Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83 == 2.2 How it works? ==
84
85
86 (((
87 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
88 )))
89
90
91 (((
92 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
93 )))
94
95 [[image:1656042192857-709.png]]
96
97
98 (% style="color:red" %)**Notice:**
99
100 1. WSC1-L will auto scan available weather sensors when power on or reboot.
101 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
102
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20220624115043-1.jpeg]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
127
128 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
129
130 **Add APP EUI in the application.**
131
132 [[image:1656042662694-311.png]]
133
134 [[image:1656042673910-429.png]]
135
136
137
138
139 **Choose Manually to add WSC1-L**
140
141 [[image:1656042695755-103.png]]
142
143
144
145 **Add APP KEY and DEV EUI**
146
147 [[image:1656042723199-746.png]]
148
149
150
151 (((
152 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
153 )))
154
155
156 [[image:1656042745346-283.png]]
157
158
159 == 2.4 Uplink Payload ==
160
161
162 Uplink payloads include two types: Valid Sensor Value and other status / control command.
163
164 * Valid Sensor Value: Use FPORT=2
165 * Other control command: Use FPORT other than 2.
166
167
168 === 2.4.1 Uplink FPORT~=5, Device Status ===
169
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
189
190 For WSC1-L, this value is 0x0D.
191
192
193 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
194
195 0x0100, Means: v1.0.0 version.
196
197
198 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
199
200 *0x01: EU868
201
202 *0x02: US915
203
204 *0x03: IN865
205
206 *0x04: AU915
207
208 *0x05: KZ865
209
210 *0x06: RU864
211
212 *0x07: AS923
213
214 *0x08: AS923-1
215
216 *0x09: AS923-2
217
218 *0x0a: AS923-3
219
220
221 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
222
223 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
224
225
226 ==== (% style="color:#037691" %)**BAT:**(%%) ====
227
228 (((
229 shows the battery voltage for WSC1-L MCU.
230 )))
231
232 (((
233 Ex1: 0x0BD6/1000 = 3.03 V
234 )))
235
236
237 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
238
239 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
240 |Byte3|Byte2|Byte1
241
242 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
243
244 [[image:image-20220624134713-1.png]]
245
246
247 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
248
249 External sensors detected by WSC1-L include :
250
251 custom sensor A1,
252
253 PAR sensor (WSS-07),
254
255 Total Solar Radiation sensor (WSS-06),
256
257 CO2/PM2.5/PM10 (WSS-03),
258
259 Wind Speed/Direction (WSS-02)
260
261
262 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
263
264 (% style="color:#037691" %)**Downlink:0x26 01**
265
266 [[image:1656049673488-415.png]]
267
268
269 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
270
271
272 (((
273 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
274 )))
275
276 (((
277 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
278 )))
279
280
281 (((
282 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
283 )))
284
285
286 (% style="color:#4472c4" %)** Uplink Payload**:
287
288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
289 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
290
291 (% style="color:#4472c4" %)** Sensor Segment Define**:
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
294 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
295
296 (% style="color:#4472c4" %)**Sensor Type Table:**
297
298 [[image:image-20220706154434-1.png]]
299
300
301 (((
302 Below is an example payload:  [[image:image-20220624140615-3.png]]
303 )))
304
305 (((
306
307 )))
308
309 (((
310 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
311 )))
312
313 * (((
314 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
315 )))
316
317 (((
318 Uplink 1:  [[image:image-20220624140735-4.png]]
319 )))
320
321 (((
322
323 )))
324
325 (((
326 Uplink 2:  [[image:image-20220624140842-5.png]]
327 )))
328
329 (((
330
331 )))
332
333 * (((
334 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
335 )))
336
337 (((
338 Uplink 1:  [[image:image-20220624141025-6.png]]
339 )))
340
341 (((
342
343 )))
344
345 Uplink 2:  [[image:image-20220624141100-7.png]]
346
347
348 === 2.4.3 Decoder in TTN V3 ===
349
350
351 (((
352 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
353 )))
354
355 (((
356 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
357 )))
358
359 (((
360
361 )))
362
363 (((
364 and put as below:
365
366
367 )))
368
369 [[image:1656051152438-578.png]]
370
371
372 == 2.5 Show data on Application Server ==
373
374
375 (((
376 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
377 )))
378
379 (((
380
381 )))
382
383 (((
384 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
385 )))
386
387 (((
388 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
389 )))
390
391 [[image:1656051197172-131.png]]
392
393
394
395 **Add TagoIO:**
396
397 [[image:1656051223585-631.png]]
398
399
400
401 **Authorization:**
402
403 [[image:1656051248318-368.png]]
404
405
406
407 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
408
409
410 [[image:1656051277767-168.png]]
411
412
413 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
414
415
416 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
417
418 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
419 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
420
421 There are two kinds of commands to configure WSC1-L, they are:
422
423 * (% style="color:#4472c4" %)**General Commands**.
424
425 These commands are to configure:
426
427 * General system settings like: uplink interval.
428 * LoRaWAN protocol & radio related command.
429
430 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
431
432 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
433
434
435 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
436
437 These commands only valid for WSC1-L, as below:
438
439
440 == 3.1 Set Transmit Interval Time ==
441
442
443 Feature: Change LoRaWAN End Node Transmit Interval.
444
445 (% style="color:#037691" %)**AT Command: AT+TDC**
446
447 [[image:image-20220624142619-8.png]]
448
449
450 (% style="color:#037691" %)**Downlink Command: 0x01**
451
452 Format: Command Code (0x01) followed by 3 bytes time value.
453
454 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
455
456 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
457 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
458
459
460 == 3.2 Set Emergency Mode ==
461
462
463 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
464
465 (% style="color:#037691" %)**AT Command:**
466
467 [[image:image-20220624142956-9.png]]
468
469
470 (% style="color:#037691" %)**Downlink Command:**
471
472 * 0xE101     Same as: AT+ALARMMOD=1
473 * 0xE100     Same as: AT+ALARMMOD=0
474
475
476 == 3.3 Add or Delete RS485 Sensor ==
477
478
479 (((
480 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
481 )))
482
483 (((
484 (% style="color:#037691" %)**AT Command: **
485 )))
486
487 (((
488 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
489 )))
490
491 * (((
492 Type_Code range:  A1 ~~ A4
493 )))
494 * (((
495 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
496 )))
497 * (((
498 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
499 )))
500 * (((
501 Read_Length:  RS485 response frame length supposed to receive. Max can receive
502 )))
503 * (((
504 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
505 )))
506 * (((
507 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
508 )))
509 * (((
510 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
511 )))
512
513 (((
514 **Example:**
515 )))
516
517 (((
518 User need to change external sensor use the type code as address code.
519 )))
520
521 (((
522 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
523 )))
524
525 [[image:image-20220624143553-10.png]]
526
527
528 The response frame of the sensor is as follows:
529
530 [[image:image-20220624143618-11.png]]
531
532
533 **Then the following parameters should be:**
534
535 * Address_Code range: A1
536 * Query_Length: 8
537 * Query_Command: A103000000019CAA
538 * Read_Length: 8
539 * Valid_Data: 23 (Indicates that the data length is 2 bytes, starting from the 3th byte)
540 * has_CRC: 1
541 * timeout: 1500 (Fill in the test according to the actual situation)
542
543 **So the input command is:**
544
545 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
546
547
548 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
549
550 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
551 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
552 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
553
554 **Related commands:**
555
556 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
557
558 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
559
560
561 (% style="color:#037691" %)**Downlink Command:  **
562
563 **delete custom sensor A1:**
564
565 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
566
567 **Remove all custom sensors**
568
569 * 0xE5FF  
570
571
572 == 3.4 RS485 Test Command ==
573
574
575 (% style="color:#037691" %)**AT Command:**
576
577 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
578 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
579 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
580 (((
581 Send command to 485 sensor
582 )))
583
584 (((
585 Range : no more than 10 bytes
586 )))
587 )))|(% style="width:85px" %)OK
588
589 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
590
591 AT+RSWRITE=0103000001840A
592
593
594 (% style="color:#037691" %)**Downlink Command:**
595
596 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
597
598
599 == 3.5 RS485 response timeout ==
600
601
602 Feature: Set or get extended time to receive 485 sensor data.
603
604 (% style="color:#037691" %)**AT Command:**
605
606 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
607 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
608 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
609 (((
610 Set response timeout to:
611 )))
612
613 (((
614 Range : 0~~10000
615 )))
616 )))|(% style="width:85px" %)OK
617
618 (% style="color:#037691" %)**Downlink Command:**
619
620 Format: Command Code (0xE0) followed by 3 bytes time value.
621
622 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
623
624 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
625 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
626
627
628 == 3.6 Set Sensor Type ==
629
630
631 (((
632 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
633 )))
634
635 (((
636 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
637 )))
638
639 [[image:image-20220624144904-12.png]]
640
641
642 (% style="color:#037691" %)**AT Command:**
643
644 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
645 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
646 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
647
648 Eg: The setting command **AT+STYPE=80221** means:
649
650 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
651 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
652 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
653 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
654 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
655 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
656 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
657
658 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
659
660
661 (% style="color:#037691" %)**Downlink Command:**
662
663 * 0xE400080221  Same as: AT+STYPE=80221
664
665 (% style="color:red" %)**Note:**
666
667 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
668
669
670 = 4. Power consumption and battery =
671
672 == 4.1 Total Power Consumption ==
673
674
675 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
676
677
678 == 4.2 Reduce power consumption ==
679
680
681 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
682
683
684 == 4.3 Battery ==
685
686
687 (((
688 All sensors are only power by external power source. If external power source is off. All sensor won't work.
689 )))
690
691 (((
692 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
693 )))
694
695
696 = 5. Main Process Unit WSC1-L =
697
698 == 5.1 Features ==
699
700
701 * Wall Attachable.
702 * LoRaWAN v1.0.3 Class A protocol.
703 * RS485 / Modbus protocol
704 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
705 * AT Commands to change parameters
706 * Remote configure parameters via LoRaWAN Downlink
707 * Firmware upgradable via program port
708 * Powered by external 12v battery
709 * Back up rechargeable 1000mAh battery
710 * IP Rating: IP65
711 * Support default sensors or 3rd party RS485 sensors
712
713
714 == 5.2 Power Consumption ==
715
716
717 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
718
719
720 == 5.3 Storage & Operation Temperature ==
721
722
723 -20°C to +60°C
724
725
726 == 5.4 Pin Mapping ==
727
728
729 [[image:1656054149793-239.png]]
730
731
732 == 5.5 Mechanical ==
733
734
735 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
736
737
738 == 5.6 Connect to RS485 Sensors ==
739
740
741 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
742
743
744 [[image:1656054389031-379.png]]
745
746
747 Hardware Design for the Converter Board please see:
748
749 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
750
751
752 = 6. Weather Sensors =
753
754 == 6.1 Rain Gauge ~-~- WSS-01 ==
755
756
757 (((
758 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
759 )))
760
761 (((
762 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
763 )))
764
765 (((
766 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
767 )))
768
769 (((
770 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
771 )))
772
773 (((
774 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
775 )))
776
777
778 === 6.1.1 Feature ===
779
780
781 * RS485 Rain Gauge
782 * Small dimension, easy to install
783 * Vents under funnel, avoid leaf or other things to avoid rain flow.
784 * ABS enclosure.
785 * Horizontal adjustable.
786
787
788 === 6.1.2 Specification ===
789
790
791 * Resolution: 0.2mm
792 * Accuracy: ±3%
793 * Range: 0 ~~ 100mm
794 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
795 * Input Power: DC 5~~24v
796 * Interface: RS485
797 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
798 * Working Humidity: <100% (no dewing)
799 * Power Consumption: 4mA @ 12v.
800
801
802 === 6.1.3 Dimension ===
803
804
805 [[image:1656054957406-980.png]]
806
807
808 === 6.1.4 Pin Mapping ===
809
810
811 [[image:1656054972828-692.png]]
812
813
814 === 6.1.5 Installation Notice ===
815
816
817 (((
818 Do not power on while connect the cables. Double check the wiring before power on.
819 )))
820
821 (((
822 Installation Photo as reference:
823 )))
824
825
826 (((
827 (% style="color:#4472c4" %)** Install on Ground:**
828 )))
829
830 (((
831 WSS-01 Rain Gauge include screws so can install in ground directly .
832 )))
833
834
835 (((
836 (% style="color:#4472c4" %)** Install on pole:**
837 )))
838
839 (((
840 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
841 )))
842
843 [[image:image-20220624152218-1.png||height="526" width="276"]]
844
845 WS-K2: Bracket Kit for Pole installation
846
847
848 WSSC-K2 dimension document, please see:
849
850 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
851
852
853 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
854
855
856 [[image:1656055444035-179.png]]
857
858
859 (((
860 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
861 )))
862
863 (((
864 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
865 )))
866
867 (((
868 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
869 )))
870
871
872
873 === 6.2.1 Feature ===
874
875
876 * RS485 wind speed / direction sensor
877 * PC enclosure, resist corrosion
878
879
880 === 6.2.2 Specification ===
881
882
883 * Wind speed range: 0 ~~ 60m/s
884 * Wind direction range: 0 ~~ 360°
885 * Start wind speed: ≤0.3m/s
886 * Accuracy: ±(0.3+0.03V)m/s , ±1°
887 * Input Power: DC 5~~24v
888 * Interface: RS485
889 * Working Temperature: -30℃~70℃
890 * Working Humidity: <100% (no dewing)
891 * Power Consumption: 13mA ~~ 12v.
892 * Cable Length: 2 meters
893
894
895 === 6.2.3 Dimension ===
896
897
898 [[image:image-20220624152813-2.png]]
899
900
901 === 6.2.4 Pin Mapping ===
902
903
904 [[image:1656056281231-994.png]]
905
906
907 === 6.2.5  Angle Mapping ===
908
909
910 [[image:1656056303845-585.png]]
911
912
913 === 6.2.6  Installation Notice ===
914
915
916 (((
917 Do not power on while connect the cables. Double check the wiring before power on.
918 )))
919
920 (((
921 The sensor must be installed with below direction, towards North.
922
923
924 )))
925
926 [[image:image-20220624153901-3.png]]
927
928
929 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
930
931
932 (((
933 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
934 )))
935
936 (((
937 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
938 )))
939
940 (((
941 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
942 )))
943
944
945 === 6.3.1 Feature ===
946
947
948 * RS485 CO2, PM2.5, PM10 sensor
949 * NDIR to measure CO2 with Internal Temperature Compensation
950 * Laser Beam Scattering to PM2.5 and PM10
951
952
953 === 6.3.2 Specification ===
954
955
956 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
957 * CO2 resolution: 1ppm
958 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
959 * PM2.5/PM10 resolution: 1μg/m3
960 * Input Power: DC 7 ~~ 24v
961 * Preheat time: 3min
962 * Interface: RS485
963 * Working Temperature:
964 ** CO2: 0℃~50℃;
965 ** PM2.5/PM10: -30 ~~ 50℃
966 * Working Humidity:
967 ** PM2.5/PM10: 15~80%RH (no dewing)
968 ** CO2: 0~95%RH
969 * Power Consumption: 50mA@ 12v.
970
971
972 === 6.3.3 Dimension ===
973
974
975 [[image:1656056708366-230.png]]
976
977
978
979 === 6.3.4 Pin Mapping ===
980
981
982 [[image:1656056722648-743.png]]
983
984
985 === 6.3.5 Installation Notice ===
986
987
988 Do not power on while connect the cables. Double check the wiring before power on.
989
990
991 [[image:1656056751153-304.png]]
992
993
994 [[image:1656056766224-773.png]]
995
996
997 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
998
999
1000 (((
1001 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1002 )))
1003
1004 (((
1005 WSS-04 has auto heating feature, this ensures measurement more reliable.
1006 )))
1007
1008 (((
1009 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1010 )))
1011
1012
1013 === 6.4.1 Feature ===
1014
1015
1016 * RS485 Rain/Snow detect sensor
1017 * Surface heating to dry
1018 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1019
1020
1021 === 6.4.2 Specification ===
1022
1023
1024 * Detect if there is rain or snow
1025 * Input Power: DC 12 ~~ 24v
1026 * Interface: RS485
1027 * Working Temperature: -30℃~70℃
1028 * Working Humidity: 10~90%RH
1029 * Power Consumption:
1030 ** No heating: 12mA @ 12v,
1031 ** heating: 94ma @ 12v.
1032
1033
1034 === 6.4.3 Dimension ===
1035
1036
1037 [[image:1656056844782-155.png]]
1038
1039
1040 === 6.4.4 Pin Mapping ===
1041
1042
1043 [[image:1656056855590-754.png]]
1044
1045
1046 === 6.4.5 Installation Notice ===
1047
1048
1049 Do not power on while connect the cables. Double check the wiring before power on.
1050
1051
1052 (((
1053 Install with 15°degree.
1054 )))
1055
1056 [[image:1656056873783-780.png]]
1057
1058
1059 [[image:1656056883736-804.png]]
1060
1061
1062 === 6.4.6 Heating ===
1063
1064
1065 (((
1066 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1067 )))
1068
1069
1070 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1071
1072
1073 (((
1074 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1075 )))
1076
1077 (((
1078 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1079 )))
1080
1081
1082 === 6.5.1 Feature ===
1083
1084
1085 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1086
1087
1088 === 6.5.2 Specification ===
1089
1090
1091 * Input Power: DC 12 ~~ 24v
1092 * Interface: RS485
1093 * Temperature Sensor Spec:
1094 ** Range: -30 ~~ 70℃
1095 ** resolution 0.1℃
1096 ** Accuracy: ±0.5℃
1097 * Humidity Sensor Spec:
1098 ** Range: 0 ~~ 100% RH
1099 ** resolution 0.1 %RH
1100 ** Accuracy: 3% RH
1101 * Pressure Sensor Spec:
1102 ** Range: 10~1100hPa
1103 ** Resolution: 0.1hPa
1104 ** Accuracy: ±0.1hPa
1105 * Illuminate sensor:
1106 ** Range: 0~2/20/200kLux
1107 ** Resolution: 10 Lux
1108 ** Accuracy: ±3%FS
1109 * Working Temperature: -30℃~70℃
1110 * Working Humidity: 10~90%RH
1111 * Power Consumption: 4mA @ 12v
1112
1113
1114 === 6.5.3 Dimension ===
1115
1116
1117 [[image:1656057170639-522.png]]
1118
1119
1120 === 6.5.4 Pin Mapping ===
1121
1122
1123 [[image:1656057181899-910.png]]
1124
1125
1126 === 6.5.5 Installation Notice ===
1127
1128
1129 Do not power on while connect the cables. Double check the wiring before power on.
1130
1131 [[image:1656057199955-514.png]]
1132
1133
1134 [[image:1656057212438-475.png]]
1135
1136
1137 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1138
1139
1140 (((
1141 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1142 )))
1143
1144 (((
1145 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1146 )))
1147
1148 (((
1149 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1150 )))
1151
1152
1153 === 6.6.1 Feature ===
1154
1155
1156 * RS485 Total Solar Radiation sensor
1157 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1158 * Measure Reflected Radiation if sense area towards ground.
1159
1160
1161 === 6.6.2 Specification ===
1162
1163
1164 * Input Power: DC 5 ~~ 24v
1165 * Interface: RS485
1166 * Detect spectrum: 0.3~3μm(300~3000nm)
1167 * Measure strength range: 0~2000W/m2
1168 * Resolution: 0.1W/m2
1169 * Accuracy: ±3%
1170 * Yearly Stability: ≤±2%
1171 * Cosine response: ≤7% (@ Sun angle 10°)
1172 * Temperature Effect: ±2%(-10℃~40℃)
1173 * Working Temperature: -40℃~70℃
1174 * Working Humidity: 10~90%RH
1175 * Power Consumption: 4mA @ 12v
1176
1177
1178 === 6.6.3 Dimension ===
1179
1180
1181 [[image:1656057348695-898.png]]
1182
1183
1184 === 6.6.4 Pin Mapping ===
1185
1186
1187 [[image:1656057359343-744.png]]
1188
1189
1190 === 6.6.5 Installation Notice ===
1191
1192
1193 Do not power on while connect the cables. Double check the wiring before power on.
1194
1195
1196 [[image:1656057369259-804.png]]
1197
1198
1199 [[image:1656057377943-564.png]]
1200
1201
1202 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1203
1204
1205 (((
1206 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1207 )))
1208
1209 (((
1210 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1211 )))
1212
1213 (((
1214 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1215 )))
1216
1217
1218 === 6.7.1 Feature ===
1219
1220
1221 (((
1222 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1223 )))
1224
1225 (((
1226 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1227 )))
1228
1229
1230 === 6.7.2 Specification ===
1231
1232
1233 * Input Power: DC 5 ~~ 24v
1234 * Interface: RS485
1235 * Response Spectrum: 400~700nm
1236 * Measure range: 0~2500μmol/m2•s
1237 * Resolution: 1μmol/m2•s
1238 * Accuracy: ±2%
1239 * Yearly Stability: ≤±2%
1240 * Working Temperature: -30℃~75℃
1241 * Working Humidity: 10~90%RH
1242 * Power Consumption: 3mA @ 12v
1243
1244
1245 === 6.7.3 Dimension ===
1246
1247
1248 [[image:1656057538793-888.png]]
1249
1250
1251 === 6.7.4 Pin Mapping ===
1252
1253
1254 [[image:1656057548116-203.png]]
1255
1256
1257 === 6.7.5 Installation Notice ===
1258
1259
1260 Do not power on while connect the cables. Double check the wiring before power on.
1261
1262
1263 [[image:1656057557191-895.png]]
1264
1265
1266 [[image:1656057565783-251.png]]
1267
1268
1269 = 7. FAQ =
1270
1271 == 7.1 What else do I need to purchase to build Weather Station? ==
1272
1273
1274 Below is the installation photo and structure:
1275
1276
1277 [[image:1656057598349-319.png]]
1278
1279
1280 [[image:1656057608049-693.png]]
1281
1282
1283 == 7.2 How to upgrade firmware for WSC1-L? ==
1284
1285
1286 (((
1287 Firmware Location & Change log:
1288
1289 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1290 )))
1291
1292 (((
1293
1294 )))
1295
1296 (((
1297 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1298 )))
1299
1300
1301 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1302
1303
1304 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1305
1306
1307 == 7.4 Can I add my weather sensors? ==
1308
1309
1310 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1311
1312
1313 = 8. Trouble Shooting =
1314
1315 == 8.1 AT Command input doesn't work ==
1316
1317
1318 (((
1319 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1320 )))
1321
1322
1323 = 9. Order Info =
1324
1325 == 9.1 Main Process Unit ==
1326
1327
1328 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1329
1330 (% style="color:blue" %)**XX**(%%): The default frequency band
1331
1332 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1333 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1334 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1335 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1336 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1337 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1338 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1339 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1340
1341
1342 == 9.2 Sensors ==
1343
1344
1345 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1346 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1347 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1348 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1349 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1350 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1351 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1352 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1353 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1354 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1355
1356
1357 = 10. Support =
1358
1359
1360 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1361 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1362
1363
1364 = 11. Appendix I: Field Installation Photo =
1365
1366
1367 [[image:1656058346362-132.png||height="685" width="732"]]
1368
1369 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1370
1371
1372
1373 (% style="color:blue" %)**Wind Speed/Direction**
1374
1375 [[image:1656058373174-421.png||height="356" width="731"]]
1376
1377
1378
1379 (% style="color:blue" %)**Total Solar Radiation sensor**
1380
1381 [[image:1656058397364-282.png||height="453" width="732"]]
1382
1383
1384
1385 (% style="color:blue" %)**PAR Sensor**
1386
1387 [[image:1656058416171-615.png]]
1388
1389
1390
1391 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1392
1393 [[image:1656058441194-827.png||height="672" width="523"]]
1394
1395
1396
1397 (% style="color:blue" %)**Rain / Snow Detect**
1398
1399 [[image:1656058451456-166.png]]
1400
1401
1402
1403 (% style="color:blue" %)**Rain Gauge**
1404
1405 [[image:1656058463455-569.png||height="499" width="550"]]
1406
1407
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0