Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84 == 2.2 How it works? ==
85
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104
105
106 == 2.3 Example to use for LoRaWAN network ==
107
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111
112 [[image:1656042612899-422.png]]
113
114
115
116 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
117
118
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
120
121 Each WSC1-L is shipped with a sticker with the default device EUI as below:
122
123 [[image:image-20220624115043-1.jpeg]]
124
125
126 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
127
128 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129
130 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
131
132 **Add APP EUI in the application.**
133
134 [[image:1656042662694-311.png]]
135
136 [[image:1656042673910-429.png]]
137
138
139
140
141 **Choose Manually to add WSC1-L**
142
143 [[image:1656042695755-103.png]]
144
145
146
147 **Add APP KEY and DEV EUI**
148
149 [[image:1656042723199-746.png]]
150
151
152
153 (((
154 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
155 )))
156
157
158 [[image:1656042745346-283.png]]
159
160
161 == 2.4 Uplink Payload ==
162
163
164 Uplink payloads include two types: Valid Sensor Value and other status / control command.
165
166 * Valid Sensor Value: Use FPORT=2
167 * Other control command: Use FPORT other than 2.
168
169
170
171 === 2.4.1 Uplink FPORT~=5, Device Status ===
172
173
174 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
175
176
177 (((
178 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
179 )))
180
181 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
182 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
183 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
184
185 [[image:1656043061044-343.png]]
186
187
188 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
189
190
191 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
192
193 For WSC1-L, this value is 0x0D.
194
195
196 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
197
198 0x0100, Means: v1.0.0 version.
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
225
226 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
227
228
229 ==== (% style="color:#037691" %)**BAT:**(%%) ====
230
231 (((
232 shows the battery voltage for WSC1-L MCU.
233 )))
234
235 (((
236 Ex1: 0x0BD6/1000 = 3.03 V
237 )))
238
239
240 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
241
242 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
243 |Byte3|Byte2|Byte1
244
245 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
246
247 [[image:image-20220624134713-1.png]]
248
249
250 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
251
252 External sensors detected by WSC1-L include :
253
254 custom sensor A1,
255
256 PAR sensor (WSS-07),
257
258 Total Solar Radiation sensor (WSS-06),
259
260 CO2/PM2.5/PM10 (WSS-03),
261
262 Wind Speed/Direction (WSS-02)
263
264
265 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
266
267 (% style="color:#037691" %)**Downlink:0x26 01**
268
269 [[image:1656049673488-415.png]]
270
271
272 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
273
274
275 (((
276 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
277 )))
278
279 (((
280 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
281 )))
282
283
284 (((
285 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
286 )))
287
288
289 (% style="color:#4472c4" %)** Uplink Payload**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
292 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
293
294 (% style="color:#4472c4" %)** Sensor Segment Define**:
295
296 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
297 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
298
299 (% style="color:#4472c4" %)**Sensor Type Table:**
300
301 [[image:image-20220706154434-1.png]]
302
303
304 (((
305 Below is an example payload:  [[image:image-20220624140615-3.png]]
306 )))
307
308 (((
309
310 )))
311
312 (((
313 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
314 )))
315
316 * (((
317 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
318 )))
319
320 (((
321 Uplink 1:  [[image:image-20220624140735-4.png]]
322 )))
323
324 (((
325
326 )))
327
328 (((
329 Uplink 2:  [[image:image-20220624140842-5.png]]
330 )))
331
332 (((
333
334 )))
335
336 * (((
337 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
338 )))
339
340 (((
341 Uplink 1:  [[image:image-20220624141025-6.png]]
342 )))
343
344 (((
345
346 )))
347
348 Uplink 2:  [[image:image-20220624141100-7.png]]
349
350
351 === 2.4.3 Decoder in TTN V3 ===
352
353
354 (((
355 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
356 )))
357
358 (((
359 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
360 )))
361
362 (((
363
364 )))
365
366 (((
367 and put as below:
368
369
370 )))
371
372 [[image:1656051152438-578.png]]
373
374
375 == 2.5 Show data on Application Server ==
376
377
378 (((
379 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
380 )))
381
382 (((
383
384 )))
385
386 (((
387 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
388 )))
389
390 (((
391 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
392 )))
393
394 [[image:1656051197172-131.png]]
395
396
397
398 **Add TagoIO:**
399
400 [[image:1656051223585-631.png]]
401
402
403
404 **Authorization:**
405
406 [[image:1656051248318-368.png]]
407
408
409
410 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
411
412
413 [[image:1656051277767-168.png]]
414
415
416 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
417
418
419 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
420
421 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
422 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
423
424 There are two kinds of commands to configure WSC1-L, they are:
425
426 * (% style="color:#4472c4" %)**General Commands**.
427
428 These commands are to configure:
429
430 * General system settings like: uplink interval.
431 * LoRaWAN protocol & radio related command.
432
433 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
434
435 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
436
437
438 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
439
440 These commands only valid for WSC1-L, as below:
441
442
443 == 3.1 Set Transmit Interval Time ==
444
445
446 Feature: Change LoRaWAN End Node Transmit Interval.
447
448 (% style="color:#037691" %)**AT Command: AT+TDC**
449
450 [[image:image-20220624142619-8.png]]
451
452
453 (% style="color:#037691" %)**Downlink Command: 0x01**
454
455 Format: Command Code (0x01) followed by 3 bytes time value.
456
457 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
458
459 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
460 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
461
462 == 3.2 Set Emergency Mode ==
463
464
465 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
466
467 (% style="color:#037691" %)**AT Command:**
468
469 [[image:image-20220624142956-9.png]]
470
471
472 (% style="color:#037691" %)**Downlink Command:**
473
474 * 0xE101     Same as: AT+ALARMMOD=1
475 * 0xE100     Same as: AT+ALARMMOD=0
476
477 == 3.3 Add or Delete RS485 Sensor ==
478
479
480 (((
481 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
482 )))
483
484 (((
485 (% style="color:#037691" %)**AT Command: **
486 )))
487
488 (((
489 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
490 )))
491
492 * (((
493 Type_Code range:  A1 ~~ A4
494 )))
495 * (((
496 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
497 )))
498 * (((
499 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
500 )))
501 * (((
502 Read_Length:  RS485 response frame length supposed to receive. Max can receive
503 )))
504 * (((
505 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
506 )))
507 * (((
508 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
509 )))
510 * (((
511 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
512 )))
513
514 (((
515 **Example:**
516 )))
517
518 (((
519 User need to change external sensor use the type code as address code.
520 )))
521
522 (((
523 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
524 )))
525
526 [[image:image-20220624143553-10.png]]
527
528
529 The response frame of the sensor is as follows:
530
531 [[image:image-20220624143618-11.png]]
532
533
534 **Then the following parameters should be:**
535
536 * Address_Code range: A1
537 * Query_Length: 8
538 * Query_Command: A103000000019CAA
539 * Read_Length: 8
540 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
541 * has_CRC: 1
542 * timeout: 1500 (Fill in the test according to the actual situation)
543
544 **So the input command is:**
545
546 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
547
548
549 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
550
551 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
552 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
553 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
554
555 **Related commands:**
556
557 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
558
559 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
560
561
562 (% style="color:#037691" %)**Downlink Command:  **
563
564 **delete custom sensor A1:**
565
566 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
567
568 **Remove all custom sensors**
569
570 * 0xE5FF  
571
572 == 3.4 RS485 Test Command ==
573
574
575 (% style="color:#037691" %)**AT Command:**
576
577 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
578 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
579 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
580 (((
581 Send command to 485 sensor
582 )))
583
584 (((
585 Range : no more than 10 bytes
586 )))
587 )))|(% style="width:85px" %)OK
588
589 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
590
591 AT+RSWRITE=0103000001840A
592
593
594 (% style="color:#037691" %)**Downlink Command:**
595
596 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
597
598 == 3.5 RS485 response timeout ==
599
600
601 Feature: Set or get extended time to receive 485 sensor data.
602
603 (% style="color:#037691" %)**AT Command:**
604
605 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
606 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
607 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
608 (((
609 Set response timeout to:
610 )))
611
612 (((
613 Range : 0~~10000
614 )))
615 )))|(% style="width:85px" %)OK
616
617 (% style="color:#037691" %)**Downlink Command:**
618
619 Format: Command Code (0xE0) followed by 3 bytes time value.
620
621 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
622
623 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
624 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
625
626 == 3.6 Set Sensor Type ==
627
628
629 (((
630 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
631 )))
632
633 (((
634 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
635 )))
636
637 [[image:image-20220624144904-12.png]]
638
639
640 (% style="color:#037691" %)**AT Command:**
641
642 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
643 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
644 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
645
646 Eg: The setting command **AT+STYPE=80221** means:
647
648 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
649 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
650 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
651 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
652 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
653 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
654 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
655
656 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
657
658
659 (% style="color:#037691" %)**Downlink Command:**
660
661 * 0xE400080221  Same as: AT+STYPE=80221
662
663 (% style="color:red" %)**Note:**
664
665 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
666
667
668 = 4. Power consumption and battery =
669
670 == 4.1 Total Power Consumption ==
671
672
673 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
674
675
676 == 4.2 Reduce power consumption ==
677
678
679 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
680
681
682 == 4.3 Battery ==
683
684
685 (((
686 All sensors are only power by external power source. If external power source is off. All sensor won't work.
687 )))
688
689 (((
690 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
691 )))
692
693
694 = 5. Main Process Unit WSC1-L =
695
696 == 5.1 Features ==
697
698
699 * Wall Attachable.
700 * LoRaWAN v1.0.3 Class A protocol.
701 * RS485 / Modbus protocol
702 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
703 * AT Commands to change parameters
704 * Remote configure parameters via LoRaWAN Downlink
705 * Firmware upgradable via program port
706 * Powered by external 12v battery
707 * Back up rechargeable 1000mAh battery
708 * IP Rating: IP65
709 * Support default sensors or 3rd party RS485 sensors
710
711 == 5.2 Power Consumption ==
712
713
714 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
715
716
717 == 5.3 Storage & Operation Temperature ==
718
719
720 -20°C to +60°C
721
722
723 == 5.4 Pin Mapping ==
724
725
726 [[image:1656054149793-239.png]]
727
728
729 == 5.5 Mechanical ==
730
731
732 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
733
734
735 == 5.6 Connect to RS485 Sensors ==
736
737
738 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
739
740
741 [[image:1656054389031-379.png]]
742
743
744 Hardware Design for the Converter Board please see:
745
746 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
747
748
749 = 6. Weather Sensors =
750
751 == 6.1 Rain Gauge ~-~- WSS-01 ==
752
753
754 (((
755 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
756 )))
757
758 (((
759 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
760 )))
761
762 (((
763 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
764 )))
765
766 (((
767 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
768 )))
769
770 (((
771 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
772 )))
773
774
775 === 6.1.1 Feature ===
776
777
778 * RS485 Rain Gauge
779 * Small dimension, easy to install
780 * Vents under funnel, avoid leaf or other things to avoid rain flow.
781 * ABS enclosure.
782 * Horizontal adjustable.
783
784 === 6.1.2 Specification ===
785
786
787 * Resolution: 0.2mm
788 * Accuracy: ±3%
789 * Range: 0 ~~ 100mm
790 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
791 * Input Power: DC 5~~24v
792 * Interface: RS485
793 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
794 * Working Humidity: <100% (no dewing)
795 * Power Consumption: 4mA @ 12v.
796
797 === 6.1.3 Dimension ===
798
799
800 [[image:1656054957406-980.png]]
801
802
803 === 6.1.4 Pin Mapping ===
804
805
806 [[image:1656054972828-692.png]]
807
808
809 === 6.1.5 Installation Notice ===
810
811
812 (((
813 Do not power on while connect the cables. Double check the wiring before power on.
814 )))
815
816 (((
817 Installation Photo as reference:
818 )))
819
820
821 (((
822 (% style="color:#4472c4" %)** Install on Ground:**
823 )))
824
825 (((
826 WSS-01 Rain Gauge include screws so can install in ground directly .
827 )))
828
829
830 (((
831 (% style="color:#4472c4" %)** Install on pole:**
832 )))
833
834 (((
835 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
836 )))
837
838 [[image:image-20220624152218-1.png||height="526" width="276"]]
839
840 WS-K2: Bracket Kit for Pole installation
841
842
843 WSSC-K2 dimension document, please see:
844
845 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
846
847
848 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
849
850
851 [[image:1656055444035-179.png]]
852
853
854 (((
855 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
856 )))
857
858 (((
859 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
860 )))
861
862 (((
863 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
864 )))
865
866
867
868 === 6.2.1 Feature ===
869
870
871 * RS485 wind speed / direction sensor
872 * PC enclosure, resist corrosion
873
874 === 6.2.2 Specification ===
875
876
877 * Wind speed range: 0 ~~ 60m/s
878 * Wind direction range: 0 ~~ 360°
879 * Start wind speed: ≤0.3m/s
880 * Accuracy: ±(0.3+0.03V)m/s , ±1°
881 * Input Power: DC 5~~24v
882 * Interface: RS485
883 * Working Temperature: -30℃~70℃
884 * Working Humidity: <100% (no dewing)
885 * Power Consumption: 13mA ~~ 12v.
886 * Cable Length: 2 meters
887
888 === 6.2.3 Dimension ===
889
890
891 [[image:image-20220624152813-2.png]]
892
893
894 === 6.2.4 Pin Mapping ===
895
896
897 [[image:1656056281231-994.png]]
898
899
900 === 6.2.5  Angle Mapping ===
901
902
903 [[image:1656056303845-585.png]]
904
905
906 === 6.2.6  Installation Notice ===
907
908
909 (((
910 Do not power on while connect the cables. Double check the wiring before power on.
911 )))
912
913 (((
914 The sensor must be installed with below direction, towards North.
915
916
917 )))
918
919 [[image:image-20220624153901-3.png]]
920
921
922 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
923
924
925 (((
926 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
927 )))
928
929 (((
930 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
931 )))
932
933 (((
934 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
935 )))
936
937
938 === 6.3.1 Feature ===
939
940
941 * RS485 CO2, PM2.5, PM10 sensor
942 * NDIR to measure CO2 with Internal Temperature Compensation
943 * Laser Beam Scattering to PM2.5 and PM10
944
945 === 6.3.2 Specification ===
946
947
948 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
949 * CO2 resolution: 1ppm
950 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
951 * PM2.5/PM10 resolution: 1μg/m3
952 * Input Power: DC 7 ~~ 24v
953 * Preheat time: 3min
954 * Interface: RS485
955 * Working Temperature:
956 ** CO2: 0℃~50℃;
957 ** PM2.5/PM10: -30 ~~ 50℃
958 * Working Humidity:
959 ** PM2.5/PM10: 15~80%RH (no dewing)
960 ** CO2: 0~95%RH
961 * Power Consumption: 50mA@ 12v.
962
963 === 6.3.3 Dimension ===
964
965
966 [[image:1656056708366-230.png]]
967
968
969
970 === 6.3.4 Pin Mapping ===
971
972
973 [[image:1656056722648-743.png]]
974
975
976 === 6.3.5 Installation Notice ===
977
978
979 Do not power on while connect the cables. Double check the wiring before power on.
980
981
982 [[image:1656056751153-304.png]]
983
984
985 [[image:1656056766224-773.png]]
986
987
988 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
989
990
991 (((
992 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
993 )))
994
995 (((
996 WSS-04 has auto heating feature, this ensures measurement more reliable.
997 )))
998
999 (((
1000 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1001 )))
1002
1003
1004 === 6.4.1 Feature ===
1005
1006
1007 * RS485 Rain/Snow detect sensor
1008 * Surface heating to dry
1009 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1010
1011 === 6.4.2 Specification ===
1012
1013
1014 * Detect if there is rain or snow
1015 * Input Power: DC 12 ~~ 24v
1016 * Interface: RS485
1017 * Working Temperature: -30℃~70℃
1018 * Working Humidity: 10~90%RH
1019 * Power Consumption:
1020 ** No heating: 12mA @ 12v,
1021 ** heating: 94ma @ 12v.
1022
1023 === 6.4.3 Dimension ===
1024
1025
1026 [[image:1656056844782-155.png]]
1027
1028
1029 === 6.4.4 Pin Mapping ===
1030
1031
1032 [[image:1656056855590-754.png]]
1033
1034
1035 === 6.4.5 Installation Notice ===
1036
1037
1038 Do not power on while connect the cables. Double check the wiring before power on.
1039
1040
1041 (((
1042 Install with 15°degree.
1043 )))
1044
1045 [[image:1656056873783-780.png]]
1046
1047
1048 [[image:1656056883736-804.png]]
1049
1050
1051 === 6.4.6 Heating ===
1052
1053
1054 (((
1055 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1056 )))
1057
1058
1059 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1060
1061
1062 (((
1063 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1064 )))
1065
1066 (((
1067 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1068 )))
1069
1070
1071 === 6.5.1 Feature ===
1072
1073
1074 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1075
1076 === 6.5.2 Specification ===
1077
1078
1079 * Input Power: DC 12 ~~ 24v
1080 * Interface: RS485
1081 * Temperature Sensor Spec:
1082 ** Range: -30 ~~ 70℃
1083 ** resolution 0.1℃
1084 ** Accuracy: ±0.5℃
1085 * Humidity Sensor Spec:
1086 ** Range: 0 ~~ 100% RH
1087 ** resolution 0.1 %RH
1088 ** Accuracy: 3% RH
1089 * Pressure Sensor Spec:
1090 ** Range: 10~1100hPa
1091 ** Resolution: 0.1hPa
1092 ** Accuracy: ±0.1hPa
1093 * Illuminate sensor:
1094 ** Range: 0~2/20/200kLux
1095 ** Resolution: 10 Lux
1096 ** Accuracy: ±3%FS
1097 * Working Temperature: -30℃~70℃
1098 * Working Humidity: 10~90%RH
1099 * Power Consumption: 4mA @ 12v
1100
1101 === 6.5.3 Dimension ===
1102
1103
1104 [[image:1656057170639-522.png]]
1105
1106
1107 === 6.5.4 Pin Mapping ===
1108
1109
1110 [[image:1656057181899-910.png]]
1111
1112
1113 === 6.5.5 Installation Notice ===
1114
1115
1116 Do not power on while connect the cables. Double check the wiring before power on.
1117
1118 [[image:1656057199955-514.png]]
1119
1120
1121 [[image:1656057212438-475.png]]
1122
1123
1124 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1125
1126
1127 (((
1128 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1129 )))
1130
1131 (((
1132 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1133 )))
1134
1135 (((
1136 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1137 )))
1138
1139
1140 === 6.6.1 Feature ===
1141
1142
1143 * RS485 Total Solar Radiation sensor
1144 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1145 * Measure Reflected Radiation if sense area towards ground.
1146
1147 === 6.6.2 Specification ===
1148
1149
1150 * Input Power: DC 5 ~~ 24v
1151 * Interface: RS485
1152 * Detect spectrum: 0.3~3μm(300~3000nm)
1153 * Measure strength range: 0~2000W/m2
1154 * Resolution: 0.1W/m2
1155 * Accuracy: ±3%
1156 * Yearly Stability: ≤±2%
1157 * Cosine response: ≤7% (@ Sun angle 10°)
1158 * Temperature Effect: ±2%(-10℃~40℃)
1159 * Working Temperature: -40℃~70℃
1160 * Working Humidity: 10~90%RH
1161 * Power Consumption: 4mA @ 12v
1162
1163 === 6.6.3 Dimension ===
1164
1165
1166 [[image:1656057348695-898.png]]
1167
1168
1169 === 6.6.4 Pin Mapping ===
1170
1171
1172 [[image:1656057359343-744.png]]
1173
1174
1175 === 6.6.5 Installation Notice ===
1176
1177
1178 Do not power on while connect the cables. Double check the wiring before power on.
1179
1180
1181 [[image:1656057369259-804.png]]
1182
1183
1184 [[image:1656057377943-564.png]]
1185
1186
1187 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1188
1189
1190 (((
1191 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1192 )))
1193
1194 (((
1195 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1196 )))
1197
1198 (((
1199 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1200 )))
1201
1202
1203 === 6.7.1 Feature ===
1204
1205
1206 (((
1207 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1208 )))
1209
1210 (((
1211 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1212 )))
1213
1214
1215 === 6.7.2 Specification ===
1216
1217
1218 * Input Power: DC 5 ~~ 24v
1219 * Interface: RS485
1220 * Response Spectrum: 400~700nm
1221 * Measure range: 0~2500μmol/m2•s
1222 * Resolution: 1μmol/m2•s
1223 * Accuracy: ±2%
1224 * Yearly Stability: ≤±2%
1225 * Working Temperature: -30℃~75℃
1226 * Working Humidity: 10~90%RH
1227 * Power Consumption: 3mA @ 12v
1228
1229 === 6.7.3 Dimension ===
1230
1231
1232 [[image:1656057538793-888.png]]
1233
1234
1235 === 6.7.4 Pin Mapping ===
1236
1237
1238 [[image:1656057548116-203.png]]
1239
1240
1241 === 6.7.5 Installation Notice ===
1242
1243
1244 Do not power on while connect the cables. Double check the wiring before power on.
1245
1246
1247 [[image:1656057557191-895.png]]
1248
1249
1250 [[image:1656057565783-251.png]]
1251
1252
1253 = 7. FAQ =
1254
1255 == 7.1 What else do I need to purchase to build Weather Station? ==
1256
1257
1258 Below is the installation photo and structure:
1259
1260
1261 [[image:1656057598349-319.png]]
1262
1263
1264 [[image:1656057608049-693.png]]
1265
1266
1267 == 7.2 How to upgrade firmware for WSC1-L? ==
1268
1269
1270 (((
1271 Firmware Location & Change log:
1272
1273 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1274 )))
1275
1276 (((
1277
1278 )))
1279
1280 (((
1281 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1282 )))
1283
1284
1285 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1286
1287
1288 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1289
1290
1291 == 7.4 Can I add my weather sensors? ==
1292
1293
1294 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1295
1296
1297 = 8. Trouble Shooting =
1298
1299 == 8.1 AT Command input doesn't work ==
1300
1301
1302 (((
1303 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1304 )))
1305
1306
1307 = 9. Order Info =
1308
1309 == 9.1 Main Process Unit ==
1310
1311
1312 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1313
1314 (% style="color:blue" %)**XX**(%%): The default frequency band
1315
1316 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1317 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1318 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1319 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1320 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1321 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1322 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1323 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1324
1325 == 9.2 Sensors ==
1326
1327
1328 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1329 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1330 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1331 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1332 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1333 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1334 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1335 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1336 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1337 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1338
1339 = 10. Support =
1340
1341
1342 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1343 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1344
1345 = 11. Appendix I: Field Installation Photo =
1346
1347
1348 [[image:1656058346362-132.png||height="685" width="732"]]
1349
1350 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1351
1352
1353
1354 (% style="color:blue" %)**Wind Speed/Direction**
1355
1356 [[image:1656058373174-421.png||height="356" width="731"]]
1357
1358
1359
1360 (% style="color:blue" %)**Total Solar Radiation sensor**
1361
1362 [[image:1656058397364-282.png||height="453" width="732"]]
1363
1364
1365
1366 (% style="color:blue" %)**PAR Sensor**
1367
1368 [[image:1656058416171-615.png]]
1369
1370
1371
1372 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1373
1374 [[image:1656058441194-827.png||height="672" width="523"]]
1375
1376
1377
1378 (% style="color:blue" %)**Rain / Snow Detect**
1379
1380 [[image:1656058451456-166.png]]
1381
1382
1383
1384 (% style="color:blue" %)**Rain Gauge**
1385
1386 [[image:1656058463455-569.png||height="499" width="550"]]
1387
1388
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0