Version 96.5 by Xiaoling on 2023/03/09 14:23

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82 == 2.2 How it works? ==
83
84
85 (((
86 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
87 )))
88
89
90 (((
91 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
92 )))
93
94 [[image:1656042192857-709.png]]
95
96
97 (% style="color:red" %)**Notice:**
98
99 1. WSC1-L will auto scan available weather sensors when power on or reboot.
100 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
101
102 == 2.3 Example to use for LoRaWAN network ==
103
104
105 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
106
107
108 [[image:1656042612899-422.png]]
109
110
111
112 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
113
114
115 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
116
117 Each WSC1-L is shipped with a sticker with the default device EUI as below:
118
119 [[image:image-20220624115043-1.jpeg]]
120
121
122 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
123
124 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
125
126 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
127
128 **Add APP EUI in the application.**
129
130 [[image:1656042662694-311.png]]
131
132 [[image:1656042673910-429.png]]
133
134
135
136
137 **Choose Manually to add WSC1-L**
138
139 [[image:1656042695755-103.png]]
140
141
142
143 **Add APP KEY and DEV EUI**
144
145 [[image:1656042723199-746.png]]
146
147
148
149 (((
150 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
151 )))
152
153
154 [[image:1656042745346-283.png]]
155
156
157 == 2.4 Uplink Payload ==
158
159
160 Uplink payloads include two types: Valid Sensor Value and other status / control command.
161
162 * Valid Sensor Value: Use FPORT=2
163 * Other control command: Use FPORT other than 2.
164
165 === 2.4.1 Uplink FPORT~=5, Device Status ===
166
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 (((
172 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
173 )))
174
175 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
176 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
177 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
178
179 [[image:1656043061044-343.png]]
180
181
182 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
183
184
185 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
186
187 For WSC1-L, this value is 0x0D.
188
189
190 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
191
192 0x0100, Means: v1.0.0 version.
193
194
195 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
196
197 *0x01: EU868
198
199 *0x02: US915
200
201 *0x03: IN865
202
203 *0x04: AU915
204
205 *0x05: KZ865
206
207 *0x06: RU864
208
209 *0x07: AS923
210
211 *0x08: AS923-1
212
213 *0x09: AS923-2
214
215 *0x0a: AS923-3
216
217
218 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
219
220 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
221
222
223 ==== (% style="color:#037691" %)**BAT:**(%%) ====
224
225 (((
226 shows the battery voltage for WSC1-L MCU.
227 )))
228
229 (((
230 Ex1: 0x0BD6/1000 = 3.03 V
231 )))
232
233
234 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
235
236 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
237 |Byte3|Byte2|Byte1
238
239 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
240
241 [[image:image-20220624134713-1.png]]
242
243
244 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
245
246 External sensors detected by WSC1-L include :
247
248 custom sensor A1,
249
250 PAR sensor (WSS-07),
251
252 Total Solar Radiation sensor (WSS-06),
253
254 CO2/PM2.5/PM10 (WSS-03),
255
256 Wind Speed/Direction (WSS-02)
257
258
259 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
260
261 (% style="color:#037691" %)**Downlink:0x26 01**
262
263 [[image:1656049673488-415.png]]
264
265
266 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
267
268
269 (((
270 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
271 )))
272
273 (((
274 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
275 )))
276
277
278 (((
279 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
280 )))
281
282
283 (% style="color:#4472c4" %)** Uplink Payload**:
284
285 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
286 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
287
288 (% style="color:#4472c4" %)** Sensor Segment Define**:
289
290 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
291 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
292
293 (% style="color:#4472c4" %)**Sensor Type Table:**
294
295 [[image:image-20220706154434-1.png]]
296
297
298 (((
299 Below is an example payload:  [[image:image-20220624140615-3.png]]
300 )))
301
302 (((
303
304 )))
305
306 (((
307 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
308 )))
309
310 * (((
311 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
312 )))
313
314 (((
315 Uplink 1:  [[image:image-20220624140735-4.png]]
316 )))
317
318
319 (((
320 Uplink 2:  [[image:image-20220624140842-5.png]]
321
322 )))
323
324 * (((
325 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
326 )))
327
328 (((
329 Uplink 1:  [[image:image-20220624141025-6.png]]
330 )))
331
332
333 Uplink 2:  [[image:image-20220624141100-7.png]]
334
335
336 === 2.4.3 Decoder in TTN V3 ===
337
338
339 (((
340 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
341 )))
342
343 (((
344 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
345 )))
346
347
348 (((
349 and put as below:
350 )))
351
352 [[image:1656051152438-578.png]]
353
354
355 == 2.5 Show data on Application Server ==
356
357
358 (((
359 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
360 )))
361
362 (((
363 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
364 )))
365
366 (((
367 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
368 )))
369
370 [[image:1656051197172-131.png]]
371
372
373
374 **Add TagoIO:**
375
376 [[image:1656051223585-631.png]]
377
378
379
380 **Authorization:**
381
382 [[image:1656051248318-368.png]]
383
384
385
386 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
387
388
389 [[image:1656051277767-168.png]]
390
391
392 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
393
394
395 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
396
397 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
398 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
399
400 There are two kinds of commands to configure WSC1-L, they are:
401
402 * (% style="color:#4472c4" %)**General Commands**.
403
404 These commands are to configure:
405
406 * General system settings like: uplink interval.
407 * LoRaWAN protocol & radio related command.
408
409 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
410
411 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
412
413
414 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
415
416 These commands only valid for WSC1-L, as below:
417
418
419 == 3.1 Set Transmit Interval Time ==
420
421
422 Feature: Change LoRaWAN End Node Transmit Interval.
423
424 (% style="color:#037691" %)**AT Command: AT+TDC**
425
426 [[image:image-20220624142619-8.png]]
427
428
429 (% style="color:#037691" %)**Downlink Command: 0x01**
430
431 Format: Command Code (0x01) followed by 3 bytes time value.
432
433 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
434
435 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
436 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
437
438
439
440 == 3.2 Set Emergency Mode ==
441
442
443 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
444
445 (% style="color:#037691" %)**AT Command:**
446
447 [[image:image-20220624142956-9.png]]
448
449
450 (% style="color:#037691" %)**Downlink Command:**
451
452 * 0xE101     Same as: AT+ALARMMOD=1
453 * 0xE100     Same as: AT+ALARMMOD=0
454
455 == 3.3 Add or Delete RS485 Sensor ==
456
457
458 (((
459 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
460 )))
461
462 (((
463 (% style="color:#037691" %)**AT Command: **
464 )))
465
466 (((
467 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
468 )))
469
470 * (((
471 Type_Code range:  A1 ~~ A4
472 )))
473 * (((
474 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
475 )))
476 * (((
477 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
478 )))
479 * (((
480 Read_Length:  RS485 response frame length supposed to receive. Max can receive
481 )))
482 * (((
483 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
484 )))
485 * (((
486 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
487 )))
488 * (((
489 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
490 )))
491
492 (((
493 **Example:**
494 )))
495
496 (((
497 User need to change external sensor use the type code as address code.
498 )))
499
500 (((
501 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
502 )))
503
504 [[image:image-20220624143553-10.png]]
505
506
507 The response frame of the sensor is as follows:
508
509 [[image:image-20220624143618-11.png]]
510
511
512 **Then the following parameters should be:**
513
514 * Address_Code range: A1
515 * Query_Length: 8
516 * Query_Command: A103000000019CAA
517 * Read_Length: 8
518 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
519 * has_CRC: 1
520 * timeout: 1500 (Fill in the test according to the actual situation)
521
522 **So the input command is:**
523
524 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
525
526
527 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
528
529 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
530 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
531 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
532
533 **Related commands:**
534
535 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
536
537 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
538
539
540 (% style="color:#037691" %)**Downlink Command:  **
541
542 **delete custom sensor A1:**
543
544 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
545
546 **Remove all custom sensors**
547
548 * 0xE5FF  
549
550 == 3.4 RS485 Test Command ==
551
552
553 (% style="color:#037691" %)**AT Command:**
554
555 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
556 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
557 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
558 (((
559 Send command to 485 sensor
560 )))
561
562 (((
563 Range : no more than 10 bytes
564 )))
565 )))|(% style="width:85px" %)OK
566
567 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
568
569 AT+RSWRITE=0103000001840A
570
571
572 (% style="color:#037691" %)**Downlink Command:**
573
574 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
575
576 == 3.5 RS485 response timeout ==
577
578
579 Feature: Set or get extended time to receive 485 sensor data.
580
581 (% style="color:#037691" %)**AT Command:**
582
583 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
584 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
585 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
586 (((
587 Set response timeout to:
588 )))
589
590 (((
591 Range : 0~~10000
592 )))
593 )))|(% style="width:85px" %)OK
594
595 (% style="color:#037691" %)**Downlink Command:**
596
597 Format: Command Code (0xE0) followed by 3 bytes time value.
598
599 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
600
601 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
602 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
603
604 == 3.6 Set Sensor Type ==
605
606
607 (((
608 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
609 )))
610
611 (((
612 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
613 )))
614
615 [[image:image-20220624144904-12.png]]
616
617
618 (% style="color:#037691" %)**AT Command:**
619
620 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
621 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
622 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
623
624 Eg: The setting command **AT+STYPE=80221** means:
625
626 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
627 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
628 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
629 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
630 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
631 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
632 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
633
634 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
635
636
637 (% style="color:#037691" %)**Downlink Command:**
638
639 * 0xE400080221  Same as: AT+STYPE=80221
640
641 (% style="color:red" %)**Note:**
642
643 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
644
645
646 = 4. Power consumption and battery =
647
648 == 4.1 Total Power Consumption ==
649
650
651 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
652
653
654 == 4.2 Reduce power consumption ==
655
656
657 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
658
659
660 == 4.3 Battery ==
661
662
663 (((
664 All sensors are only power by external power source. If external power source is off. All sensor won't work.
665 )))
666
667 (((
668 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
669 )))
670
671
672 = 5. Main Process Unit WSC1-L =
673
674 == 5.1 Features ==
675
676
677 * Wall Attachable.
678 * LoRaWAN v1.0.3 Class A protocol.
679 * RS485 / Modbus protocol
680 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
681 * AT Commands to change parameters
682 * Remote configure parameters via LoRaWAN Downlink
683 * Firmware upgradable via program port
684 * Powered by external 12v battery
685 * Back up rechargeable 1000mAh battery
686 * IP Rating: IP65
687 * Support default sensors or 3rd party RS485 sensors
688
689 == 5.2 Power Consumption ==
690
691
692 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
693
694
695 == 5.3 Storage & Operation Temperature ==
696
697
698 -20°C to +60°C
699
700
701 == 5.4 Pin Mapping ==
702
703
704 [[image:1656054149793-239.png]]
705
706
707 == 5.5 Mechanical ==
708
709
710 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
711
712
713 == 5.6 Connect to RS485 Sensors ==
714
715
716 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
717
718
719 [[image:1656054389031-379.png]]
720
721
722 Hardware Design for the Converter Board please see:
723
724 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
725
726
727 = 6. Weather Sensors =
728
729 == 6.1 Rain Gauge ~-~- WSS-01 ==
730
731
732 (((
733 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
734 )))
735
736 (((
737 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
738 )))
739
740 (((
741 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
742 )))
743
744 (((
745 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
746 )))
747
748 (((
749 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
750 )))
751
752
753 === 6.1.1 Feature ===
754
755
756 * RS485 Rain Gauge
757 * Small dimension, easy to install
758 * Vents under funnel, avoid leaf or other things to avoid rain flow.
759 * ABS enclosure.
760 * Horizontal adjustable.
761
762 === 6.1.2 Specification ===
763
764
765 * Resolution: 0.2mm
766 * Accuracy: ±3%
767 * Range: 0 ~~ 100mm
768 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
769 * Input Power: DC 5~~24v
770 * Interface: RS485
771 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
772 * Working Humidity: <100% (no dewing)
773 * Power Consumption: 4mA @ 12v.
774
775 === 6.1.3 Dimension ===
776
777
778 [[image:1656054957406-980.png]]
779
780
781 === 6.1.4 Pin Mapping ===
782
783
784 [[image:1656054972828-692.png]]
785
786
787 === 6.1.5 Installation Notice ===
788
789
790 (((
791 Do not power on while connect the cables. Double check the wiring before power on.
792 )))
793
794 (((
795 Installation Photo as reference:
796 )))
797
798
799 (((
800 (% style="color:#4472c4" %)** Install on Ground:**
801 )))
802
803 (((
804 WSS-01 Rain Gauge include screws so can install in ground directly .
805 )))
806
807
808 (((
809 (% style="color:#4472c4" %)** Install on pole:**
810 )))
811
812 (((
813 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
814 )))
815
816 [[image:image-20220624152218-1.png||height="526" width="276"]]
817
818 WS-K2: Bracket Kit for Pole installation
819
820
821 WSSC-K2 dimension document, please see:
822
823 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
824
825
826 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
827
828
829 [[image:1656055444035-179.png]]
830
831
832 (((
833 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
834 )))
835
836 (((
837 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
838 )))
839
840 (((
841 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
842 )))
843
844
845
846 === 6.2.1 Feature ===
847
848
849 * RS485 wind speed / direction sensor
850 * PC enclosure, resist corrosion
851
852 === 6.2.2 Specification ===
853
854
855 * Wind speed range: 0 ~~ 60m/s
856 * Wind direction range: 0 ~~ 360°
857 * Start wind speed: ≤0.3m/s
858 * Accuracy: ±(0.3+0.03V)m/s , ±1°
859 * Input Power: DC 5~~24v
860 * Interface: RS485
861 * Working Temperature: -30℃~70℃
862 * Working Humidity: <100% (no dewing)
863 * Power Consumption: 13mA ~~ 12v.
864 * Cable Length: 2 meters
865
866 === 6.2.3 Dimension ===
867
868
869 [[image:image-20220624152813-2.png]]
870
871
872 === 6.2.4 Pin Mapping ===
873
874
875 [[image:1656056281231-994.png]]
876
877
878 === 6.2.5  Angle Mapping ===
879
880
881 [[image:1656056303845-585.png]]
882
883
884 === 6.2.6  Installation Notice ===
885
886
887 (((
888 Do not power on while connect the cables. Double check the wiring before power on.
889 )))
890
891 (((
892 The sensor must be installed with below direction, towards North.
893
894
895 )))
896
897 [[image:image-20220624153901-3.png]]
898
899
900 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
901
902
903 (((
904 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
905 )))
906
907 (((
908 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
909 )))
910
911 (((
912 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
913 )))
914
915
916 === 6.3.1 Feature ===
917
918
919 * RS485 CO2, PM2.5, PM10 sensor
920 * NDIR to measure CO2 with Internal Temperature Compensation
921 * Laser Beam Scattering to PM2.5 and PM10
922
923 === 6.3.2 Specification ===
924
925
926 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
927 * CO2 resolution: 1ppm
928 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
929 * PM2.5/PM10 resolution: 1μg/m3
930 * Input Power: DC 7 ~~ 24v
931 * Preheat time: 3min
932 * Interface: RS485
933 * Working Temperature:
934 ** CO2: 0℃~50℃;
935 ** PM2.5/PM10: -30 ~~ 50℃
936 * Working Humidity:
937 ** PM2.5/PM10: 15~80%RH (no dewing)
938 ** CO2: 0~95%RH
939 * Power Consumption: 50mA@ 12v.
940
941 === 6.3.3 Dimension ===
942
943
944 [[image:1656056708366-230.png]]
945
946
947
948 === 6.3.4 Pin Mapping ===
949
950
951 [[image:1656056722648-743.png]]
952
953
954 === 6.3.5 Installation Notice ===
955
956
957 Do not power on while connect the cables. Double check the wiring before power on.
958
959
960 [[image:1656056751153-304.png]]
961
962
963 [[image:1656056766224-773.png]]
964
965
966 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
967
968
969 (((
970 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
971 )))
972
973 (((
974 WSS-04 has auto heating feature, this ensures measurement more reliable.
975 )))
976
977 (((
978 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
979 )))
980
981
982 === 6.4.1 Feature ===
983
984
985 * RS485 Rain/Snow detect sensor
986 * Surface heating to dry
987 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
988
989 === 6.4.2 Specification ===
990
991
992 * Detect if there is rain or snow
993 * Input Power: DC 12 ~~ 24v
994 * Interface: RS485
995 * Working Temperature: -30℃~70℃
996 * Working Humidity: 10~90%RH
997 * Power Consumption:
998 ** No heating: 12mA @ 12v,
999 ** heating: 94ma @ 12v.
1000
1001 === 6.4.3 Dimension ===
1002
1003
1004 [[image:1656056844782-155.png]]
1005
1006
1007 === 6.4.4 Pin Mapping ===
1008
1009
1010 [[image:1656056855590-754.png]]
1011
1012
1013 === 6.4.5 Installation Notice ===
1014
1015
1016 Do not power on while connect the cables. Double check the wiring before power on.
1017
1018
1019 (((
1020 Install with 15°degree.
1021 )))
1022
1023 [[image:1656056873783-780.png]]
1024
1025
1026 [[image:1656056883736-804.png]]
1027
1028
1029 === 6.4.6 Heating ===
1030
1031
1032 (((
1033 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1034 )))
1035
1036
1037 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1038
1039
1040 (((
1041 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1042 )))
1043
1044 (((
1045 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1046 )))
1047
1048
1049 === 6.5.1 Feature ===
1050
1051
1052 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1053
1054 === 6.5.2 Specification ===
1055
1056
1057 * Input Power: DC 12 ~~ 24v
1058 * Interface: RS485
1059 * Temperature Sensor Spec:
1060 ** Range: -30 ~~ 70℃
1061 ** resolution 0.1℃
1062 ** Accuracy: ±0.5℃
1063 * Humidity Sensor Spec:
1064 ** Range: 0 ~~ 100% RH
1065 ** resolution 0.1 %RH
1066 ** Accuracy: 3% RH
1067 * Pressure Sensor Spec:
1068 ** Range: 10~1100hPa
1069 ** Resolution: 0.1hPa
1070 ** Accuracy: ±0.1hPa
1071 * Illuminate sensor:
1072 ** Range: 0~2/20/200kLux
1073 ** Resolution: 10 Lux
1074 ** Accuracy: ±3%FS
1075 * Working Temperature: -30℃~70℃
1076 * Working Humidity: 10~90%RH
1077 * Power Consumption: 4mA @ 12v
1078
1079 === 6.5.3 Dimension ===
1080
1081
1082 [[image:1656057170639-522.png]]
1083
1084
1085 === 6.5.4 Pin Mapping ===
1086
1087
1088 [[image:1656057181899-910.png]]
1089
1090
1091 === 6.5.5 Installation Notice ===
1092
1093
1094 Do not power on while connect the cables. Double check the wiring before power on.
1095
1096 [[image:1656057199955-514.png]]
1097
1098
1099 [[image:1656057212438-475.png]]
1100
1101
1102 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1103
1104
1105 (((
1106 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1107 )))
1108
1109 (((
1110 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1111 )))
1112
1113 (((
1114 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1115 )))
1116
1117
1118 === 6.6.1 Feature ===
1119
1120
1121 * RS485 Total Solar Radiation sensor
1122 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1123 * Measure Reflected Radiation if sense area towards ground.
1124
1125 === 6.6.2 Specification ===
1126
1127
1128 * Input Power: DC 5 ~~ 24v
1129 * Interface: RS485
1130 * Detect spectrum: 0.3~3μm(300~3000nm)
1131 * Measure strength range: 0~2000W/m2
1132 * Resolution: 0.1W/m2
1133 * Accuracy: ±3%
1134 * Yearly Stability: ≤±2%
1135 * Cosine response: ≤7% (@ Sun angle 10°)
1136 * Temperature Effect: ±2%(-10℃~40℃)
1137 * Working Temperature: -40℃~70℃
1138 * Working Humidity: 10~90%RH
1139 * Power Consumption: 4mA @ 12v
1140
1141 === 6.6.3 Dimension ===
1142
1143
1144 [[image:1656057348695-898.png]]
1145
1146
1147 === 6.6.4 Pin Mapping ===
1148
1149
1150 [[image:1656057359343-744.png]]
1151
1152
1153 === 6.6.5 Installation Notice ===
1154
1155
1156 Do not power on while connect the cables. Double check the wiring before power on.
1157
1158
1159 [[image:1656057369259-804.png]]
1160
1161
1162 [[image:1656057377943-564.png]]
1163
1164
1165 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1166
1167
1168 (((
1169 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1170 )))
1171
1172 (((
1173 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1174 )))
1175
1176 (((
1177 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1178 )))
1179
1180
1181 === 6.7.1 Feature ===
1182
1183
1184 (((
1185 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1186 )))
1187
1188 (((
1189 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1190 )))
1191
1192
1193 === 6.7.2 Specification ===
1194
1195
1196 * Input Power: DC 5 ~~ 24v
1197 * Interface: RS485
1198 * Response Spectrum: 400~700nm
1199 * Measure range: 0~2500μmol/m2•s
1200 * Resolution: 1μmol/m2•s
1201 * Accuracy: ±2%
1202 * Yearly Stability: ≤±2%
1203 * Working Temperature: -30℃~75℃
1204 * Working Humidity: 10~90%RH
1205 * Power Consumption: 3mA @ 12v
1206
1207 === 6.7.3 Dimension ===
1208
1209
1210 [[image:1656057538793-888.png]]
1211
1212
1213 === 6.7.4 Pin Mapping ===
1214
1215
1216 [[image:1656057548116-203.png]]
1217
1218
1219 === 6.7.5 Installation Notice ===
1220
1221
1222 Do not power on while connect the cables. Double check the wiring before power on.
1223
1224
1225 [[image:1656057557191-895.png]]
1226
1227
1228 [[image:1656057565783-251.png]]
1229
1230
1231 = 7. FAQ =
1232
1233 == 7.1 What else do I need to purchase to build Weather Station? ==
1234
1235
1236 Below is the installation photo and structure:
1237
1238
1239 [[image:1656057598349-319.png]]
1240
1241
1242 [[image:1656057608049-693.png]]
1243
1244
1245 == 7.2 How to upgrade firmware for WSC1-L? ==
1246
1247
1248 (((
1249 Firmware Location & Change log:
1250
1251 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1252 )))
1253
1254
1255 (((
1256 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1257 )))
1258
1259
1260 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1261
1262
1263 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1264
1265
1266 == 7.4 Can I add my weather sensors? ==
1267
1268
1269 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1270
1271
1272 = 8. Trouble Shooting =
1273
1274 == 8.1 AT Command input doesn't work ==
1275
1276
1277 (((
1278 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1279 )))
1280
1281
1282 = 9. Order Info =
1283
1284 == 9.1 Main Process Unit ==
1285
1286
1287 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1288
1289 (% style="color:blue" %)**XX**(%%): The default frequency band
1290
1291 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1292 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1293 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1294 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1295 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1296 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1297 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1298 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1299
1300 == 9.2 Sensors ==
1301
1302
1303 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1304 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1305 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1306 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1307 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1308 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1309 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1310 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1311 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1312 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1313
1314 = 10. Support =
1315
1316
1317 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1318
1319 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1320
1321 = 11. Appendix I: Field Installation Photo =
1322
1323
1324 [[image:1656058346362-132.png||height="685" width="732"]]
1325
1326 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1327
1328
1329
1330 (% style="color:blue" %)**Wind Speed/Direction**
1331
1332 [[image:1656058373174-421.png||height="356" width="731"]]
1333
1334
1335
1336 (% style="color:blue" %)**Total Solar Radiation sensor**
1337
1338 [[image:1656058397364-282.png||height="453" width="732"]]
1339
1340
1341
1342 (% style="color:blue" %)**PAR Sensor**
1343
1344 [[image:1656058416171-615.png]]
1345
1346
1347
1348 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1349
1350 [[image:1656058441194-827.png||height="672" width="523"]]
1351
1352
1353
1354 (% style="color:blue" %)**Rain / Snow Detect**
1355
1356 [[image:1656058451456-166.png]]
1357
1358
1359
1360 (% style="color:blue" %)**Rain Gauge**
1361
1362 [[image:1656058463455-569.png||height="499" width="550"]]
1363
1364