Version 97.1 by Xiaoling on 2023/04/26 08:45

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84 == 2.2 How it works? ==
85
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104
105
106 == 2.3 Example to use for LoRaWAN network ==
107
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111
112 [[image:1656042612899-422.png]]
113
114
115
116 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
117
118
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
120
121 Each WSC1-L is shipped with a sticker with the default device EUI as below:
122
123 [[image:image-20220624115043-1.jpeg]]
124
125
126 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
127
128 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129
130 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
131
132 **Add APP EUI in the application.**
133
134 [[image:1656042662694-311.png]]
135
136 [[image:1656042673910-429.png]]
137
138
139
140
141 **Choose Manually to add WSC1-L**
142
143 [[image:1656042695755-103.png]]
144
145
146
147 **Add APP KEY and DEV EUI**
148
149 [[image:1656042723199-746.png]]
150
151
152
153 (((
154 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
155 )))
156
157
158 [[image:1656042745346-283.png]]
159
160
161 == 2.4 Uplink Payload ==
162
163
164 Uplink payloads include two types: Valid Sensor Value and other status / control command.
165
166 * Valid Sensor Value: Use FPORT=2
167 * Other control command: Use FPORT other than 2.
168
169
170
171 === 2.4.1 Uplink FPORT~=5, Device Status ===
172
173
174 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
175
176
177 (((
178 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
179 )))
180
181 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
182 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
183 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
184
185 [[image:1656043061044-343.png]]
186
187
188 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
189
190
191 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
192
193 For WSC1-L, this value is 0x0D.
194
195
196 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
197
198 0x0100, Means: v1.0.0 version.
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
225
226 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
227
228
229 ==== (% style="color:#037691" %)**BAT:**(%%) ====
230
231 (((
232 shows the battery voltage for WSC1-L MCU.
233 )))
234
235 (((
236 Ex1: 0x0BD6/1000 = 3.03 V
237 )))
238
239
240 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
241
242 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
243 |Byte3|Byte2|Byte1
244
245 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
246
247 [[image:image-20220624134713-1.png]]
248
249
250 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
251
252 External sensors detected by WSC1-L include :
253
254 custom sensor A1,
255
256 PAR sensor (WSS-07),
257
258 Total Solar Radiation sensor (WSS-06),
259
260 CO2/PM2.5/PM10 (WSS-03),
261
262 Wind Speed/Direction (WSS-02)
263
264
265 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
266
267 (% style="color:#037691" %)**Downlink:0x26 01**
268
269 [[image:1656049673488-415.png]]
270
271
272 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
273
274
275 (((
276 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
277 )))
278
279 (((
280 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
281 )))
282
283
284 (((
285 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
286 )))
287
288
289 (% style="color:#4472c4" %)** Uplink Payload**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
292 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
293
294 (% style="color:#4472c4" %)** Sensor Segment Define**:
295
296 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
297 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
298
299 (% style="color:#4472c4" %)**Sensor Type Table:**
300
301 [[image:image-20220706154434-1.png]]
302
303
304 (((
305 Below is an example payload:  [[image:image-20220624140615-3.png]]
306 )))
307
308 (((
309
310 )))
311
312 (((
313 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
314 )))
315
316 * (((
317 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
318 )))
319
320 (((
321 Uplink 1:  [[image:image-20220624140735-4.png]]
322 )))
323
324
325 (((
326 Uplink 2:  [[image:image-20220624140842-5.png]]
327
328 )))
329
330 * (((
331 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
332 )))
333
334 (((
335 Uplink 1:  [[image:image-20220624141025-6.png]]
336 )))
337
338
339 Uplink 2:  [[image:image-20220624141100-7.png]]
340
341
342 === 2.4.3 Decoder in TTN V3 ===
343
344
345 (((
346 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
347 )))
348
349 (((
350 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
351 )))
352
353
354 (((
355 and put as below:
356 )))
357
358 [[image:1656051152438-578.png]]
359
360
361 == 2.5 Show data on Application Server ==
362
363
364 (((
365 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
366 )))
367
368 (((
369 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
370 )))
371
372 (((
373 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
374 )))
375
376 [[image:1656051197172-131.png]]
377
378
379
380 **Add TagoIO:**
381
382 [[image:1656051223585-631.png]]
383
384
385
386 **Authorization:**
387
388 [[image:1656051248318-368.png]]
389
390
391
392 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
393
394
395 [[image:1656051277767-168.png]]
396
397
398 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
399
400
401 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
402
403 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
404 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
405
406 There are two kinds of commands to configure WSC1-L, they are:
407
408 * (% style="color:#4472c4" %)**General Commands**.
409
410 These commands are to configure:
411
412 * General system settings like: uplink interval.
413 * LoRaWAN protocol & radio related command.
414
415 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
416
417 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
418
419
420 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
421
422 These commands only valid for WSC1-L, as below:
423
424
425 == 3.1 Set Transmit Interval Time ==
426
427
428 Feature: Change LoRaWAN End Node Transmit Interval.
429
430 (% style="color:#037691" %)**AT Command: AT+TDC**
431
432 [[image:image-20220624142619-8.png]]
433
434
435 (% style="color:#037691" %)**Downlink Command: 0x01**
436
437 Format: Command Code (0x01) followed by 3 bytes time value.
438
439 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
440
441 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
442 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
443
444
445
446 == 3.2 Set Emergency Mode ==
447
448
449 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
450
451 (% style="color:#037691" %)**AT Command:**
452
453 [[image:image-20220624142956-9.png]]
454
455
456 (% style="color:#037691" %)**Downlink Command:**
457
458 * 0xE101     Same as: AT+ALARMMOD=1
459 * 0xE100     Same as: AT+ALARMMOD=0
460
461
462
463 == 3.3 Add or Delete RS485 Sensor ==
464
465
466 (((
467 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
468 )))
469
470 (((
471 (% style="color:#037691" %)**AT Command: **
472 )))
473
474 (((
475 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
476 )))
477
478 * (((
479 Type_Code range:  A1 ~~ A4
480 )))
481 * (((
482 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
483 )))
484 * (((
485 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
486 )))
487 * (((
488 Read_Length:  RS485 response frame length supposed to receive. Max can receive
489 )))
490 * (((
491 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
492 )))
493 * (((
494 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
495 )))
496 * (((
497 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
498 )))
499
500 (((
501 **Example:**
502 )))
503
504 (((
505 User need to change external sensor use the type code as address code.
506 )))
507
508 (((
509 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
510 )))
511
512 [[image:image-20220624143553-10.png]]
513
514
515 The response frame of the sensor is as follows:
516
517 [[image:image-20220624143618-11.png]]
518
519
520 **Then the following parameters should be:**
521
522 * Address_Code range: A1
523 * Query_Length: 8
524 * Query_Command: A103000000019CAA
525 * Read_Length: 8
526 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
527 * has_CRC: 1
528 * timeout: 1500 (Fill in the test according to the actual situation)
529
530 **So the input command is:**
531
532 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
533
534
535 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
536
537 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
538 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
539 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
540
541 **Related commands:**
542
543 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
544
545 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
546
547
548 (% style="color:#037691" %)**Downlink Command:  **
549
550 **delete custom sensor A1:**
551
552 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
553
554 **Remove all custom sensors**
555
556 * 0xE5FF  
557
558
559
560 == 3.4 RS485 Test Command ==
561
562
563 (% style="color:#037691" %)**AT Command:**
564
565 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
566 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
567 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
568 (((
569 Send command to 485 sensor
570 )))
571
572 (((
573 Range : no more than 10 bytes
574 )))
575 )))|(% style="width:85px" %)OK
576
577 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
578
579 AT+RSWRITE=0103000001840A
580
581
582 (% style="color:#037691" %)**Downlink Command:**
583
584 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
585
586
587
588 == 3.5 RS485 response timeout ==
589
590
591 Feature: Set or get extended time to receive 485 sensor data.
592
593 (% style="color:#037691" %)**AT Command:**
594
595 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
596 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
597 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
598 (((
599 Set response timeout to:
600 )))
601
602 (((
603 Range : 0~~10000
604 )))
605 )))|(% style="width:85px" %)OK
606
607 (% style="color:#037691" %)**Downlink Command:**
608
609 Format: Command Code (0xE0) followed by 3 bytes time value.
610
611 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
612
613 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
614 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
615
616
617
618 == 3.6 Set Sensor Type ==
619
620
621 (((
622 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
623 )))
624
625 (((
626 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
627 )))
628
629 [[image:image-20220624144904-12.png]]
630
631
632 (% style="color:#037691" %)**AT Command:**
633
634 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
635 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
636 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
637
638 Eg: The setting command **AT+STYPE=80221** means:
639
640 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
641 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
642 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
643 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
644 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
645 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
646 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
647
648 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
649
650
651 (% style="color:#037691" %)**Downlink Command:**
652
653 * 0xE400080221  Same as: AT+STYPE=80221
654
655 (% style="color:red" %)**Note:**
656
657 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
658
659
660 = 4. Power consumption and battery =
661
662 == 4.1 Total Power Consumption ==
663
664
665 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
666
667
668 == 4.2 Reduce power consumption ==
669
670
671 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
672
673
674 == 4.3 Battery ==
675
676
677 (((
678 All sensors are only power by external power source. If external power source is off. All sensor won't work.
679 )))
680
681 (((
682 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
683 )))
684
685
686 = 5. Main Process Unit WSC1-L =
687
688 == 5.1 Features ==
689
690
691 * Wall Attachable.
692 * LoRaWAN v1.0.3 Class A protocol.
693 * RS485 / Modbus protocol
694 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
695 * AT Commands to change parameters
696 * Remote configure parameters via LoRaWAN Downlink
697 * Firmware upgradable via program port
698 * Powered by external 12v battery
699 * Back up rechargeable 1000mAh battery
700 * IP Rating: IP65
701 * Support default sensors or 3rd party RS485 sensors
702
703
704
705 == 5.2 Power Consumption ==
706
707
708 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
709
710
711 == 5.3 Storage & Operation Temperature ==
712
713
714 -20°C to +60°C
715
716
717 == 5.4 Pin Mapping ==
718
719
720 [[image:1656054149793-239.png]]
721
722
723 == 5.5 Mechanical ==
724
725
726 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
727
728
729 == 5.6 Connect to RS485 Sensors ==
730
731
732 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
733
734
735 [[image:1656054389031-379.png]]
736
737
738 Hardware Design for the Converter Board please see:
739
740 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
741
742
743 = 6. Weather Sensors =
744
745 == 6.1 Rain Gauge ~-~- WSS-01 ==
746
747
748 (((
749 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
750 )))
751
752 (((
753 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
754 )))
755
756 (((
757 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
758 )))
759
760 (((
761 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
762 )))
763
764 (((
765 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
766 )))
767
768
769 === 6.1.1 Feature ===
770
771
772 * RS485 Rain Gauge
773 * Small dimension, easy to install
774 * Vents under funnel, avoid leaf or other things to avoid rain flow.
775 * ABS enclosure.
776 * Horizontal adjustable.
777
778
779
780 === 6.1.2 Specification ===
781
782
783 * Resolution: 0.2mm
784 * Accuracy: ±3%
785 * Range: 0 ~~ 100mm
786 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
787 * Input Power: DC 5~~24v
788 * Interface: RS485
789 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
790 * Working Humidity: <100% (no dewing)
791 * Power Consumption: 4mA @ 12v.
792
793
794
795 === 6.1.3 Dimension ===
796
797
798 [[image:1656054957406-980.png]]
799
800
801 === 6.1.4 Pin Mapping ===
802
803
804 [[image:1656054972828-692.png]]
805
806
807 === 6.1.5 Installation Notice ===
808
809
810 (((
811 Do not power on while connect the cables. Double check the wiring before power on.
812 )))
813
814 (((
815 Installation Photo as reference:
816 )))
817
818
819 (((
820 (% style="color:#4472c4" %)** Install on Ground:**
821 )))
822
823 (((
824 WSS-01 Rain Gauge include screws so can install in ground directly .
825 )))
826
827
828 (((
829 (% style="color:#4472c4" %)** Install on pole:**
830 )))
831
832 (((
833 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
834 )))
835
836 [[image:image-20220624152218-1.png||height="526" width="276"]]
837
838 WS-K2: Bracket Kit for Pole installation
839
840
841 WSSC-K2 dimension document, please see:
842
843 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
844
845
846 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
847
848
849 [[image:1656055444035-179.png]]
850
851
852 (((
853 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
854 )))
855
856 (((
857 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
858 )))
859
860 (((
861 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
862 )))
863
864
865
866 === 6.2.1 Feature ===
867
868
869 * RS485 wind speed / direction sensor
870 * PC enclosure, resist corrosion
871
872
873
874 === 6.2.2 Specification ===
875
876
877 * Wind speed range: 0 ~~ 60m/s
878 * Wind direction range: 0 ~~ 360°
879 * Start wind speed: ≤0.3m/s
880 * Accuracy: ±(0.3+0.03V)m/s , ±1°
881 * Input Power: DC 5~~24v
882 * Interface: RS485
883 * Working Temperature: -30℃~70℃
884 * Working Humidity: <100% (no dewing)
885 * Power Consumption: 13mA ~~ 12v.
886 * Cable Length: 2 meters
887
888
889
890 === 6.2.3 Dimension ===
891
892
893 [[image:image-20220624152813-2.png]]
894
895
896 === 6.2.4 Pin Mapping ===
897
898
899 [[image:1656056281231-994.png]]
900
901
902 === 6.2.5  Angle Mapping ===
903
904
905 [[image:1656056303845-585.png]]
906
907
908 === 6.2.6  Installation Notice ===
909
910
911 (((
912 Do not power on while connect the cables. Double check the wiring before power on.
913 )))
914
915 (((
916 The sensor must be installed with below direction, towards North.
917
918
919 )))
920
921 [[image:image-20220624153901-3.png]]
922
923
924 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
925
926
927 (((
928 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
929 )))
930
931 (((
932 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
933 )))
934
935 (((
936 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
937 )))
938
939
940 === 6.3.1 Feature ===
941
942
943 * RS485 CO2, PM2.5, PM10 sensor
944 * NDIR to measure CO2 with Internal Temperature Compensation
945 * Laser Beam Scattering to PM2.5 and PM10
946
947
948
949 === 6.3.2 Specification ===
950
951
952 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
953 * CO2 resolution: 1ppm
954 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
955 * PM2.5/PM10 resolution: 1μg/m3
956 * Input Power: DC 7 ~~ 24v
957 * Preheat time: 3min
958 * Interface: RS485
959 * Working Temperature:
960 ** CO2: 0℃~50℃;
961 ** PM2.5/PM10: -30 ~~ 50℃
962 * Working Humidity:
963 ** PM2.5/PM10: 15~80%RH (no dewing)
964 ** CO2: 0~95%RH
965 * Power Consumption: 50mA@ 12v.
966
967
968
969 === 6.3.3 Dimension ===
970
971
972 [[image:1656056708366-230.png]]
973
974
975 === 6.3.4 Pin Mapping ===
976
977
978 [[image:1656056722648-743.png]]
979
980
981 === 6.3.5 Installation Notice ===
982
983
984 Do not power on while connect the cables. Double check the wiring before power on.
985
986
987 [[image:1656056751153-304.png]]
988
989
990 [[image:1656056766224-773.png]]
991
992
993 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
994
995
996 (((
997 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
998 )))
999
1000 (((
1001 WSS-04 has auto heating feature, this ensures measurement more reliable.
1002 )))
1003
1004 (((
1005 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1006 )))
1007
1008
1009 === 6.4.1 Feature ===
1010
1011
1012 * RS485 Rain/Snow detect sensor
1013 * Surface heating to dry
1014 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1015
1016
1017
1018 === 6.4.2 Specification ===
1019
1020
1021 * Detect if there is rain or snow
1022 * Input Power: DC 12 ~~ 24v
1023 * Interface: RS485
1024 * Working Temperature: -30℃~70℃
1025 * Working Humidity: 10~90%RH
1026 * Power Consumption:
1027 ** No heating: 12mA @ 12v,
1028 ** heating: 94ma @ 12v.
1029
1030
1031
1032 === 6.4.3 Dimension ===
1033
1034
1035 [[image:1656056844782-155.png]]
1036
1037
1038 === 6.4.4 Pin Mapping ===
1039
1040
1041 [[image:1656056855590-754.png]]
1042
1043
1044 === 6.4.5 Installation Notice ===
1045
1046
1047 Do not power on while connect the cables. Double check the wiring before power on.
1048
1049
1050 (((
1051 Install with 15°degree.
1052 )))
1053
1054 [[image:1656056873783-780.png]]
1055
1056
1057 [[image:1656056883736-804.png]]
1058
1059
1060 === 6.4.6 Heating ===
1061
1062
1063 (((
1064 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1065 )))
1066
1067
1068 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1069
1070
1071 (((
1072 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1073 )))
1074
1075 (((
1076 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1077 )))
1078
1079
1080 === 6.5.1 Feature ===
1081
1082
1083 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1084
1085
1086
1087 === 6.5.2 Specification ===
1088
1089
1090 * Input Power: DC 12 ~~ 24v
1091 * Interface: RS485
1092 * Temperature Sensor Spec:
1093 ** Range: -30 ~~ 70℃
1094 ** resolution 0.1℃
1095 ** Accuracy: ±0.5℃
1096 * Humidity Sensor Spec:
1097 ** Range: 0 ~~ 100% RH
1098 ** resolution 0.1 %RH
1099 ** Accuracy: 3% RH
1100 * Pressure Sensor Spec:
1101 ** Range: 10~1100hPa
1102 ** Resolution: 0.1hPa
1103 ** Accuracy: ±0.1hPa
1104 * Illuminate sensor:
1105 ** Range: 0~2/20/200kLux
1106 ** Resolution: 10 Lux
1107 ** Accuracy: ±3%FS
1108 * Working Temperature: -30℃~70℃
1109 * Working Humidity: 10~90%RH
1110 * Power Consumption: 4mA @ 12v
1111
1112
1113
1114 === 6.5.3 Dimension ===
1115
1116
1117 [[image:1656057170639-522.png]]
1118
1119
1120 === 6.5.4 Pin Mapping ===
1121
1122
1123 [[image:1656057181899-910.png]]
1124
1125
1126 === 6.5.5 Installation Notice ===
1127
1128
1129 Do not power on while connect the cables. Double check the wiring before power on.
1130
1131 [[image:1656057199955-514.png]]
1132
1133
1134 [[image:1656057212438-475.png]]
1135
1136
1137 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1138
1139
1140 (((
1141 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1142 )))
1143
1144 (((
1145 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1146 )))
1147
1148 (((
1149 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1150 )))
1151
1152
1153 === 6.6.1 Feature ===
1154
1155
1156 * RS485 Total Solar Radiation sensor
1157 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1158 * Measure Reflected Radiation if sense area towards ground.
1159
1160
1161
1162 === 6.6.2 Specification ===
1163
1164
1165 * Input Power: DC 5 ~~ 24v
1166 * Interface: RS485
1167 * Detect spectrum: 0.3~3μm(300~3000nm)
1168 * Measure strength range: 0~2000W/m2
1169 * Resolution: 0.1W/m2
1170 * Accuracy: ±3%
1171 * Yearly Stability: ≤±2%
1172 * Cosine response: ≤7% (@ Sun angle 10°)
1173 * Temperature Effect: ±2%(-10℃~40℃)
1174 * Working Temperature: -40℃~70℃
1175 * Working Humidity: 10~90%RH
1176 * Power Consumption: 4mA @ 12v
1177
1178
1179
1180 === 6.6.3 Dimension ===
1181
1182
1183 [[image:1656057348695-898.png]]
1184
1185
1186 === 6.6.4 Pin Mapping ===
1187
1188
1189 [[image:1656057359343-744.png]]
1190
1191
1192 === 6.6.5 Installation Notice ===
1193
1194
1195 Do not power on while connect the cables. Double check the wiring before power on.
1196
1197
1198 [[image:1656057369259-804.png]]
1199
1200
1201 [[image:1656057377943-564.png]]
1202
1203
1204 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1205
1206
1207 (((
1208 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1209 )))
1210
1211 (((
1212 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1213 )))
1214
1215 (((
1216 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1217 )))
1218
1219
1220 === 6.7.1 Feature ===
1221
1222
1223 (((
1224 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1225 )))
1226
1227 (((
1228 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1229 )))
1230
1231
1232 === 6.7.2 Specification ===
1233
1234
1235 * Input Power: DC 5 ~~ 24v
1236 * Interface: RS485
1237 * Response Spectrum: 400~700nm
1238 * Measure range: 0~2500μmol/m2•s
1239 * Resolution: 1μmol/m2•s
1240 * Accuracy: ±2%
1241 * Yearly Stability: ≤±2%
1242 * Working Temperature: -30℃~75℃
1243 * Working Humidity: 10~90%RH
1244 * Power Consumption: 3mA @ 12v
1245
1246
1247
1248 === 6.7.3 Dimension ===
1249
1250
1251 [[image:1656057538793-888.png]]
1252
1253
1254 === 6.7.4 Pin Mapping ===
1255
1256
1257 [[image:1656057548116-203.png]]
1258
1259
1260 === 6.7.5 Installation Notice ===
1261
1262
1263 Do not power on while connect the cables. Double check the wiring before power on.
1264
1265
1266 [[image:1656057557191-895.png]]
1267
1268
1269 [[image:1656057565783-251.png]]
1270
1271
1272 = 7. FAQ =
1273
1274 == 7.1 What else do I need to purchase to build Weather Station? ==
1275
1276
1277 Below is the installation photo and structure:
1278
1279
1280 [[image:1656057598349-319.png]]
1281
1282
1283 [[image:1656057608049-693.png]]
1284
1285
1286 == 7.2 How to upgrade firmware for WSC1-L? ==
1287
1288
1289 (((
1290 Firmware Location & Change log:
1291
1292 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1293 )))
1294
1295
1296 (((
1297 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1298 )))
1299
1300
1301 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1302
1303
1304 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1305
1306
1307 == 7.4 Can I add my weather sensors? ==
1308
1309
1310 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1311
1312
1313 = 8. Trouble Shooting =
1314
1315 == 8.1 AT Command input doesn't work ==
1316
1317
1318 (((
1319 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1320 )))
1321
1322
1323 = 9. Order Info =
1324
1325 == 9.1 Main Process Unit ==
1326
1327
1328 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1329
1330 (% style="color:blue" %)**XX**(%%): The default frequency band
1331
1332 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1333 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1334 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1335 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1336 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1337 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1338 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1339 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1340
1341
1342
1343 == 9.2 Sensors ==
1344
1345
1346 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1347 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1348 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1349 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1350 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1351 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1352 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1353 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1354 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1355 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1356
1357
1358
1359 = 10. Support =
1360
1361
1362 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1363
1364 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1365
1366
1367
1368 = 11. Appendix I: Field Installation Photo =
1369
1370
1371 [[image:1656058346362-132.png||height="685" width="732"]]
1372
1373 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1374
1375
1376
1377 (% style="color:blue" %)**Wind Speed/Direction**
1378
1379 [[image:1656058373174-421.png||height="356" width="731"]]
1380
1381
1382
1383 (% style="color:blue" %)**Total Solar Radiation sensor**
1384
1385 [[image:1656058397364-282.png||height="453" width="732"]]
1386
1387
1388
1389 (% style="color:blue" %)**PAR Sensor**
1390
1391 [[image:1656058416171-615.png]]
1392
1393
1394
1395 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1396
1397 [[image:1656058441194-827.png||height="672" width="523"]]
1398
1399
1400
1401 (% style="color:blue" %)**Rain / Snow Detect**
1402
1403 [[image:1656058451456-166.png]]
1404
1405
1406
1407 (% style="color:blue" %)**Rain Gauge**
1408
1409 [[image:1656058463455-569.png||height="499" width="550"]]
1410
1411
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0