** means:
630
631 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
632 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
633 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
634 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
635 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
636 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
637 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
638
639 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
640
641
642 (% style="color:#037691" %)**Downlink Command:**
643
644 * 0xE400080221  Same as: AT+STYPE=80221
645
646 (% style="color:red" %)**Note:**
647
648 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
649
650
651 = 4. Power consumption and battery =
652
653 == 4.1 Total Power Consumption ==
654
655
656 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
657
658
659 == 4.2 Reduce power consumption ==
660
661
662 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
663
664
665 == 4.3 Battery ==
666
667
668 (((
669 All sensors are only power by external power source. If external power source is off. All sensor won't work.
670 )))
671
672 (((
673 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
674 )))
675
676
677 = 5. Main Process Unit WSC1-L =
678
679 == 5.1 Features ==
680
681
682 * Wall Attachable.
683 * LoRaWAN v1.0.3 Class A protocol.
684 * RS485 / Modbus protocol
685 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
686 * AT Commands to change parameters
687 * Remote configure parameters via LoRaWAN Downlink
688 * Firmware upgradable via program port
689 * Powered by external 12v battery
690 * Back up rechargeable 1000mAh battery
691 * IP Rating: IP65
692 * Support default sensors or 3rd party RS485 sensors
693
694
695 == 5.2 Power Consumption ==
696
697
698 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
699
700
701 == 5.3 Storage & Operation Temperature ==
702
703
704 -20°C to +60°C
705
706
707 == 5.4 Pin Mapping ==
708
709
710 [[image:1656054149793-239.png]]
711
712
713 == 5.5 Mechanical ==
714
715
716 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
717
718
719 == 5.6 Connect to RS485 Sensors ==
720
721
722 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
723
724
725 [[image:1656054389031-379.png]]
726
727
728 Hardware Design for the Converter Board please see:
729
730 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
731
732
733 = 6. Weather Sensors =
734
735 == 6.1 Rain Gauge ~-~- WSS-01 ==
736
737
738 (((
739 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
740 )))
741
742 (((
743 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
744 )))
745
746 (((
747 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
748 )))
749
750 (((
751 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
752 )))
753
754 (((
755 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
756 )))
757
758
759 === 6.1.1 Feature ===
760
761
762 * RS485 Rain Gauge
763 * Small dimension, easy to install
764 * Vents under funnel, avoid leaf or other things to avoid rain flow.
765 * ABS enclosure.
766 * Horizontal adjustable.
767
768
769 === 6.1.2 Specification ===
770
771
772 * Resolution: 0.2mm
773 * Accuracy: ±3%
774 * Range: 0 ~~ 100mm
775 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
776 * Input Power: DC 5~~24v
777 * Interface: RS485
778 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
779 * Working Humidity: <100% (no dewing)
780 * Power Consumption: 4mA @ 12v.
781
782
783 === 6.1.3 Dimension ===
784
785
786 [[image:1656054957406-980.png]]
787
788
789 === 6.1.4 Pin Mapping ===
790
791
792 [[image:1656054972828-692.png]]
793
794
795 === 6.1.5 Installation Notice ===
796
797
798 (((
799 Do not power on while connect the cables. Double check the wiring before power on.
800 )))
801
802 (((
803 Installation Photo as reference:
804 )))
805
806
807 (((
808 (% style="color:#4472c4" %)** Install on Ground:**
809 )))
810
811 (((
812 WSS-01 Rain Gauge include screws so can install in ground directly .
813 )))
814
815
816 (((
817 (% style="color:#4472c4" %)** Install on pole:**
818 )))
819
820 (((
821 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
822 )))
823
824 [[image:image-20220624152218-1.png||height="526" width="276"]]
825
826 WS-K2: Bracket Kit for Pole installation
827
828
829 WSSC-K2 dimension document, please see:
830
831 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
832
833
834 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
835
836
837 [[image:1656055444035-179.png]]
838
839
840 (((
841 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
842 )))
843
844 (((
845 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
846 )))
847
848 (((
849 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
850 )))
851
852
853
854 === 6.2.1 Feature ===
855
856
857 * RS485 wind speed / direction sensor
858 * PC enclosure, resist corrosion
859
860
861 === 6.2.2 Specification ===
862
863
864 * Wind speed range: 0 ~~ 60m/s
865 * Wind direction range: 0 ~~ 360°
866 * Start wind speed: ≤0.3m/s
867 * Accuracy: ±(0.3+0.03V)m/s , ±1°
868 * Input Power: DC 5~~24v
869 * Interface: RS485
870 * Working Temperature: -30℃~70℃
871 * Working Humidity: <100% (no dewing)
872 * Power Consumption: 13mA ~~ 12v.
873 * Cable Length: 2 meters
874
875
876 === 6.2.3 Dimension ===
877
878
879 [[image:image-20220624152813-2.png]]
880
881
882 === 6.2.4 Pin Mapping ===
883
884
885 [[image:1656056281231-994.png]]
886
887
888 === 6.2.5  Angle Mapping ===
889
890
891 [[image:1656056303845-585.png]]
892
893
894 === 6.2.6  Installation Notice ===
895
896
897 (((
898 Do not power on while connect the cables. Double check the wiring before power on.
899 )))
900
901 (((
902 The sensor must be installed with below direction, towards North.
903
904
905 )))
906
907 [[image:image-20220624153901-3.png]]
908
909
910 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
911
912
913 (((
914 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
915 )))
916
917 (((
918 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
919 )))
920
921 (((
922 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
923 )))
924
925
926 === 6.3.1 Feature ===
927
928
929 * RS485 CO2, PM2.5, PM10 sensor
930 * NDIR to measure CO2 with Internal Temperature Compensation
931 * Laser Beam Scattering to PM2.5 and PM10
932
933
934 === 6.3.2 Specification ===
935
936
937 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
938 * CO2 resolution: 1ppm
939 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
940 * PM2.5/PM10 resolution: 1μg/m3
941 * Input Power: DC 7 ~~ 24v
942 * Preheat time: 3min
943 * Interface: RS485
944 * Working Temperature:
945 ** CO2: 0℃~50℃;
946 ** PM2.5/PM10: -30 ~~ 50℃
947 * Working Humidity:
948 ** PM2.5/PM10: 15~80%RH (no dewing)
949 ** CO2: 0~95%RH
950 * Power Consumption: 50mA@ 12v.
951
952
953 === 6.3.3 Dimension ===
954
955
956 [[image:1656056708366-230.png]]
957
958
959 === 6.3.4 Pin Mapping ===
960
961
962 [[image:1656056722648-743.png]]
963
964
965 === 6.3.5 Installation Notice ===
966
967
968 Do not power on while connect the cables. Double check the wiring before power on.
969
970
971 [[image:1656056751153-304.png]]
972
973
974 [[image:1656056766224-773.png]]
975
976
977 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
978
979
980 (((
981 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
982 )))
983
984 (((
985 WSS-04 has auto heating feature, this ensures measurement more reliable.
986 )))
987
988 (((
989 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
990 )))
991
992
993 === 6.4.1 Feature ===
994
995
996 * RS485 Rain/Snow detect sensor
997 * Surface heating to dry
998 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
999
1000
1001 === 6.4.2 Specification ===
1002
1003
1004 * Detect if there is rain or snow
1005 * Input Power: DC 12 ~~ 24v
1006 * Interface: RS485
1007 * Working Temperature: -30℃~70℃
1008 * Working Humidity: 10~90%RH
1009 * Power Consumption:
1010 ** No heating: 12mA @ 12v,
1011 ** heating: 94ma @ 12v.
1012
1013
1014 === 6.4.3 Dimension ===
1015
1016
1017 [[image:1656056844782-155.png]]
1018
1019
1020 === 6.4.4 Pin Mapping ===
1021
1022
1023 [[image:1656056855590-754.png]]
1024
1025
1026 === 6.4.5 Installation Notice ===
1027
1028
1029 Do not power on while connect the cables. Double check the wiring before power on.
1030
1031
1032 (((
1033 Install with 15°degree.
1034 )))
1035
1036 [[image:1656056873783-780.png]]
1037
1038
1039 [[image:1656056883736-804.png]]
1040
1041
1042 === 6.4.6 Heating ===
1043
1044
1045 (((
1046 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1047 )))
1048
1049
1050 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1051
1052
1053 (((
1054 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1055 )))
1056
1057 (((
1058 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1059 )))
1060
1061
1062 === 6.5.1 Feature ===
1063
1064
1065 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1066
1067
1068 === 6.5.2 Specification ===
1069
1070
1071 * Input Power: DC 12 ~~ 24v
1072 * Interface: RS485
1073 * Temperature Sensor Spec:
1074 ** Range: -30 ~~ 70℃
1075 ** resolution 0.1℃
1076 ** Accuracy: ±0.5℃
1077 * Humidity Sensor Spec:
1078 ** Range: 0 ~~ 100% RH
1079 ** resolution 0.1 %RH
1080 ** Accuracy: 3% RH
1081 * Pressure Sensor Spec:
1082 ** Range: 10~1100hPa
1083 ** Resolution: 0.1hPa
1084 ** Accuracy: ±0.1hPa
1085 * Illuminate sensor:
1086 ** Range: 0~2/20/200kLux
1087 ** Resolution: 10 Lux
1088 ** Accuracy: ±3%FS
1089 * Working Temperature: -30℃~70℃
1090 * Working Humidity: 10~90%RH
1091 * Power Consumption: 4mA @ 12v
1092
1093
1094 === 6.5.3 Dimension ===
1095
1096
1097 [[image:1656057170639-522.png]]
1098
1099
1100 === 6.5.4 Pin Mapping ===
1101
1102
1103 [[image:1656057181899-910.png]]
1104
1105
1106 === 6.5.5 Installation Notice ===
1107
1108
1109 Do not power on while connect the cables. Double check the wiring before power on.
1110
1111 [[image:1656057199955-514.png]]
1112
1113
1114 [[image:1656057212438-475.png]]
1115
1116
1117 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1118
1119
1120 (((
1121 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1122 )))
1123
1124 (((
1125 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1126 )))
1127
1128 (((
1129 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1130 )))
1131
1132
1133 === 6.6.1 Feature ===
1134
1135
1136 * RS485 Total Solar Radiation sensor
1137 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1138 * Measure Reflected Radiation if sense area towards ground.
1139
1140
1141 === 6.6.2 Specification ===
1142
1143
1144 * Input Power: DC 5 ~~ 24v
1145 * Interface: RS485
1146 * Detect spectrum: 0.3~3μm(300~3000nm)
1147 * Measure strength range: 0~2000W/m2
1148 * Resolution: 0.1W/m2
1149 * Accuracy: ±3%
1150 * Yearly Stability: ≤±2%
1151 * Cosine response: ≤7% (@ Sun angle 10°)
1152 * Temperature Effect: ±2%(-10℃~40℃)
1153 * Working Temperature: -40℃~70℃
1154 * Working Humidity: 10~90%RH
1155 * Power Consumption: 4mA @ 12v
1156
1157
1158 === 6.6.3 Dimension ===
1159
1160
1161 [[image:1656057348695-898.png]]
1162
1163
1164 === 6.6.4 Pin Mapping ===
1165
1166
1167 [[image:1656057359343-744.png]]
1168
1169
1170 === 6.6.5 Installation Notice ===
1171
1172
1173 Do not power on while connect the cables. Double check the wiring before power on.
1174
1175
1176 [[image:1656057369259-804.png]]
1177
1178
1179 [[image:1656057377943-564.png]]
1180
1181
1182 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1183
1184
1185 (((
1186 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1187 )))
1188
1189 (((
1190 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1191 )))
1192
1193 (((
1194 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1195 )))
1196
1197
1198 === 6.7.1 Feature ===
1199
1200
1201 (((
1202 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1203 )))
1204
1205 (((
1206 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1207 )))
1208
1209
1210 === 6.7.2 Specification ===
1211
1212
1213 * Input Power: DC 5 ~~ 24v
1214 * Interface: RS485
1215 * Response Spectrum: 400~700nm
1216 * Measure range: 0~2500μmol/m2•s
1217 * Resolution: 1μmol/m2•s
1218 * Accuracy: ±2%
1219 * Yearly Stability: ≤±2%
1220 * Working Temperature: -30℃~75℃
1221 * Working Humidity: 10~90%RH
1222 * Power Consumption: 3mA @ 12v
1223
1224
1225 === 6.7.3 Dimension ===
1226
1227
1228 [[image:1656057538793-888.png]]
1229
1230
1231 === 6.7.4 Pin Mapping ===
1232
1233
1234 [[image:1656057548116-203.png]]
1235
1236
1237 === 6.7.5 Installation Notice ===
1238
1239
1240 Do not power on while connect the cables. Double check the wiring before power on.
1241
1242
1243 [[image:1656057557191-895.png]]
1244
1245
1246 [[image:1656057565783-251.png]]
1247
1248
1249 = 7. FAQ =
1250
1251 == 7.1 What else do I need to purchase to build Weather Station? ==
1252
1253
1254 Below is the installation photo and structure:
1255
1256
1257 [[image:1656057598349-319.png]]
1258
1259
1260 [[image:1656057608049-693.png]]
1261
1262
1263 == 7.2 How to upgrade firmware for WSC1-L? ==
1264
1265
1266 (((
1267 Firmware Location & Change log:
1268
1269 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1270 )))
1271
1272
1273 (((
1274 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1275 )))
1276
1277
1278 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1279
1280
1281 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1282
1283
1284 == 7.4 Can I add my weather sensors? ==
1285
1286
1287 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1288
1289
1290 = 8. Trouble Shooting =
1291
1292 == 8.1 AT Command input doesn't work ==
1293
1294
1295 (((
1296 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1297 )))
1298
1299
1300 = 9. Order Info =
1301
1302 == 9.1 Main Process Unit ==
1303
1304
1305 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1306
1307 (% style="color:blue" %)**XX**(%%): The default frequency band
1308
1309 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1310 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1311 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1312 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1313 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1314 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1315 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1316 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1317
1318
1319 == 9.2 Sensors ==
1320
1321
1322 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1323 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1324 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1325 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1326 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1327 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1328 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1329 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1330 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1331 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1332
1333
1334 = 10. Support =
1335
1336
1337 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1338
1339 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1340
1341
1342 = 11. Appendix I: Field Installation Photo =
1343
1344
1345 [[image:1656058346362-132.png||height="685" width="732"]]
1346
1347 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1348
1349
1350
1351 (% style="color:blue" %)**Wind Speed/Direction**
1352
1353 [[image:1656058373174-421.png||height="356" width="731"]]
1354
1355
1356
1357 (% style="color:blue" %)**Total Solar Radiation sensor**
1358
1359 [[image:1656058397364-282.png||height="453" width="732"]]
1360
1361
1362
1363 (% style="color:blue" %)**PAR Sensor**
1364
1365 [[image:1656058416171-615.png]]
1366
1367
1368
1369 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1370
1371 [[image:1656058441194-827.png||height="672" width="523"]]
1372
1373
1374
1375 (% style="color:blue" %)**Rain / Snow Detect**
1376
1377 [[image:1656058451456-166.png]]
1378
1379
1380
1381 (% style="color:blue" %)**Rain Gauge**
1382
1383 [[image:1656058463455-569.png||height="499" width="550"]]
1384
1385