Version 95.2 by Xiaoling on 2023/02/27 09:31

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72 (% style="color:red" %)**Notice 2:**
73
74 Due to shipment and importation limitation, user is better to purchase below parts locally:
75
76 * Solar Panel
77 * Storage Battery
78 * MPPT Solar Recharger
79 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
80 * Cabinet.
81
82
83
84 == 2.2 How it works? ==
85
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104
105
106 == 2.3 Example to use for LoRaWAN network ==
107
108
109 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
110
111
112 [[image:1656042612899-422.png]]
113
114
115
116 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
117
118
119 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
120
121 Each WSC1-L is shipped with a sticker with the default device EUI as below:
122
123 [[image:image-20220624115043-1.jpeg]]
124
125
126 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
127
128 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
129
130 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSE01-LoRaWAN%20Soil%20Moisture%20%26%20EC%20Sensor%20User%20Manual/WebHome/image-20220606163915-7.png?rev=1.1||alt="image-20220606163915-7.png"]]
131
132 **Add APP EUI in the application.**
133
134 [[image:1656042662694-311.png]]
135
136 [[image:1656042673910-429.png]]
137
138
139
140
141 **Choose Manually to add WSC1-L**
142
143 [[image:1656042695755-103.png]]
144
145
146
147 **Add APP KEY and DEV EUI**
148
149 [[image:1656042723199-746.png]]
150
151
152
153 (((
154 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
155 )))
156
157
158 [[image:1656042745346-283.png]]
159
160
161 == 2.4 Uplink Payload ==
162
163
164 Uplink payloads include two types: Valid Sensor Value and other status / control command.
165
166 * Valid Sensor Value: Use FPORT=2
167 * Other control command: Use FPORT other than 2.
168
169
170
171 === 2.4.1 Uplink FPORT~=5, Device Status ===
172
173
174 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
175
176
177 (((
178 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
179 )))
180
181 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
182 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
183 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
184
185 [[image:1656043061044-343.png]]
186
187
188 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
189
190
191 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
192
193 For WSC1-L, this value is 0x0D.
194
195
196 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
197
198 0x0100, Means: v1.0.0 version.
199
200
201 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
225
226 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
227
228
229 ==== (% style="color:#037691" %)**BAT:**(%%) ====
230
231 (((
232 shows the battery voltage for WSC1-L MCU.
233 )))
234
235 (((
236 Ex1: 0x0BD6/1000 = 3.03 V
237 )))
238
239
240 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
241
242 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
243 |Byte3|Byte2|Byte1
244
245 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
246
247 [[image:image-20220624134713-1.png]]
248
249
250 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
251
252 External sensors detected by WSC1-L include :
253
254 custom sensor A1,
255
256 PAR sensor (WSS-07),
257
258 Total Solar Radiation sensor (WSS-06),
259
260 CO2/PM2.5/PM10 (WSS-03),
261
262 Wind Speed/Direction (WSS-02)
263
264
265 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
266
267 (% style="color:#037691" %)**Downlink:0x26 01**
268
269 [[image:1656049673488-415.png]]
270
271
272 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
273
274
275 (((
276 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
277 )))
278
279 (((
280 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
281 )))
282
283
284 (((
285 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
286 )))
287
288
289 (% style="color:#4472c4" %)** Uplink Payload**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
292 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
293
294 (% style="color:#4472c4" %)** Sensor Segment Define**:
295
296 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
297 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
298
299 (% style="color:#4472c4" %)**Sensor Type Table:**
300
301 [[image:image-20220706154434-1.png]]
302
303
304 (((
305 Below is an example payload:  [[image:image-20220624140615-3.png]]
306 )))
307
308 (((
309
310 )))
311
312 (((
313 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
314 )))
315
316 * (((
317 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
318 )))
319
320 (((
321 Uplink 1:  [[image:image-20220624140735-4.png]]
322 )))
323
324 (((
325
326 )))
327
328 (((
329 Uplink 2:  [[image:image-20220624140842-5.png]]
330 )))
331
332 (((
333
334 )))
335
336 * (((
337 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
338 )))
339
340 (((
341 Uplink 1:  [[image:image-20220624141025-6.png]]
342 )))
343
344 (((
345
346 )))
347
348 Uplink 2:  [[image:image-20220624141100-7.png]]
349
350
351 === 2.4.3 Decoder in TTN V3 ===
352
353
354 (((
355 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
356 )))
357
358 (((
359 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
360 )))
361
362 (((
363
364 )))
365
366 (((
367 and put as below:
368
369
370 )))
371
372 [[image:1656051152438-578.png]]
373
374
375 == 2.5 Show data on Application Server ==
376
377
378 (((
379 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
380 )))
381
382 (((
383
384 )))
385
386 (((
387 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
388 )))
389
390 (((
391 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
392 )))
393
394 [[image:1656051197172-131.png]]
395
396
397
398 **Add TagoIO:**
399
400 [[image:1656051223585-631.png]]
401
402
403
404 **Authorization:**
405
406 [[image:1656051248318-368.png]]
407
408
409
410 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
411
412
413 [[image:1656051277767-168.png]]
414
415
416 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
417
418
419 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
420
421 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
422 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
423
424 There are two kinds of commands to configure WSC1-L, they are:
425
426 * (% style="color:#4472c4" %)**General Commands**.
427
428 These commands are to configure:
429
430 * General system settings like: uplink interval.
431 * LoRaWAN protocol & radio related command.
432
433 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
434
435 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
436
437
438 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
439
440 These commands only valid for WSC1-L, as below:
441
442
443 == 3.1 Set Transmit Interval Time ==
444
445
446 Feature: Change LoRaWAN End Node Transmit Interval.
447
448 (% style="color:#037691" %)**AT Command: AT+TDC**
449
450 [[image:image-20220624142619-8.png]]
451
452
453 (% style="color:#037691" %)**Downlink Command: 0x01**
454
455 Format: Command Code (0x01) followed by 3 bytes time value.
456
457 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
458
459 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
460 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
461
462
463
464 == 3.2 Set Emergency Mode ==
465
466
467 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
468
469 (% style="color:#037691" %)**AT Command:**
470
471 [[image:image-20220624142956-9.png]]
472
473
474 (% style="color:#037691" %)**Downlink Command:**
475
476 * 0xE101     Same as: AT+ALARMMOD=1
477 * 0xE100     Same as: AT+ALARMMOD=0
478
479
480
481 == 3.3 Add or Delete RS485 Sensor ==
482
483
484 (((
485 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
486 )))
487
488 (((
489 (% style="color:#037691" %)**AT Command: **
490 )))
491
492 (((
493 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
494 )))
495
496 * (((
497 Type_Code range:  A1 ~~ A4
498 )))
499 * (((
500 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
501 )))
502 * (((
503 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
504 )))
505 * (((
506 Read_Length:  RS485 response frame length supposed to receive. Max can receive
507 )))
508 * (((
509 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
510 )))
511 * (((
512 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
513 )))
514 * (((
515 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
516 )))
517
518 (((
519 **Example:**
520 )))
521
522 (((
523 User need to change external sensor use the type code as address code.
524 )))
525
526 (((
527 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
528 )))
529
530 [[image:image-20220624143553-10.png]]
531
532
533 The response frame of the sensor is as follows:
534
535 [[image:image-20220624143618-11.png]]
536
537
538 **Then the following parameters should be:**
539
540 * Address_Code range: A1
541 * Query_Length: 8
542 * Query_Command: A103000000019CAA
543 * Read_Length: 8
544 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
545 * has_CRC: 1
546 * timeout: 1500 (Fill in the test according to the actual situation)
547
548 **So the input command is:**
549
550 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
551
552
553 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
554
555 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
556 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
557 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
558
559 **Related commands:**
560
561 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
562
563 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
564
565
566 (% style="color:#037691" %)**Downlink Command:  **
567
568 **delete custom sensor A1:**
569
570 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
571
572 **Remove all custom sensors**
573
574 * 0xE5FF  
575
576
577
578 == 3.4 RS485 Test Command ==
579
580
581 (% style="color:#037691" %)**AT Command:**
582
583 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
584 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
585 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
586 (((
587 Send command to 485 sensor
588 )))
589
590 (((
591 Range : no more than 10 bytes
592 )))
593 )))|(% style="width:85px" %)OK
594
595 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
596
597 AT+RSWRITE=0103000001840A
598
599
600 (% style="color:#037691" %)**Downlink Command:**
601
602 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
603
604
605
606 == 3.5 RS485 response timeout ==
607
608
609 Feature: Set or get extended time to receive 485 sensor data.
610
611 (% style="color:#037691" %)**AT Command:**
612
613 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
614 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
615 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
616 (((
617 Set response timeout to:
618 )))
619
620 (((
621 Range : 0~~10000
622 )))
623 )))|(% style="width:85px" %)OK
624
625 (% style="color:#037691" %)**Downlink Command:**
626
627 Format: Command Code (0xE0) followed by 3 bytes time value.
628
629 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
630
631 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
632 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
633
634
635
636 == 3.6 Set Sensor Type ==
637
638
639 (((
640 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
641 )))
642
643 (((
644 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
645 )))
646
647 [[image:image-20220624144904-12.png]]
648
649
650 (% style="color:#037691" %)**AT Command:**
651
652 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
653 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
654 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
655
656 Eg: The setting command **AT+STYPE=80221** means:
657
658 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
659 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
660 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
661 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
662 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
663 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
664 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
665
666 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
667
668
669 (% style="color:#037691" %)**Downlink Command:**
670
671 * 0xE400080221  Same as: AT+STYPE=80221
672
673 (% style="color:red" %)**Note:**
674
675 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
676
677
678 = 4. Power consumption and battery =
679
680 == 4.1 Total Power Consumption ==
681
682
683 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
684
685
686 == 4.2 Reduce power consumption ==
687
688
689 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
690
691
692 == 4.3 Battery ==
693
694
695 (((
696 All sensors are only power by external power source. If external power source is off. All sensor won't work.
697 )))
698
699 (((
700 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
701 )))
702
703
704 = 5. Main Process Unit WSC1-L =
705
706 == 5.1 Features ==
707
708
709 * Wall Attachable.
710 * LoRaWAN v1.0.3 Class A protocol.
711 * RS485 / Modbus protocol
712 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
713 * AT Commands to change parameters
714 * Remote configure parameters via LoRaWAN Downlink
715 * Firmware upgradable via program port
716 * Powered by external 12v battery
717 * Back up rechargeable 1000mAh battery
718 * IP Rating: IP65
719 * Support default sensors or 3rd party RS485 sensors
720
721
722
723 == 5.2 Power Consumption ==
724
725
726 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
727
728
729 == 5.3 Storage & Operation Temperature ==
730
731
732 -20°C to +60°C
733
734
735 == 5.4 Pin Mapping ==
736
737
738 [[image:1656054149793-239.png]]
739
740
741 == 5.5 Mechanical ==
742
743
744 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
745
746
747 == 5.6 Connect to RS485 Sensors ==
748
749
750 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
751
752
753 [[image:1656054389031-379.png]]
754
755
756 Hardware Design for the Converter Board please see:
757
758 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
759
760
761 = 6. Weather Sensors =
762
763 == 6.1 Rain Gauge ~-~- WSS-01 ==
764
765
766 (((
767 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
768 )))
769
770 (((
771 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
772 )))
773
774 (((
775 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
776 )))
777
778 (((
779 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
780 )))
781
782 (((
783 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
784 )))
785
786
787 === 6.1.1 Feature ===
788
789
790 * RS485 Rain Gauge
791 * Small dimension, easy to install
792 * Vents under funnel, avoid leaf or other things to avoid rain flow.
793 * ABS enclosure.
794 * Horizontal adjustable.
795
796
797
798 === 6.1.2 Specification ===
799
800
801 * Resolution: 0.2mm
802 * Accuracy: ±3%
803 * Range: 0 ~~ 100mm
804 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
805 * Input Power: DC 5~~24v
806 * Interface: RS485
807 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
808 * Working Humidity: <100% (no dewing)
809 * Power Consumption: 4mA @ 12v.
810
811
812
813 === 6.1.3 Dimension ===
814
815
816 [[image:1656054957406-980.png]]
817
818
819 === 6.1.4 Pin Mapping ===
820
821
822 [[image:1656054972828-692.png]]
823
824
825 === 6.1.5 Installation Notice ===
826
827
828 (((
829 Do not power on while connect the cables. Double check the wiring before power on.
830 )))
831
832 (((
833 Installation Photo as reference:
834 )))
835
836
837 (((
838 (% style="color:#4472c4" %)** Install on Ground:**
839 )))
840
841 (((
842 WSS-01 Rain Gauge include screws so can install in ground directly .
843 )))
844
845
846 (((
847 (% style="color:#4472c4" %)** Install on pole:**
848 )))
849
850 (((
851 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
852 )))
853
854 [[image:image-20220624152218-1.png||height="526" width="276"]]
855
856 WS-K2: Bracket Kit for Pole installation
857
858
859 WSSC-K2 dimension document, please see:
860
861 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
862
863
864 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
865
866
867 [[image:1656055444035-179.png]]
868
869
870 (((
871 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
872 )))
873
874 (((
875 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
876 )))
877
878 (((
879 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
880 )))
881
882
883
884 === 6.2.1 Feature ===
885
886
887 * RS485 wind speed / direction sensor
888 * PC enclosure, resist corrosion
889
890
891
892 === 6.2.2 Specification ===
893
894
895 * Wind speed range: 0 ~~ 60m/s
896 * Wind direction range: 0 ~~ 360°
897 * Start wind speed: ≤0.3m/s
898 * Accuracy: ±(0.3+0.03V)m/s , ±1°
899 * Input Power: DC 5~~24v
900 * Interface: RS485
901 * Working Temperature: -30℃~70℃
902 * Working Humidity: <100% (no dewing)
903 * Power Consumption: 13mA ~~ 12v.
904 * Cable Length: 2 meters
905
906
907
908 === 6.2.3 Dimension ===
909
910
911 [[image:image-20220624152813-2.png]]
912
913
914 === 6.2.4 Pin Mapping ===
915
916
917 [[image:1656056281231-994.png]]
918
919
920 === 6.2.5  Angle Mapping ===
921
922
923 [[image:1656056303845-585.png]]
924
925
926 === 6.2.6  Installation Notice ===
927
928
929 (((
930 Do not power on while connect the cables. Double check the wiring before power on.
931 )))
932
933 (((
934 The sensor must be installed with below direction, towards North.
935
936
937 )))
938
939 [[image:image-20220624153901-3.png]]
940
941
942 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
943
944
945 (((
946 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
947 )))
948
949 (((
950 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
951 )))
952
953 (((
954 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
955 )))
956
957
958 === 6.3.1 Feature ===
959
960
961 * RS485 CO2, PM2.5, PM10 sensor
962 * NDIR to measure CO2 with Internal Temperature Compensation
963 * Laser Beam Scattering to PM2.5 and PM10
964
965
966
967 === 6.3.2 Specification ===
968
969
970 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
971 * CO2 resolution: 1ppm
972 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
973 * PM2.5/PM10 resolution: 1μg/m3
974 * Input Power: DC 7 ~~ 24v
975 * Preheat time: 3min
976 * Interface: RS485
977 * Working Temperature:
978 ** CO2: 0℃~50℃;
979 ** PM2.5/PM10: -30 ~~ 50℃
980 * Working Humidity:
981 ** PM2.5/PM10: 15~80%RH (no dewing)
982 ** CO2: 0~95%RH
983 * Power Consumption: 50mA@ 12v.
984
985
986
987 === 6.3.3 Dimension ===
988
989
990 [[image:1656056708366-230.png]]
991
992
993
994 === 6.3.4 Pin Mapping ===
995
996
997 [[image:1656056722648-743.png]]
998
999
1000 === 6.3.5 Installation Notice ===
1001
1002
1003 Do not power on while connect the cables. Double check the wiring before power on.
1004
1005
1006 [[image:1656056751153-304.png]]
1007
1008
1009 [[image:1656056766224-773.png]]
1010
1011
1012 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1013
1014
1015 (((
1016 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1017 )))
1018
1019 (((
1020 WSS-04 has auto heating feature, this ensures measurement more reliable.
1021 )))
1022
1023 (((
1024 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1025 )))
1026
1027
1028 === 6.4.1 Feature ===
1029
1030
1031 * RS485 Rain/Snow detect sensor
1032 * Surface heating to dry
1033 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1034
1035
1036
1037 === 6.4.2 Specification ===
1038
1039
1040 * Detect if there is rain or snow
1041 * Input Power: DC 12 ~~ 24v
1042 * Interface: RS485
1043 * Working Temperature: -30℃~70℃
1044 * Working Humidity: 10~90%RH
1045 * Power Consumption:
1046 ** No heating: 12mA @ 12v,
1047 ** heating: 94ma @ 12v.
1048
1049
1050
1051 === 6.4.3 Dimension ===
1052
1053
1054 [[image:1656056844782-155.png]]
1055
1056
1057 === 6.4.4 Pin Mapping ===
1058
1059
1060 [[image:1656056855590-754.png]]
1061
1062
1063 === 6.4.5 Installation Notice ===
1064
1065
1066 Do not power on while connect the cables. Double check the wiring before power on.
1067
1068
1069 (((
1070 Install with 15°degree.
1071 )))
1072
1073 [[image:1656056873783-780.png]]
1074
1075
1076 [[image:1656056883736-804.png]]
1077
1078
1079 === 6.4.6 Heating ===
1080
1081
1082 (((
1083 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1084 )))
1085
1086
1087 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1088
1089
1090 (((
1091 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1092 )))
1093
1094 (((
1095 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1096 )))
1097
1098
1099 === 6.5.1 Feature ===
1100
1101
1102 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1103
1104
1105
1106 === 6.5.2 Specification ===
1107
1108
1109 * Input Power: DC 12 ~~ 24v
1110 * Interface: RS485
1111 * Temperature Sensor Spec:
1112 ** Range: -30 ~~ 70℃
1113 ** resolution 0.1℃
1114 ** Accuracy: ±0.5℃
1115 * Humidity Sensor Spec:
1116 ** Range: 0 ~~ 100% RH
1117 ** resolution 0.1 %RH
1118 ** Accuracy: 3% RH
1119 * Pressure Sensor Spec:
1120 ** Range: 10~1100hPa
1121 ** Resolution: 0.1hPa
1122 ** Accuracy: ±0.1hPa
1123 * Illuminate sensor:
1124 ** Range: 0~2/20/200kLux
1125 ** Resolution: 10 Lux
1126 ** Accuracy: ±3%FS
1127 * Working Temperature: -30℃~70℃
1128 * Working Humidity: 10~90%RH
1129 * Power Consumption: 4mA @ 12v
1130
1131
1132
1133 === 6.5.3 Dimension ===
1134
1135
1136 [[image:1656057170639-522.png]]
1137
1138
1139 === 6.5.4 Pin Mapping ===
1140
1141
1142 [[image:1656057181899-910.png]]
1143
1144
1145 === 6.5.5 Installation Notice ===
1146
1147
1148 Do not power on while connect the cables. Double check the wiring before power on.
1149
1150 [[image:1656057199955-514.png]]
1151
1152
1153 [[image:1656057212438-475.png]]
1154
1155
1156 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1157
1158
1159 (((
1160 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1161 )))
1162
1163 (((
1164 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1165 )))
1166
1167 (((
1168 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1169 )))
1170
1171
1172 === 6.6.1 Feature ===
1173
1174
1175 * RS485 Total Solar Radiation sensor
1176 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1177 * Measure Reflected Radiation if sense area towards ground.
1178
1179
1180
1181 === 6.6.2 Specification ===
1182
1183
1184 * Input Power: DC 5 ~~ 24v
1185 * Interface: RS485
1186 * Detect spectrum: 0.3~3μm(300~3000nm)
1187 * Measure strength range: 0~2000W/m2
1188 * Resolution: 0.1W/m2
1189 * Accuracy: ±3%
1190 * Yearly Stability: ≤±2%
1191 * Cosine response: ≤7% (@ Sun angle 10°)
1192 * Temperature Effect: ±2%(-10℃~40℃)
1193 * Working Temperature: -40℃~70℃
1194 * Working Humidity: 10~90%RH
1195 * Power Consumption: 4mA @ 12v
1196
1197
1198
1199 === 6.6.3 Dimension ===
1200
1201
1202 [[image:1656057348695-898.png]]
1203
1204
1205 === 6.6.4 Pin Mapping ===
1206
1207
1208 [[image:1656057359343-744.png]]
1209
1210
1211 === 6.6.5 Installation Notice ===
1212
1213
1214 Do not power on while connect the cables. Double check the wiring before power on.
1215
1216
1217 [[image:1656057369259-804.png]]
1218
1219
1220 [[image:1656057377943-564.png]]
1221
1222
1223 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1224
1225
1226 (((
1227 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1228 )))
1229
1230 (((
1231 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1232 )))
1233
1234 (((
1235 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1236 )))
1237
1238
1239 === 6.7.1 Feature ===
1240
1241
1242 (((
1243 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1244 )))
1245
1246 (((
1247 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1248 )))
1249
1250
1251 === 6.7.2 Specification ===
1252
1253
1254 * Input Power: DC 5 ~~ 24v
1255 * Interface: RS485
1256 * Response Spectrum: 400~700nm
1257 * Measure range: 0~2500μmol/m2•s
1258 * Resolution: 1μmol/m2•s
1259 * Accuracy: ±2%
1260 * Yearly Stability: ≤±2%
1261 * Working Temperature: -30℃~75℃
1262 * Working Humidity: 10~90%RH
1263 * Power Consumption: 3mA @ 12v
1264
1265
1266
1267 === 6.7.3 Dimension ===
1268
1269
1270 [[image:1656057538793-888.png]]
1271
1272
1273 === 6.7.4 Pin Mapping ===
1274
1275
1276 [[image:1656057548116-203.png]]
1277
1278
1279 === 6.7.5 Installation Notice ===
1280
1281
1282 Do not power on while connect the cables. Double check the wiring before power on.
1283
1284
1285 [[image:1656057557191-895.png]]
1286
1287
1288 [[image:1656057565783-251.png]]
1289
1290
1291 = 7. FAQ =
1292
1293 == 7.1 What else do I need to purchase to build Weather Station? ==
1294
1295
1296 Below is the installation photo and structure:
1297
1298
1299 [[image:1656057598349-319.png]]
1300
1301
1302 [[image:1656057608049-693.png]]
1303
1304
1305 == 7.2 How to upgrade firmware for WSC1-L? ==
1306
1307
1308 (((
1309 Firmware Location & Change log:
1310
1311 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1312 )))
1313
1314 (((
1315
1316 )))
1317
1318 (((
1319 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1320 )))
1321
1322
1323 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1324
1325
1326 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1327
1328
1329 == 7.4 Can I add my weather sensors? ==
1330
1331
1332 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1333
1334
1335 = 8. Trouble Shooting =
1336
1337 == 8.1 AT Command input doesn't work ==
1338
1339
1340 (((
1341 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1342 )))
1343
1344
1345 = 9. Order Info =
1346
1347 == 9.1 Main Process Unit ==
1348
1349
1350 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1351
1352 (% style="color:blue" %)**XX**(%%): The default frequency band
1353
1354 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1355 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1356 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1357 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1358 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1359 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1360 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1361 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1362
1363
1364
1365 == 9.2 Sensors ==
1366
1367
1368 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1369 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1370 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1371 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1372 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1373 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1374 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1375 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1376 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1377 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1378
1379
1380
1381 = 10. Support =
1382
1383
1384 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1385 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1386
1387
1388
1389 = 11. Appendix I: Field Installation Photo =
1390
1391
1392 [[image:1656058346362-132.png||height="685" width="732"]]
1393
1394 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1395
1396
1397
1398 (% style="color:blue" %)**Wind Speed/Direction**
1399
1400 [[image:1656058373174-421.png||height="356" width="731"]]
1401
1402
1403
1404 (% style="color:blue" %)**Total Solar Radiation sensor**
1405
1406 [[image:1656058397364-282.png||height="453" width="732"]]
1407
1408
1409
1410 (% style="color:blue" %)**PAR Sensor**
1411
1412 [[image:1656058416171-615.png]]
1413
1414
1415
1416 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1417
1418 [[image:1656058441194-827.png||height="672" width="523"]]
1419
1420
1421
1422 (% style="color:blue" %)**Rain / Snow Detect**
1423
1424 [[image:1656058451456-166.png]]
1425
1426
1427
1428 (% style="color:blue" %)**Rain Gauge**
1429
1430 [[image:1656058463455-569.png||height="499" width="550"]]
1431
1432