Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81 (% style="display:none" %)(%%)
82
83
84 == 2.2 How it works? ==
85
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20220624115043-1.jpeg]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
127
128 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (((
152 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
153 )))
154
155
156 [[image:1656042745346-283.png]]
157
158
159 == 2.4 Uplink Payload ==
160
161
162 Uplink payloads include two types: Valid Sensor Value and other status / control command.
163
164 * Valid Sensor Value: Use FPORT=2
165 * Other control command: Use FPORT other than 2.
166 (% style="display:none" %)(%%)
167
168
169 === 2.4.1 Uplink FPORT~=5, Device Status ===
170
171
172 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
173
174
175 (((
176 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
177 )))
178
179 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
180 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
181 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
182
183 [[image:1656043061044-343.png]]
184
185
186 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
187
188
189 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
190
191 For WSC1-L, this value is 0x0D.
192
193
194 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
195
196 0x0100, Means: v1.0.0 version.
197
198
199 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
200
201 *0x01: EU868
202
203 *0x02: US915
204
205 *0x03: IN865
206
207 *0x04: AU915
208
209 *0x05: KZ865
210
211 *0x06: RU864
212
213 *0x07: AS923
214
215 *0x08: AS923-1
216
217 *0x09: AS923-2
218
219 *0x0a: AS923-3
220
221
222 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
223
224 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
225
226
227 ==== (% style="color:#037691" %)**BAT:**(%%) ====
228
229 (((
230 shows the battery voltage for WSC1-L MCU.
231 )))
232
233 (((
234 Ex1: 0x0BD6/1000 = 3.03 V
235 )))
236
237
238 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
239
240 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
241 |Byte3|Byte2|Byte1
242
243 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
244
245 [[image:image-20220624134713-1.png]]
246
247
248 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
249
250 External sensors detected by WSC1-L include :
251
252 custom sensor A1,
253
254 PAR sensor (WSS-07),
255
256 Total Solar Radiation sensor (WSS-06),
257
258 CO2/PM2.5/PM10 (WSS-03),
259
260 Wind Speed/Direction (WSS-02)
261
262
263 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
264
265 (% style="color:#037691" %)**Downlink:0x26 01**
266
267 [[image:1656049673488-415.png]]
268
269
270 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
271
272
273 (((
274 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
275 )))
276
277 (((
278 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
279 )))
280
281
282 (((
283 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
284 )))
285
286
287 (% style="color:#4472c4" %)** Uplink Payload**:
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
290 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
291
292 (% style="color:#4472c4" %)** Sensor Segment Define**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
295 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
296
297 (% style="color:#4472c4" %)**Sensor Type Table:**
298
299 [[image:image-20220706154434-1.png]]
300
301
302 (((
303 Below is an example payload:  [[image:image-20220624140615-3.png]]
304 )))
305
306 (((
307
308 )))
309
310 (((
311 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
312 )))
313
314 * (((
315 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
316 )))
317
318 (((
319 Uplink 1:  [[image:image-20220624140735-4.png]]
320 )))
321
322
323 (((
324 Uplink 2:  [[image:image-20220624140842-5.png]]
325
326 )))
327
328 * (((
329 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
330 )))
331
332 (((
333 Uplink 1:  [[image:image-20220624141025-6.png]]
334 )))
335
336
337 Uplink 2:  [[image:image-20220624141100-7.png]]
338
339
340 === 2.4.3 Decoder in TTN V3 ===
341
342
343 (((
344 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
345 )))
346
347 (((
348 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
349 )))
350
351
352 (((
353 and put as below:
354 )))
355
356 [[image:1656051152438-578.png]]
357
358
359 == 2.5 Show data on Application Server ==
360
361
362 (((
363 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
364 )))
365
366 (((
367 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
368 )))
369
370 (((
371 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
372 )))
373
374 [[image:1656051197172-131.png]]
375
376
377
378 **Add TagoIO:**
379
380 [[image:1656051223585-631.png]]
381
382
383
384 **Authorization:**
385
386 [[image:1656051248318-368.png]]
387
388
389
390 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
391
392
393 [[image:1656051277767-168.png]]
394
395
396 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
397
398
399 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
400
401 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
402 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
403
404 There are two kinds of commands to configure WSC1-L, they are:
405
406 * (% style="color:#4472c4" %)**General Commands**.
407
408 These commands are to configure:
409
410 * General system settings like: uplink interval.
411 * LoRaWAN protocol & radio related command.
412
413 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
414
415 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
416
417
418 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
419
420 These commands only valid for WSC1-L, as below:
421
422
423 == 3.1 Set Transmit Interval Time ==
424
425
426 Feature: Change LoRaWAN End Node Transmit Interval.
427
428 (% style="color:#037691" %)**AT Command: AT+TDC**
429
430 [[image:image-20220624142619-8.png]]
431
432
433 (% style="color:#037691" %)**Downlink Command: 0x01**
434
435 Format: Command Code (0x01) followed by 3 bytes time value.
436
437 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
438
439 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
440 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
441 (% style="display:none" %)(%%)
442
443
444
445
446 == 3.2 Set Emergency Mode ==
447
448
449 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
450
451 (% style="color:#037691" %)**AT Command:**
452
453 [[image:image-20220624142956-9.png]]
454
455
456 (% style="color:#037691" %)**Downlink Command:**
457
458 * 0xE101     Same as: AT+ALARMMOD=1
459 * 0xE100     Same as: AT+ALARMMOD=0
460
461
462 == 3.3 Add or Delete RS485 Sensor ==
463
464
465 (((
466 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
467 )))
468
469 (((
470 (% style="color:#037691" %)**AT Command: **
471 )))
472
473 (((
474 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
475 )))
476
477 * (((
478 Type_Code range:  A1 ~~ A4
479 )))
480 * (((
481 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
482 )))
483 * (((
484 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
485 )))
486 * (((
487 Read_Length:  RS485 response frame length supposed to receive. Max can receive
488 )))
489 * (((
490 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
491 )))
492 * (((
493 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
494 )))
495 * (((
496 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
497 )))
498
499 (((
500 **Example:**
501 )))
502
503 (((
504 User need to change external sensor use the type code as address code.
505 )))
506
507 (((
508 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
509 )))
510
511 [[image:image-20220624143553-10.png]]
512
513
514 The response frame of the sensor is as follows:
515
516 [[image:image-20220624143618-11.png]]
517
518
519 **Then the following parameters should be:**
520
521 * Address_Code range: A1
522 * Query_Length: 8
523 * Query_Command: A103000000019CAA
524 * Read_Length: 8
525 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
526 * has_CRC: 1
527 * timeout: 1500 (Fill in the test according to the actual situation)
528
529 **So the input command is:**
530
531 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
532
533
534 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
535
536 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
537 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
538 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
539
540 **Related commands:**
541
542 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
543
544 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
545
546
547 (% style="color:#037691" %)**Downlink Command:  **
548
549 **delete custom sensor A1:**
550
551 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
552
553 **Remove all custom sensors**
554
555 * 0xE5FF  
556
557
558 == 3.4 RS485 Test Command ==
559
560
561 (% style="color:#037691" %)**AT Command:**
562
563 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
564 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
565 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
566 (((
567 Send command to 485 sensor
568 )))
569
570 (((
571 Range : no more than 10 bytes
572 )))
573 )))|(% style="width:85px" %)OK
574
575 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
576
577 AT+RSWRITE=0103000001840A
578
579
580 (% style="color:#037691" %)**Downlink Command:**
581
582 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
583
584
585 == 3.5 RS485 response timeout ==
586
587
588 Feature: Set or get extended time to receive 485 sensor data.
589
590 (% style="color:#037691" %)**AT Command:**
591
592 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
593 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
594 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
595 (((
596 Set response timeout to:
597 )))
598
599 (((
600 Range : 0~~10000
601 )))
602 )))|(% style="width:85px" %)OK
603
604 (% style="color:#037691" %)**Downlink Command:**
605
606 Format: Command Code (0xE0) followed by 3 bytes time value.
607
608 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
609
610 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
611 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
612
613
614 == 3.6 Set Sensor Type ==
615
616
617 (((
618 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
619 )))
620
621 (((
622 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
623 )))
624
625 [[image:image-20220624144904-12.png]]
626
627
628 (% style="color:#037691" %)**AT Command:**
629
630 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
631 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
632 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
633
634 Eg: The setting command **AT+STYPE=80221** means:
635
636 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
637 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
638 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
639 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
640 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
641 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
642 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
643
644 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
645
646
647 (% style="color:#037691" %)**Downlink Command:**
648
649 * 0xE400080221  Same as: AT+STYPE=80221
650
651 (% style="color:red" %)**Note:**
652
653 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
654
655
656 = 4. Power consumption and battery =
657
658 == 4.1 Total Power Consumption ==
659
660
661 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
662
663
664 == 4.2 Reduce power consumption ==
665
666
667 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
668
669
670 == 4.3 Battery ==
671
672
673 (((
674 All sensors are only power by external power source. If external power source is off. All sensor won't work.
675 )))
676
677 (((
678 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
679 )))
680
681
682 = 5. Main Process Unit WSC1-L =
683
684 == 5.1 Features ==
685
686
687 * Wall Attachable.
688 * LoRaWAN v1.0.3 Class A protocol.
689 * RS485 / Modbus protocol
690 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
691 * AT Commands to change parameters
692 * Remote configure parameters via LoRaWAN Downlink
693 * Firmware upgradable via program port
694 * Powered by external 12v battery
695 * Back up rechargeable 1000mAh battery
696 * IP Rating: IP65
697 * Support default sensors or 3rd party RS485 sensors
698
699
700 == 5.2 Power Consumption ==
701
702
703 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
704
705
706 == 5.3 Storage & Operation Temperature ==
707
708
709 -20°C to +60°C
710
711
712 == 5.4 Pin Mapping ==
713
714
715 [[image:1656054149793-239.png]]
716
717
718 == 5.5 Mechanical ==
719
720
721 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
722
723
724 == 5.6 Connect to RS485 Sensors ==
725
726
727 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
728
729
730 [[image:1656054389031-379.png]]
731
732
733 Hardware Design for the Converter Board please see:
734
735 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
736
737
738 = 6. Weather Sensors =
739
740 == 6.1 Rain Gauge ~-~- WSS-01 ==
741
742
743 (((
744 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
745 )))
746
747 (((
748 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
749 )))
750
751 (((
752 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
753 )))
754
755 (((
756 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
757 )))
758
759 (((
760 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
761 )))
762
763
764 === 6.1.1 Feature ===
765
766
767 * RS485 Rain Gauge
768 * Small dimension, easy to install
769 * Vents under funnel, avoid leaf or other things to avoid rain flow.
770 * ABS enclosure.
771 * Horizontal adjustable.
772
773
774 === 6.1.2 Specification ===
775
776
777 * Resolution: 0.2mm
778 * Accuracy: ±3%
779 * Range: 0 ~~ 100mm
780 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
781 * Input Power: DC 5~~24v
782 * Interface: RS485
783 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
784 * Working Humidity: <100% (no dewing)
785 * Power Consumption: 4mA @ 12v.
786
787
788 === 6.1.3 Dimension ===
789
790
791 [[image:1656054957406-980.png]]
792
793
794 === 6.1.4 Pin Mapping ===
795
796
797 [[image:1656054972828-692.png]]
798
799
800 === 6.1.5 Installation Notice ===
801
802
803 (((
804 Do not power on while connect the cables. Double check the wiring before power on.
805 )))
806
807 (((
808 Installation Photo as reference:
809 )))
810
811
812 (((
813 (% style="color:#4472c4" %)** Install on Ground:**
814 )))
815
816 (((
817 WSS-01 Rain Gauge include screws so can install in ground directly .
818 )))
819
820
821 (((
822 (% style="color:#4472c4" %)** Install on pole:**
823 )))
824
825 (((
826 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
827 )))
828
829 [[image:image-20220624152218-1.png||height="526" width="276"]]
830
831 WS-K2: Bracket Kit for Pole installation
832
833
834 WSSC-K2 dimension document, please see:
835
836 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
837
838
839 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
840
841
842 [[image:1656055444035-179.png]]
843
844
845 (((
846 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
847 )))
848
849 (((
850 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
851 )))
852
853 (((
854 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
855 )))
856
857
858
859 === 6.2.1 Feature ===
860
861
862 * RS485 wind speed / direction sensor
863 * PC enclosure, resist corrosion
864
865
866 === 6.2.2 Specification ===
867
868
869 * Wind speed range: 0 ~~ 60m/s
870 * Wind direction range: 0 ~~ 360°
871 * Start wind speed: ≤0.3m/s
872 * Accuracy: ±(0.3+0.03V)m/s , ±1°
873 * Input Power: DC 5~~24v
874 * Interface: RS485
875 * Working Temperature: -30℃~70℃
876 * Working Humidity: <100% (no dewing)
877 * Power Consumption: 13mA ~~ 12v.
878 * Cable Length: 2 meters
879
880
881 === 6.2.3 Dimension ===
882
883
884 [[image:image-20220624152813-2.png]]
885
886
887 === 6.2.4 Pin Mapping ===
888
889
890 [[image:1656056281231-994.png]]
891
892
893 === 6.2.5  Angle Mapping ===
894
895
896 [[image:1656056303845-585.png]]
897
898
899 === 6.2.6  Installation Notice ===
900
901
902 (((
903 Do not power on while connect the cables. Double check the wiring before power on.
904 )))
905
906 (((
907 The sensor must be installed with below direction, towards North.
908
909
910 )))
911
912 [[image:image-20220624153901-3.png]]
913
914
915 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
916
917
918 (((
919 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
920 )))
921
922 (((
923 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
924 )))
925
926 (((
927 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
928 )))
929
930
931 === 6.3.1 Feature ===
932
933
934 * RS485 CO2, PM2.5, PM10 sensor
935 * NDIR to measure CO2 with Internal Temperature Compensation
936 * Laser Beam Scattering to PM2.5 and PM10
937
938
939 === 6.3.2 Specification ===
940
941
942 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
943 * CO2 resolution: 1ppm
944 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
945 * PM2.5/PM10 resolution: 1μg/m3
946 * Input Power: DC 7 ~~ 24v
947 * Preheat time: 3min
948 * Interface: RS485
949 * Working Temperature:
950 ** CO2: 0℃~50℃;
951 ** PM2.5/PM10: -30 ~~ 50℃
952 * Working Humidity:
953 ** PM2.5/PM10: 15~80%RH (no dewing)
954 ** CO2: 0~95%RH
955 * Power Consumption: 50mA@ 12v.
956
957
958 === 6.3.3 Dimension ===
959
960
961 [[image:1656056708366-230.png]]
962
963
964
965 === 6.3.4 Pin Mapping ===
966
967
968 [[image:1656056722648-743.png]]
969
970
971 === 6.3.5 Installation Notice ===
972
973
974 Do not power on while connect the cables. Double check the wiring before power on.
975
976
977 [[image:1656056751153-304.png]]
978
979
980 [[image:1656056766224-773.png]]
981
982
983 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
984
985
986 (((
987 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
988 )))
989
990 (((
991 WSS-04 has auto heating feature, this ensures measurement more reliable.
992 )))
993
994 (((
995 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
996 )))
997
998
999 === 6.4.1 Feature ===
1000
1001
1002 * RS485 Rain/Snow detect sensor
1003 * Surface heating to dry
1004 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1005
1006
1007 === 6.4.2 Specification ===
1008
1009
1010 * Detect if there is rain or snow
1011 * Input Power: DC 12 ~~ 24v
1012 * Interface: RS485
1013 * Working Temperature: -30℃~70℃
1014 * Working Humidity: 10~90%RH
1015 * Power Consumption:
1016 ** No heating: 12mA @ 12v,
1017 ** heating: 94ma @ 12v.
1018
1019
1020 === 6.4.3 Dimension ===
1021
1022
1023 [[image:1656056844782-155.png]]
1024
1025
1026 === 6.4.4 Pin Mapping ===
1027
1028
1029 [[image:1656056855590-754.png]]
1030
1031
1032 === 6.4.5 Installation Notice ===
1033
1034
1035 Do not power on while connect the cables. Double check the wiring before power on.
1036
1037
1038 (((
1039 Install with 15°degree.
1040 )))
1041
1042 [[image:1656056873783-780.png]]
1043
1044
1045 [[image:1656056883736-804.png]]
1046
1047
1048 === 6.4.6 Heating ===
1049
1050
1051 (((
1052 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1053 )))
1054
1055
1056 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1057
1058
1059 (((
1060 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1061 )))
1062
1063 (((
1064 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1065 )))
1066
1067
1068 === 6.5.1 Feature ===
1069
1070
1071 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1072
1073
1074 === 6.5.2 Specification ===
1075
1076
1077 * Input Power: DC 12 ~~ 24v
1078 * Interface: RS485
1079 * Temperature Sensor Spec:
1080 ** Range: -30 ~~ 70℃
1081 ** resolution 0.1℃
1082 ** Accuracy: ±0.5℃
1083 * Humidity Sensor Spec:
1084 ** Range: 0 ~~ 100% RH
1085 ** resolution 0.1 %RH
1086 ** Accuracy: 3% RH
1087 * Pressure Sensor Spec:
1088 ** Range: 10~1100hPa
1089 ** Resolution: 0.1hPa
1090 ** Accuracy: ±0.1hPa
1091 * Illuminate sensor:
1092 ** Range: 0~2/20/200kLux
1093 ** Resolution: 10 Lux
1094 ** Accuracy: ±3%FS
1095 * Working Temperature: -30℃~70℃
1096 * Working Humidity: 10~90%RH
1097 * Power Consumption: 4mA @ 12v
1098
1099
1100 === 6.5.3 Dimension ===
1101
1102
1103 [[image:1656057170639-522.png]]
1104
1105
1106 === 6.5.4 Pin Mapping ===
1107
1108
1109 [[image:1656057181899-910.png]]
1110
1111
1112 === 6.5.5 Installation Notice ===
1113
1114
1115 Do not power on while connect the cables. Double check the wiring before power on.
1116
1117 [[image:1656057199955-514.png]]
1118
1119
1120 [[image:1656057212438-475.png]]
1121
1122
1123 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1124
1125
1126 (((
1127 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1128 )))
1129
1130 (((
1131 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1132 )))
1133
1134 (((
1135 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1136 )))
1137
1138
1139 === 6.6.1 Feature ===
1140
1141
1142 * RS485 Total Solar Radiation sensor
1143 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1144 * Measure Reflected Radiation if sense area towards ground.
1145
1146
1147 === 6.6.2 Specification ===
1148
1149
1150 * Input Power: DC 5 ~~ 24v
1151 * Interface: RS485
1152 * Detect spectrum: 0.3~3μm(300~3000nm)
1153 * Measure strength range: 0~2000W/m2
1154 * Resolution: 0.1W/m2
1155 * Accuracy: ±3%
1156 * Yearly Stability: ≤±2%
1157 * Cosine response: ≤7% (@ Sun angle 10°)
1158 * Temperature Effect: ±2%(-10℃~40℃)
1159 * Working Temperature: -40℃~70℃
1160 * Working Humidity: 10~90%RH
1161 * Power Consumption: 4mA @ 12v
1162
1163
1164 === 6.6.3 Dimension ===
1165
1166
1167 [[image:1656057348695-898.png]]
1168
1169
1170 === 6.6.4 Pin Mapping ===
1171
1172
1173 [[image:1656057359343-744.png]]
1174
1175
1176 === 6.6.5 Installation Notice ===
1177
1178
1179 Do not power on while connect the cables. Double check the wiring before power on.
1180
1181
1182 [[image:1656057369259-804.png]]
1183
1184
1185 [[image:1656057377943-564.png]]
1186
1187
1188 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1189
1190
1191 (((
1192 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1193 )))
1194
1195 (((
1196 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1197 )))
1198
1199 (((
1200 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1201 )))
1202
1203
1204 === 6.7.1 Feature ===
1205
1206
1207 (((
1208 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1209 )))
1210
1211 (((
1212 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1213 )))
1214
1215
1216 === 6.7.2 Specification ===
1217
1218
1219 * Input Power: DC 5 ~~ 24v
1220 * Interface: RS485
1221 * Response Spectrum: 400~700nm
1222 * Measure range: 0~2500μmol/m2•s
1223 * Resolution: 1μmol/m2•s
1224 * Accuracy: ±2%
1225 * Yearly Stability: ≤±2%
1226 * Working Temperature: -30℃~75℃
1227 * Working Humidity: 10~90%RH
1228 * Power Consumption: 3mA @ 12v
1229
1230
1231 === 6.7.3 Dimension ===
1232
1233
1234 [[image:1656057538793-888.png]]
1235
1236
1237 === 6.7.4 Pin Mapping ===
1238
1239
1240 [[image:1656057548116-203.png]]
1241
1242
1243 === 6.7.5 Installation Notice ===
1244
1245
1246 Do not power on while connect the cables. Double check the wiring before power on.
1247
1248
1249 [[image:1656057557191-895.png]]
1250
1251
1252 [[image:1656057565783-251.png]]
1253
1254
1255 = 7. FAQ =
1256
1257 == 7.1 What else do I need to purchase to build Weather Station? ==
1258
1259
1260 Below is the installation photo and structure:
1261
1262
1263 [[image:1656057598349-319.png]]
1264
1265
1266 [[image:1656057608049-693.png]]
1267
1268
1269 == 7.2 How to upgrade firmware for WSC1-L? ==
1270
1271
1272 (((
1273 Firmware Location & Change log:
1274
1275 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1276 )))
1277
1278
1279 (((
1280 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1281 )))
1282
1283
1284 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1285
1286
1287 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1288
1289
1290 == 7.4 Can I add my weather sensors? ==
1291
1292
1293 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1294
1295
1296 = 8. Trouble Shooting =
1297
1298 == 8.1 AT Command input doesn't work ==
1299
1300
1301 (((
1302 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1303 )))
1304
1305
1306 = 9. Order Info =
1307
1308 == 9.1 Main Process Unit ==
1309
1310
1311 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1312
1313 (% style="color:blue" %)**XX**(%%): The default frequency band
1314
1315 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1316 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1317 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1318 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1319 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1320 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1321 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1322 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1323
1324
1325 == 9.2 Sensors ==
1326
1327
1328 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1329 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1330 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1331 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1332 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1333 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1334 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1335 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1336 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1337 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1338
1339
1340 = 10. Support =
1341
1342
1343 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1344
1345 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1346
1347
1348 = 11. Appendix I: Field Installation Photo =
1349
1350
1351 [[image:1656058346362-132.png||height="685" width="732"]]
1352
1353 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1354
1355
1356
1357 (% style="color:blue" %)**Wind Speed/Direction**
1358
1359 [[image:1656058373174-421.png||height="356" width="731"]]
1360
1361
1362
1363 (% style="color:blue" %)**Total Solar Radiation sensor**
1364
1365 [[image:1656058397364-282.png||height="453" width="732"]]
1366
1367
1368
1369 (% style="color:blue" %)**PAR Sensor**
1370
1371 [[image:1656058416171-615.png]]
1372
1373
1374
1375 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1376
1377 [[image:1656058441194-827.png||height="672" width="523"]]
1378
1379
1380
1381 (% style="color:blue" %)**Rain / Snow Detect**
1382
1383 [[image:1656058451456-166.png]]
1384
1385
1386
1387 (% style="color:blue" %)**Rain Gauge**
1388
1389 [[image:1656058463455-569.png||height="499" width="550"]]
1390
1391
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0