Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81 (% style="display:none" %)(%%)
82
83
84
85
86 == 2.2 How it works? ==
87
88
89 (((
90 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
91 )))
92
93
94 (((
95 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
96 )))
97
98 [[image:1656042192857-709.png]]
99
100
101 (% style="color:red" %)**Notice:**
102
103 1. WSC1-L will auto scan available weather sensors when power on or reboot.
104 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
105
106 == 2.3 Example to use for LoRaWAN network ==
107
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111
112 [[image:1656042612899-422.png]]
113
114
115
116 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
117
118
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
120
121 Each WSC1-L is shipped with a sticker with the default device EUI as below:
122
123 [[image:image-20220624115043-1.jpeg]]
124
125
126 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
127
128 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129
130 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
131
132 **Add APP EUI in the application.**
133
134 [[image:1656042662694-311.png]]
135
136 [[image:1656042673910-429.png]]
137
138
139
140
141 **Choose Manually to add WSC1-L**
142
143 [[image:1656042695755-103.png]]
144
145
146
147 **Add APP KEY and DEV EUI**
148
149 [[image:1656042723199-746.png]]
150
151
152
153 (((
154 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
155 )))
156
157
158 [[image:1656042745346-283.png]]
159
160
161 == 2.4 Uplink Payload ==
162
163
164 Uplink payloads include two types: Valid Sensor Value and other status / control command.
165
166 * Valid Sensor Value: Use FPORT=2
167 * Other control command: Use FPORT other than 2.
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171
172 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
173
174
175 (((
176 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
177 )))
178
179 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
180 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
181 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
182
183 [[image:1656043061044-343.png]]
184
185
186 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
195
196 0x0100, Means: v1.0.0 version.
197
198
199 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
200
201 *0x01: EU868
202
203 *0x02: US915
204
205 *0x03: IN865
206
207 *0x04: AU915
208
209 *0x05: KZ865
210
211 *0x06: RU864
212
213 *0x07: AS923
214
215 *0x08: AS923-1
216
217 *0x09: AS923-2
218
219 *0x0a: AS923-3
220
221
222 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
223
224 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
225
226
227 ==== (% style="color:#037691" %)**BAT:**(%%) ====
228
229 (((
230 shows the battery voltage for WSC1-L MCU.
231 )))
232
233 (((
234 Ex1: 0x0BD6/1000 = 3.03 V
235 )))
236
237
238 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
239
240 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
241 |Byte3|Byte2|Byte1
242
243 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
244
245 [[image:image-20220624134713-1.png]]
246
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299 [[image:image-20220706154434-1.png]]
300
301
302 (((
303 Below is an example payload:  [[image:image-20220624140615-3.png]]
304 )))
305
306 (((
307
308 )))
309
310 (((
311 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
312 )))
313
314 * (((
315 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
316 )))
317
318 (((
319 Uplink 1:  [[image:image-20220624140735-4.png]]
320 )))
321
322
323 (((
324 Uplink 2:  [[image:image-20220624140842-5.png]]
325
326 )))
327
328 * (((
329 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
330 )))
331
332 (((
333 Uplink 1:  [[image:image-20220624141025-6.png]]
334 )))
335
336
337 Uplink 2:  [[image:image-20220624141100-7.png]]
338
339
340 === 2.4.3 Decoder in TTN V3 ===
341
342
343 (((
344 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
345 )))
346
347 (((
348 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
349 )))
350
351
352 (((
353 and put as below:
354 )))
355
356 [[image:1656051152438-578.png]]
357
358
359 == 2.5 Show data on Application Server ==
360
361
362 (((
363 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
364 )))
365
366 (((
367 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
368 )))
369
370 (((
371 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
372 )))
373
374 [[image:1656051197172-131.png]]
375
376
377
378 **Add TagoIO:**
379
380 [[image:1656051223585-631.png]]
381
382
383
384 **Authorization:**
385
386 [[image:1656051248318-368.png]]
387
388
389
390 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
391
392
393 [[image:1656051277767-168.png]]
394
395
396 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
397
398
399 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
400
401 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
402 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
403
404 There are two kinds of commands to configure WSC1-L, they are:
405
406 * (% style="color:#4472c4" %)**General Commands**.
407
408 These commands are to configure:
409
410 * General system settings like: uplink interval.
411 * LoRaWAN protocol & radio related command.
412
413 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
414
415 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
416
417
418 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
419
420 These commands only valid for WSC1-L, as below:
421
422
423 == 3.1 Set Transmit Interval Time ==
424
425
426 Feature: Change LoRaWAN End Node Transmit Interval.
427
428 (% style="color:#037691" %)**AT Command: AT+TDC**
429
430 [[image:image-20220624142619-8.png]]
431
432
433 (% style="color:#037691" %)**Downlink Command: 0x01**
434
435 Format: Command Code (0x01) followed by 3 bytes time value.
436
437 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
438
439 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
440 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
441
442
443 == 3.2 Set Emergency Mode ==
444
445
446 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
447
448 (% style="color:#037691" %)**AT Command:**
449
450 [[image:image-20220624142956-9.png]]
451
452
453 (% style="color:#037691" %)**Downlink Command:**
454
455 * 0xE101     Same as: AT+ALARMMOD=1
456 * 0xE100     Same as: AT+ALARMMOD=0
457
458 == 3.3 Add or Delete RS485 Sensor ==
459
460
461 (((
462 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
463 )))
464
465 (((
466 (% style="color:#037691" %)**AT Command: **
467 )))
468
469 (((
470 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
471 )))
472
473 * (((
474 Type_Code range:  A1 ~~ A4
475 )))
476 * (((
477 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
478 )))
479 * (((
480 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
481 )))
482 * (((
483 Read_Length:  RS485 response frame length supposed to receive. Max can receive
484 )))
485 * (((
486 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
487 )))
488 * (((
489 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
490 )))
491 * (((
492 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
493 )))
494
495 (((
496 **Example:**
497 )))
498
499 (((
500 User need to change external sensor use the type code as address code.
501 )))
502
503 (((
504 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
505 )))
506
507 [[image:image-20220624143553-10.png]]
508
509
510 The response frame of the sensor is as follows:
511
512 [[image:image-20220624143618-11.png]]
513
514
515 **Then the following parameters should be:**
516
517 * Address_Code range: A1
518 * Query_Length: 8
519 * Query_Command: A103000000019CAA
520 * Read_Length: 8
521 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
522 * has_CRC: 1
523 * timeout: 1500 (Fill in the test according to the actual situation)
524
525 **So the input command is:**
526
527 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
528
529
530 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
531
532 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
533 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
534 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
535
536 **Related commands:**
537
538 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
539
540 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
541
542
543 (% style="color:#037691" %)**Downlink Command:  **
544
545 **delete custom sensor A1:**
546
547 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
548
549 **Remove all custom sensors**
550
551 * 0xE5FF  
552
553 == 3.4 RS485 Test Command ==
554
555
556 (% style="color:#037691" %)**AT Command:**
557
558 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
559 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
560 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
561 (((
562 Send command to 485 sensor
563 )))
564
565 (((
566 Range : no more than 10 bytes
567 )))
568 )))|(% style="width:85px" %)OK
569
570 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
571
572 AT+RSWRITE=0103000001840A
573
574
575 (% style="color:#037691" %)**Downlink Command:**
576
577 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
578
579 == 3.5 RS485 response timeout ==
580
581
582 Feature: Set or get extended time to receive 485 sensor data.
583
584 (% style="color:#037691" %)**AT Command:**
585
586 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
587 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
588 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
589 (((
590 Set response timeout to:
591 )))
592
593 (((
594 Range : 0~~10000
595 )))
596 )))|(% style="width:85px" %)OK
597
598 (% style="color:#037691" %)**Downlink Command:**
599
600 Format: Command Code (0xE0) followed by 3 bytes time value.
601
602 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
603
604 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
605 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
606
607 == 3.6 Set Sensor Type ==
608
609
610 (((
611 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
612 )))
613
614 (((
615 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
616 )))
617
618 [[image:image-20220624144904-12.png]]
619
620
621 (% style="color:#037691" %)**AT Command:**
622
623 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
624 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
625 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
626
627 Eg: The setting command **AT+STYPE=80221** means:
628
629 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
630 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
631 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
632 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
633 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
634 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
635 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
636
637 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
638
639
640 (% style="color:#037691" %)**Downlink Command:**
641
642 * 0xE400080221  Same as: AT+STYPE=80221
643
644 (% style="color:red" %)**Note:**
645
646 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
647
648
649 = 4. Power consumption and battery =
650
651 == 4.1 Total Power Consumption ==
652
653
654 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
655
656
657 == 4.2 Reduce power consumption ==
658
659
660 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
661
662
663 == 4.3 Battery ==
664
665
666 (((
667 All sensors are only power by external power source. If external power source is off. All sensor won't work.
668 )))
669
670 (((
671 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
672 )))
673
674
675 = 5. Main Process Unit WSC1-L =
676
677 == 5.1 Features ==
678
679
680 * Wall Attachable.
681 * LoRaWAN v1.0.3 Class A protocol.
682 * RS485 / Modbus protocol
683 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
684 * AT Commands to change parameters
685 * Remote configure parameters via LoRaWAN Downlink
686 * Firmware upgradable via program port
687 * Powered by external 12v battery
688 * Back up rechargeable 1000mAh battery
689 * IP Rating: IP65
690 * Support default sensors or 3rd party RS485 sensors
691
692 == 5.2 Power Consumption ==
693
694
695 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
696
697
698 == 5.3 Storage & Operation Temperature ==
699
700
701 -20°C to +60°C
702
703
704 == 5.4 Pin Mapping ==
705
706
707 [[image:1656054149793-239.png]]
708
709
710 == 5.5 Mechanical ==
711
712
713 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
714
715
716 == 5.6 Connect to RS485 Sensors ==
717
718
719 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
720
721
722 [[image:1656054389031-379.png]]
723
724
725 Hardware Design for the Converter Board please see:
726
727 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
728
729
730 = 6. Weather Sensors =
731
732 == 6.1 Rain Gauge ~-~- WSS-01 ==
733
734
735 (((
736 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
737 )))
738
739 (((
740 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
741 )))
742
743 (((
744 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
745 )))
746
747 (((
748 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
749 )))
750
751 (((
752 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
753 )))
754
755
756 === 6.1.1 Feature ===
757
758
759 * RS485 Rain Gauge
760 * Small dimension, easy to install
761 * Vents under funnel, avoid leaf or other things to avoid rain flow.
762 * ABS enclosure.
763 * Horizontal adjustable.
764
765 === 6.1.2 Specification ===
766
767
768 * Resolution: 0.2mm
769 * Accuracy: ±3%
770 * Range: 0 ~~ 100mm
771 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
772 * Input Power: DC 5~~24v
773 * Interface: RS485
774 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
775 * Working Humidity: <100% (no dewing)
776 * Power Consumption: 4mA @ 12v.
777
778 === 6.1.3 Dimension ===
779
780
781 [[image:1656054957406-980.png]]
782
783
784 === 6.1.4 Pin Mapping ===
785
786
787 [[image:1656054972828-692.png]]
788
789
790 === 6.1.5 Installation Notice ===
791
792
793 (((
794 Do not power on while connect the cables. Double check the wiring before power on.
795 )))
796
797 (((
798 Installation Photo as reference:
799 )))
800
801
802 (((
803 (% style="color:#4472c4" %)** Install on Ground:**
804 )))
805
806 (((
807 WSS-01 Rain Gauge include screws so can install in ground directly .
808 )))
809
810
811 (((
812 (% style="color:#4472c4" %)** Install on pole:**
813 )))
814
815 (((
816 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
817 )))
818
819 [[image:image-20220624152218-1.png||height="526" width="276"]]
820
821 WS-K2: Bracket Kit for Pole installation
822
823
824 WSSC-K2 dimension document, please see:
825
826 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
827
828
829 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
830
831
832 [[image:1656055444035-179.png]]
833
834
835 (((
836 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
837 )))
838
839 (((
840 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
841 )))
842
843 (((
844 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
845 )))
846
847
848
849 === 6.2.1 Feature ===
850
851
852 * RS485 wind speed / direction sensor
853 * PC enclosure, resist corrosion
854
855 === 6.2.2 Specification ===
856
857
858 * Wind speed range: 0 ~~ 60m/s
859 * Wind direction range: 0 ~~ 360°
860 * Start wind speed: ≤0.3m/s
861 * Accuracy: ±(0.3+0.03V)m/s , ±1°
862 * Input Power: DC 5~~24v
863 * Interface: RS485
864 * Working Temperature: -30℃~70℃
865 * Working Humidity: <100% (no dewing)
866 * Power Consumption: 13mA ~~ 12v.
867 * Cable Length: 2 meters
868
869 === 6.2.3 Dimension ===
870
871
872 [[image:image-20220624152813-2.png]]
873
874
875 === 6.2.4 Pin Mapping ===
876
877
878 [[image:1656056281231-994.png]]
879
880
881 === 6.2.5  Angle Mapping ===
882
883
884 [[image:1656056303845-585.png]]
885
886
887 === 6.2.6  Installation Notice ===
888
889
890 (((
891 Do not power on while connect the cables. Double check the wiring before power on.
892 )))
893
894 (((
895 The sensor must be installed with below direction, towards North.
896
897
898 )))
899
900 [[image:image-20220624153901-3.png]]
901
902
903 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
904
905
906 (((
907 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
908 )))
909
910 (((
911 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
912 )))
913
914 (((
915 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
916 )))
917
918
919 === 6.3.1 Feature ===
920
921
922 * RS485 CO2, PM2.5, PM10 sensor
923 * NDIR to measure CO2 with Internal Temperature Compensation
924 * Laser Beam Scattering to PM2.5 and PM10
925
926 === 6.3.2 Specification ===
927
928
929 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
930 * CO2 resolution: 1ppm
931 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
932 * PM2.5/PM10 resolution: 1μg/m3
933 * Input Power: DC 7 ~~ 24v
934 * Preheat time: 3min
935 * Interface: RS485
936 * Working Temperature:
937 ** CO2: 0℃~50℃;
938 ** PM2.5/PM10: -30 ~~ 50℃
939 * Working Humidity:
940 ** PM2.5/PM10: 15~80%RH (no dewing)
941 ** CO2: 0~95%RH
942 * Power Consumption: 50mA@ 12v.
943
944 === 6.3.3 Dimension ===
945
946
947 [[image:1656056708366-230.png]]
948
949
950
951 === 6.3.4 Pin Mapping ===
952
953
954 [[image:1656056722648-743.png]]
955
956
957 === 6.3.5 Installation Notice ===
958
959
960 Do not power on while connect the cables. Double check the wiring before power on.
961
962
963 [[image:1656056751153-304.png]]
964
965
966 [[image:1656056766224-773.png]]
967
968
969 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
970
971
972 (((
973 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
974 )))
975
976 (((
977 WSS-04 has auto heating feature, this ensures measurement more reliable.
978 )))
979
980 (((
981 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
982 )))
983
984
985 === 6.4.1 Feature ===
986
987
988 * RS485 Rain/Snow detect sensor
989 * Surface heating to dry
990 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
991
992 === 6.4.2 Specification ===
993
994
995 * Detect if there is rain or snow
996 * Input Power: DC 12 ~~ 24v
997 * Interface: RS485
998 * Working Temperature: -30℃~70℃
999 * Working Humidity: 10~90%RH
1000 * Power Consumption:
1001 ** No heating: 12mA @ 12v,
1002 ** heating: 94ma @ 12v.
1003
1004 === 6.4.3 Dimension ===
1005
1006
1007 [[image:1656056844782-155.png]]
1008
1009
1010 === 6.4.4 Pin Mapping ===
1011
1012
1013 [[image:1656056855590-754.png]]
1014
1015
1016 === 6.4.5 Installation Notice ===
1017
1018
1019 Do not power on while connect the cables. Double check the wiring before power on.
1020
1021
1022 (((
1023 Install with 15°degree.
1024 )))
1025
1026 [[image:1656056873783-780.png]]
1027
1028
1029 [[image:1656056883736-804.png]]
1030
1031
1032 === 6.4.6 Heating ===
1033
1034
1035 (((
1036 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1037 )))
1038
1039
1040 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1041
1042
1043 (((
1044 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1045 )))
1046
1047 (((
1048 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1049 )))
1050
1051
1052 === 6.5.1 Feature ===
1053
1054
1055 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1056
1057 === 6.5.2 Specification ===
1058
1059
1060 * Input Power: DC 12 ~~ 24v
1061 * Interface: RS485
1062 * Temperature Sensor Spec:
1063 ** Range: -30 ~~ 70℃
1064 ** resolution 0.1℃
1065 ** Accuracy: ±0.5℃
1066 * Humidity Sensor Spec:
1067 ** Range: 0 ~~ 100% RH
1068 ** resolution 0.1 %RH
1069 ** Accuracy: 3% RH
1070 * Pressure Sensor Spec:
1071 ** Range: 10~1100hPa
1072 ** Resolution: 0.1hPa
1073 ** Accuracy: ±0.1hPa
1074 * Illuminate sensor:
1075 ** Range: 0~2/20/200kLux
1076 ** Resolution: 10 Lux
1077 ** Accuracy: ±3%FS
1078 * Working Temperature: -30℃~70℃
1079 * Working Humidity: 10~90%RH
1080 * Power Consumption: 4mA @ 12v
1081
1082 === 6.5.3 Dimension ===
1083
1084
1085 [[image:1656057170639-522.png]]
1086
1087
1088 === 6.5.4 Pin Mapping ===
1089
1090
1091 [[image:1656057181899-910.png]]
1092
1093
1094 === 6.5.5 Installation Notice ===
1095
1096
1097 Do not power on while connect the cables. Double check the wiring before power on.
1098
1099 [[image:1656057199955-514.png]]
1100
1101
1102 [[image:1656057212438-475.png]]
1103
1104
1105 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1106
1107
1108 (((
1109 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1110 )))
1111
1112 (((
1113 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1114 )))
1115
1116 (((
1117 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1118 )))
1119
1120
1121 === 6.6.1 Feature ===
1122
1123
1124 * RS485 Total Solar Radiation sensor
1125 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1126 * Measure Reflected Radiation if sense area towards ground.
1127
1128 === 6.6.2 Specification ===
1129
1130
1131 * Input Power: DC 5 ~~ 24v
1132 * Interface: RS485
1133 * Detect spectrum: 0.3~3μm(300~3000nm)
1134 * Measure strength range: 0~2000W/m2
1135 * Resolution: 0.1W/m2
1136 * Accuracy: ±3%
1137 * Yearly Stability: ≤±2%
1138 * Cosine response: ≤7% (@ Sun angle 10°)
1139 * Temperature Effect: ±2%(-10℃~40℃)
1140 * Working Temperature: -40℃~70℃
1141 * Working Humidity: 10~90%RH
1142 * Power Consumption: 4mA @ 12v
1143
1144 === 6.6.3 Dimension ===
1145
1146
1147 [[image:1656057348695-898.png]]
1148
1149
1150 === 6.6.4 Pin Mapping ===
1151
1152
1153 [[image:1656057359343-744.png]]
1154
1155
1156 === 6.6.5 Installation Notice ===
1157
1158
1159 Do not power on while connect the cables. Double check the wiring before power on.
1160
1161
1162 [[image:1656057369259-804.png]]
1163
1164
1165 [[image:1656057377943-564.png]]
1166
1167
1168 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1169
1170
1171 (((
1172 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1173 )))
1174
1175 (((
1176 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1177 )))
1178
1179 (((
1180 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1181 )))
1182
1183
1184 === 6.7.1 Feature ===
1185
1186
1187 (((
1188 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1189 )))
1190
1191 (((
1192 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1193 )))
1194
1195
1196 === 6.7.2 Specification ===
1197
1198
1199 * Input Power: DC 5 ~~ 24v
1200 * Interface: RS485
1201 * Response Spectrum: 400~700nm
1202 * Measure range: 0~2500μmol/m2•s
1203 * Resolution: 1μmol/m2•s
1204 * Accuracy: ±2%
1205 * Yearly Stability: ≤±2%
1206 * Working Temperature: -30℃~75℃
1207 * Working Humidity: 10~90%RH
1208 * Power Consumption: 3mA @ 12v
1209
1210 === 6.7.3 Dimension ===
1211
1212
1213 [[image:1656057538793-888.png]]
1214
1215
1216 === 6.7.4 Pin Mapping ===
1217
1218
1219 [[image:1656057548116-203.png]]
1220
1221
1222 === 6.7.5 Installation Notice ===
1223
1224
1225 Do not power on while connect the cables. Double check the wiring before power on.
1226
1227
1228 [[image:1656057557191-895.png]]
1229
1230
1231 [[image:1656057565783-251.png]]
1232
1233
1234 = 7. FAQ =
1235
1236 == 7.1 What else do I need to purchase to build Weather Station? ==
1237
1238
1239 Below is the installation photo and structure:
1240
1241
1242 [[image:1656057598349-319.png]]
1243
1244
1245 [[image:1656057608049-693.png]]
1246
1247
1248 == 7.2 How to upgrade firmware for WSC1-L? ==
1249
1250
1251 (((
1252 Firmware Location & Change log:
1253
1254 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1255 )))
1256
1257
1258 (((
1259 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1260 )))
1261
1262
1263 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1264
1265
1266 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1267
1268
1269 == 7.4 Can I add my weather sensors? ==
1270
1271
1272 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1273
1274
1275 = 8. Trouble Shooting =
1276
1277 == 8.1 AT Command input doesn't work ==
1278
1279
1280 (((
1281 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1282 )))
1283
1284
1285 = 9. Order Info =
1286
1287 == 9.1 Main Process Unit ==
1288
1289
1290 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1291
1292 (% style="color:blue" %)**XX**(%%): The default frequency band
1293
1294 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1295 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1296 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1297 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1298 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1299 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1300 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1301 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1302
1303 == 9.2 Sensors ==
1304
1305
1306 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1307 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1308 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1309 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1310 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1311 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1312 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1313 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1314 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1315 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1316
1317 = 10. Support =
1318
1319
1320 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1321
1322 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1323
1324 = 11. Appendix I: Field Installation Photo =
1325
1326
1327 [[image:1656058346362-132.png||height="685" width="732"]]
1328
1329 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1330
1331
1332
1333 (% style="color:blue" %)**Wind Speed/Direction**
1334
1335 [[image:1656058373174-421.png||height="356" width="731"]]
1336
1337
1338
1339 (% style="color:blue" %)**Total Solar Radiation sensor**
1340
1341 [[image:1656058397364-282.png||height="453" width="732"]]
1342
1343
1344
1345 (% style="color:blue" %)**PAR Sensor**
1346
1347 [[image:1656058416171-615.png]]
1348
1349
1350
1351 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1352
1353 [[image:1656058441194-827.png||height="672" width="523"]]
1354
1355
1356
1357 (% style="color:blue" %)**Rain / Snow Detect**
1358
1359 [[image:1656058451456-166.png]]
1360
1361
1362
1363 (% style="color:blue" %)**Rain Gauge**
1364
1365 [[image:1656058463455-569.png||height="499" width="550"]]
1366
1367
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0