Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40 = 2. How to use =
41
42 == 2.1 Installation ==
43
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47
48 [[image:1656041948552-849.png]]
49
50
51 (% style="color:blue" %)** Wiring:**
52
53 ~1. WSC1-L and sensors all powered by solar power via MPPT
54
55 2. WSC1-L and sensors connect to each other via RS485/Modbus.
56
57 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
58
59
60 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
61
62
63 [[image:1656042136605-251.png]]
64
65
66 (% style="color:red" %)**Notice 1:**
67
68 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
69 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
70 * Weather sensors won't work if solar panel and storage battery fails.
71
72
73 (% style="color:red" %)**Notice 2:**
74
75 Due to shipment and importation limitation, user is better to purchase below parts locally:
76
77 * Solar Panel
78 * Storage Battery
79 * MPPT Solar Recharger
80 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
81 * Cabinet.
82
83
84
85 == 2.2 How it works? ==
86
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
104
105
106
107 == 2.3 Example to use for LoRaWAN network ==
108
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112
113 [[image:1656042612899-422.png]]
114
115
116
117 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
118
119
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
121
122 Each WSC1-L is shipped with a sticker with the default device EUI as below:
123
124 [[image:image-20220624115043-1.jpeg]]
125
126
127 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
128
129 **Add APP EUI in the application.**
130
131 [[image:1656042662694-311.png]]
132
133 [[image:1656042673910-429.png]]
134
135
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149
150 (((
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152 )))
153
154
155 [[image:1656042745346-283.png]]
156
157
158 == 2.4 Uplink Payload ==
159
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167
168 === 2.4.1 Uplink FPORT~=5, Device Status ===
169
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
189
190 For WSC1-L, this value is 0x0D.
191
192
193 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
194
195 0x0100, Means: v1.0.0 version.
196
197
198 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
199
200 *0x01: EU868
201
202 *0x02: US915
203
204 *0x03: IN865
205
206 *0x04: AU915
207
208 *0x05: KZ865
209
210 *0x06: RU864
211
212 *0x07: AS923
213
214 *0x08: AS923-1
215
216 *0x09: AS923-2
217
218 *0x0a: AS923-3
219
220
221 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
222
223 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
224
225
226 ==== (% style="color:#037691" %)**BAT:**(%%) ====
227
228 (((
229 shows the battery voltage for WSC1-L MCU.
230 )))
231
232 (((
233 Ex1: 0x0BD6/1000 = 3.03 V
234 )))
235
236
237 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
238
239 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
240 |Byte3|Byte2|Byte1
241
242 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
243
244 [[image:image-20220624134713-1.png]]
245
246
247 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
248
249 External sensors detected by WSC1-L include :
250
251 custom sensor A1,
252
253 PAR sensor (WSS-07),
254
255 Total Solar Radiation sensor (WSS-06),
256
257 CO2/PM2.5/PM10 (WSS-03),
258
259 Wind Speed/Direction (WSS-02)
260
261
262 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
263
264 (% style="color:#037691" %)**Downlink:0x26 01**
265
266 [[image:1656049673488-415.png]]
267
268
269 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
270
271
272 (((
273 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
274 )))
275
276 (((
277 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
278 )))
279
280
281 (((
282 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
283 )))
284
285
286 (% style="color:#4472c4" %)** Uplink Payload**:
287
288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
289 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
290
291 (% style="color:#4472c4" %)** Sensor Segment Define**:
292
293 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
294 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
295
296 (% style="color:#4472c4" %)**Sensor Type Table:**
297
298 [[image:image-20220706154434-1.png]]
299
300
301 (((
302 Below is an example payload:  [[image:image-20220624140615-3.png]]
303 )))
304
305 (((
306
307 )))
308
309 (((
310 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
311 )))
312
313 * (((
314 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
315 )))
316
317 (((
318 Uplink 1:  [[image:image-20220624140735-4.png]]
319 )))
320
321 (((
322
323 )))
324
325 (((
326 Uplink 2:  [[image:image-20220624140842-5.png]]
327 )))
328
329 (((
330
331 )))
332
333 * (((
334 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
335 )))
336
337 (((
338 Uplink 1:  [[image:image-20220624141025-6.png]]
339 )))
340
341 (((
342
343 )))
344
345 Uplink 2:  [[image:image-20220624141100-7.png]]
346
347
348 === 2.4.3 Decoder in TTN V3 ===
349
350
351 (((
352 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
353 )))
354
355 (((
356 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
357 )))
358
359 (((
360
361 )))
362
363 (((
364 and put as below:
365
366
367 )))
368
369 [[image:1656051152438-578.png]]
370
371
372 == 2.5 Show data on Application Server ==
373
374
375 (((
376 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
377 )))
378
379 (((
380
381 )))
382
383 (((
384 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
385 )))
386
387 (((
388 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
389 )))
390
391 [[image:1656051197172-131.png]]
392
393
394
395 **Add TagoIO:**
396
397 [[image:1656051223585-631.png]]
398
399
400
401 **Authorization:**
402
403 [[image:1656051248318-368.png]]
404
405
406
407 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
408
409
410 [[image:1656051277767-168.png]]
411
412
413 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
414
415
416 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
417
418 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
419 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
420
421 There are two kinds of commands to configure WSC1-L, they are:
422
423 * (% style="color:#4472c4" %)**General Commands**.
424
425 These commands are to configure:
426
427 * General system settings like: uplink interval.
428 * LoRaWAN protocol & radio related command.
429
430 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
431
432 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
433
434
435 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
436
437 These commands only valid for WSC1-L, as below:
438
439
440 == 3.1 Set Transmit Interval Time ==
441
442
443 Feature: Change LoRaWAN End Node Transmit Interval.
444
445 (% style="color:#037691" %)**AT Command: AT+TDC**
446
447 [[image:image-20220624142619-8.png]]
448
449
450 (% style="color:#037691" %)**Downlink Command: 0x01**
451
452 Format: Command Code (0x01) followed by 3 bytes time value.
453
454 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
455
456 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
457 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
458
459
460
461 == 3.2 Set Emergency Mode ==
462
463
464 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
465
466 (% style="color:#037691" %)**AT Command:**
467
468 [[image:image-20220624142956-9.png]]
469
470
471 (% style="color:#037691" %)**Downlink Command:**
472
473 * 0xE101     Same as: AT+ALARMMOD=1
474 * 0xE100     Same as: AT+ALARMMOD=0
475
476
477
478 == 3.3 Add or Delete RS485 Sensor ==
479
480
481 (((
482 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
483 )))
484
485 (((
486 (% style="color:#037691" %)**AT Command: **
487 )))
488
489 (((
490 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
491 )))
492
493 * (((
494 Type_Code range:  A1 ~~ A4
495 )))
496 * (((
497 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
498 )))
499 * (((
500 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
501 )))
502 * (((
503 Read_Length:  RS485 response frame length supposed to receive. Max can receive
504 )))
505 * (((
506 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
507 )))
508 * (((
509 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
510 )))
511 * (((
512 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
513 )))
514
515 (((
516 **Example:**
517 )))
518
519 (((
520 User need to change external sensor use the type code as address code.
521 )))
522
523 (((
524 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
525 )))
526
527 [[image:image-20220624143553-10.png]]
528
529
530 The response frame of the sensor is as follows:
531
532 [[image:image-20220624143618-11.png]]
533
534
535 **Then the following parameters should be:**
536
537 * Address_Code range: A1
538 * Query_Length: 8
539 * Query_Command: A103000000019CAA
540 * Read_Length: 8
541 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
542 * has_CRC: 1
543 * timeout: 1500 (Fill in the test according to the actual situation)
544
545 **So the input command is:**
546
547 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
548
549
550 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
551
552 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
553 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
554 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
555
556 **Related commands:**
557
558 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
559
560 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
561
562
563 (% style="color:#037691" %)**Downlink Command:  **
564
565 **delete custom sensor A1:**
566
567 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
568
569 **Remove all custom sensors**
570
571 * 0xE5FF  
572
573
574
575 == 3.4 RS485 Test Command ==
576
577
578 (% style="color:#037691" %)**AT Command:**
579
580 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
581 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
582 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
583 (((
584 Send command to 485 sensor
585 )))
586
587 (((
588 Range : no more than 10 bytes
589 )))
590 )))|(% style="width:85px" %)OK
591
592 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
593
594 AT+RSWRITE=0103000001840A
595
596
597 (% style="color:#037691" %)**Downlink Command:**
598
599 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
600
601
602
603 == 3.5 RS485 response timeout ==
604
605
606 Feature: Set or get extended time to receive 485 sensor data.
607
608 (% style="color:#037691" %)**AT Command:**
609
610 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
611 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
612 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
613 (((
614 Set response timeout to:
615 )))
616
617 (((
618 Range : 0~~10000
619 )))
620 )))|(% style="width:85px" %)OK
621
622 (% style="color:#037691" %)**Downlink Command:**
623
624 Format: Command Code (0xE0) followed by 3 bytes time value.
625
626 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
627
628 * Example 1: Downlink Payload: E0000005  ~/~/  Set Transmit Interval (DTR) = 5 seconds
629 * Example 2: Downlink Payload: E000000A  ~/~/  Set Transmit Interval (DTR) = 10 seconds
630
631
632
633 == 3.6 Set Sensor Type ==
634
635
636 (((
637 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
638 )))
639
640 (((
641 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
642 )))
643
644 [[image:image-20220624144904-12.png]]
645
646
647 (% style="color:#037691" %)**AT Command:**
648
649 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
650 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
651 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
652
653 Eg: The setting command **AT+STYPE=80221** means:
654
655 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
656 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
657 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
658 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
659 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
660 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
661 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
662
663 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
664
665
666 (% style="color:#037691" %)**Downlink Command:**
667
668 * 0xE400080221  Same as: AT+STYPE=80221
669
670 (% style="color:red" %)**Note:**
671
672 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
673
674
675 = 4. Power consumption and battery =
676
677 == 4.1 Total Power Consumption ==
678
679
680 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
681
682
683 == 4.2 Reduce power consumption ==
684
685
686 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
687
688
689 == 4.3 Battery ==
690
691
692 (((
693 All sensors are only power by external power source. If external power source is off. All sensor won't work.
694 )))
695
696 (((
697 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
698 )))
699
700
701 = 5. Main Process Unit WSC1-L =
702
703 == 5.1 Features ==
704
705
706 * Wall Attachable.
707 * LoRaWAN v1.0.3 Class A protocol.
708 * RS485 / Modbus protocol
709 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
710 * AT Commands to change parameters
711 * Remote configure parameters via LoRaWAN Downlink
712 * Firmware upgradable via program port
713 * Powered by external 12v battery
714 * Back up rechargeable 1000mAh battery
715 * IP Rating: IP65
716 * Support default sensors or 3rd party RS485 sensors
717
718 == 5.2 Power Consumption ==
719
720
721 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
722
723
724 == 5.3 Storage & Operation Temperature ==
725
726
727 -20°C to +60°C
728
729
730 == 5.4 Pin Mapping ==
731
732
733 [[image:1656054149793-239.png]]
734
735
736 == 5.5 Mechanical ==
737
738
739 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
740
741
742 == 5.6 Connect to RS485 Sensors ==
743
744
745 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
746
747
748 [[image:1656054389031-379.png]]
749
750
751 Hardware Design for the Converter Board please see:
752
753 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
754
755
756 = 6. Weather Sensors =
757
758 == 6.1 Rain Gauge ~-~- WSS-01 ==
759
760
761 (((
762 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
763 )))
764
765 (((
766 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
767 )))
768
769 (((
770 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
771 )))
772
773 (((
774 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
775 )))
776
777 (((
778 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
779 )))
780
781
782 === 6.1.1 Feature ===
783
784
785 * RS485 Rain Gauge
786 * Small dimension, easy to install
787 * Vents under funnel, avoid leaf or other things to avoid rain flow.
788 * ABS enclosure.
789 * Horizontal adjustable.
790
791
792
793 === 6.1.2 Specification ===
794
795
796 * Resolution: 0.2mm
797 * Accuracy: ±3%
798 * Range: 0 ~~ 100mm
799 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
800 * Input Power: DC 5~~24v
801 * Interface: RS485
802 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
803 * Working Humidity: <100% (no dewing)
804 * Power Consumption: 4mA @ 12v.
805
806
807
808 === 6.1.3 Dimension ===
809
810
811 [[image:1656054957406-980.png]]
812
813
814 === 6.1.4 Pin Mapping ===
815
816
817 [[image:1656054972828-692.png]]
818
819
820 === 6.1.5 Installation Notice ===
821
822
823 (((
824 Do not power on while connect the cables. Double check the wiring before power on.
825 )))
826
827 (((
828 Installation Photo as reference:
829 )))
830
831
832 (((
833 (% style="color:#4472c4" %)** Install on Ground:**
834 )))
835
836 (((
837 WSS-01 Rain Gauge include screws so can install in ground directly .
838 )))
839
840
841 (((
842 (% style="color:#4472c4" %)** Install on pole:**
843 )))
844
845 (((
846 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
847 )))
848
849 [[image:image-20220624152218-1.png||height="526" width="276"]]
850
851 WS-K2: Bracket Kit for Pole installation
852
853
854 WSSC-K2 dimension document, please see:
855
856 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
857
858
859 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
860
861
862 [[image:1656055444035-179.png]]
863
864
865 (((
866 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
867 )))
868
869 (((
870 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
871 )))
872
873 (((
874 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
875 )))
876
877
878
879 === 6.2.1 Feature ===
880
881
882 * RS485 wind speed / direction sensor
883 * PC enclosure, resist corrosion
884
885
886
887 === 6.2.2 Specification ===
888
889
890 * Wind speed range: 0 ~~ 60m/s
891 * Wind direction range: 0 ~~ 360°
892 * Start wind speed: ≤0.3m/s
893 * Accuracy: ±(0.3+0.03V)m/s , ±1°
894 * Input Power: DC 5~~24v
895 * Interface: RS485
896 * Working Temperature: -30℃~70℃
897 * Working Humidity: <100% (no dewing)
898 * Power Consumption: 13mA ~~ 12v.
899 * Cable Length: 2 meters
900
901
902
903 === 6.2.3 Dimension ===
904
905
906 [[image:image-20220624152813-2.png]]
907
908
909 === 6.2.4 Pin Mapping ===
910
911
912 [[image:1656056281231-994.png]]
913
914
915 === 6.2.5  Angle Mapping ===
916
917
918 [[image:1656056303845-585.png]]
919
920
921
922 === 6.2.6  Installation Notice ===
923
924
925 (((
926 Do not power on while connect the cables. Double check the wiring before power on.
927 )))
928
929 (((
930 The sensor must be installed with below direction, towards North.
931
932
933 )))
934
935 [[image:image-20220624153901-3.png]]
936
937
938 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
939
940
941 (((
942 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
943 )))
944
945 (((
946 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
947 )))
948
949 (((
950 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
951 )))
952
953
954 === 6.3.1 Feature ===
955
956
957 * RS485 CO2, PM2.5, PM10 sensor
958 * NDIR to measure CO2 with Internal Temperature Compensation
959 * Laser Beam Scattering to PM2.5 and PM10
960
961
962
963 === 6.3.2 Specification ===
964
965
966 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
967 * CO2 resolution: 1ppm
968 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
969 * PM2.5/PM10 resolution: 1μg/m3
970 * Input Power: DC 7 ~~ 24v
971 * Preheat time: 3min
972 * Interface: RS485
973 * Working Temperature:
974 ** CO2: 0℃~50℃;
975 ** PM2.5/PM10: -30 ~~ 50℃
976 * Working Humidity:
977 ** PM2.5/PM10: 15~80%RH (no dewing)
978 ** CO2: 0~95%RH
979 * Power Consumption: 50mA@ 12v.
980
981
982
983 === 6.3.3 Dimension ===
984
985
986 [[image:1656056708366-230.png]]
987
988
989
990 === 6.3.4 Pin Mapping ===
991
992
993 [[image:1656056722648-743.png]]
994
995
996 === 6.3.5 Installation Notice ===
997
998
999 Do not power on while connect the cables. Double check the wiring before power on.
1000
1001
1002 [[image:1656056751153-304.png]]
1003
1004
1005 [[image:1656056766224-773.png]]
1006
1007
1008 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1009
1010
1011 (((
1012 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1013 )))
1014
1015 (((
1016 WSS-04 has auto heating feature, this ensures measurement more reliable.
1017 )))
1018
1019 (((
1020 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1021 )))
1022
1023
1024 === 6.4.1 Feature ===
1025
1026
1027 * RS485 Rain/Snow detect sensor
1028 * Surface heating to dry
1029 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1030
1031
1032
1033 === 6.4.2 Specification ===
1034
1035
1036 * Detect if there is rain or snow
1037 * Input Power: DC 12 ~~ 24v
1038 * Interface: RS485
1039 * Working Temperature: -30℃~70℃
1040 * Working Humidity: 10~90%RH
1041 * Power Consumption:
1042 ** No heating: 12mA @ 12v,
1043 ** heating: 94ma @ 12v.
1044
1045
1046
1047 === 6.4.3 Dimension ===
1048
1049
1050 [[image:1656056844782-155.png]]
1051
1052
1053 === 6.4.4 Pin Mapping ===
1054
1055
1056 [[image:1656056855590-754.png]]
1057
1058
1059 === 6.4.5 Installation Notice ===
1060
1061
1062 Do not power on while connect the cables. Double check the wiring before power on.
1063
1064
1065 (((
1066 Install with 15°degree.
1067 )))
1068
1069 [[image:1656056873783-780.png]]
1070
1071
1072 [[image:1656056883736-804.png]]
1073
1074
1075 === 6.4.6 Heating ===
1076
1077
1078 (((
1079 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1080 )))
1081
1082
1083 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1084
1085
1086 (((
1087 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1088 )))
1089
1090 (((
1091 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1092 )))
1093
1094
1095 === 6.5.1 Feature ===
1096
1097
1098 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1099
1100
1101
1102 === 6.5.2 Specification ===
1103
1104
1105 * Input Power: DC 12 ~~ 24v
1106 * Interface: RS485
1107 * Temperature Sensor Spec:
1108 ** Range: -30 ~~ 70℃
1109 ** resolution 0.1℃
1110 ** Accuracy: ±0.5℃
1111 * Humidity Sensor Spec:
1112 ** Range: 0 ~~ 100% RH
1113 ** resolution 0.1 %RH
1114 ** Accuracy: 3% RH
1115 * Pressure Sensor Spec:
1116 ** Range: 10~1100hPa
1117 ** Resolution: 0.1hPa
1118 ** Accuracy: ±0.1hPa
1119 * Illuminate sensor:
1120 ** Range: 0~2/20/200kLux
1121 ** Resolution: 10 Lux
1122 ** Accuracy: ±3%FS
1123 * Working Temperature: -30℃~70℃
1124 * Working Humidity: 10~90%RH
1125 * Power Consumption: 4mA @ 12v
1126
1127
1128
1129 === 6.5.3 Dimension ===
1130
1131
1132 [[image:1656057170639-522.png]]
1133
1134
1135 === 6.5.4 Pin Mapping ===
1136
1137
1138 [[image:1656057181899-910.png]]
1139
1140
1141 === 6.5.5 Installation Notice ===
1142
1143
1144 Do not power on while connect the cables. Double check the wiring before power on.
1145
1146 [[image:1656057199955-514.png]]
1147
1148
1149 [[image:1656057212438-475.png]]
1150
1151
1152 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1153
1154
1155 (((
1156 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1157 )))
1158
1159 (((
1160 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1161 )))
1162
1163 (((
1164 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1165 )))
1166
1167
1168 === 6.6.1 Feature ===
1169
1170
1171 * RS485 Total Solar Radiation sensor
1172 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1173 * Measure Reflected Radiation if sense area towards ground.
1174
1175
1176
1177 === 6.6.2 Specification ===
1178
1179
1180 * Input Power: DC 5 ~~ 24v
1181 * Interface: RS485
1182 * Detect spectrum: 0.3~3μm(300~3000nm)
1183 * Measure strength range: 0~2000W/m2
1184 * Resolution: 0.1W/m2
1185 * Accuracy: ±3%
1186 * Yearly Stability: ≤±2%
1187 * Cosine response: ≤7% (@ Sun angle 10°)
1188 * Temperature Effect: ±2%(-10℃~40℃)
1189 * Working Temperature: -40℃~70℃
1190 * Working Humidity: 10~90%RH
1191 * Power Consumption: 4mA @ 12v
1192
1193
1194
1195 === 6.6.3 Dimension ===
1196
1197
1198 [[image:1656057348695-898.png]]
1199
1200
1201 === 6.6.4 Pin Mapping ===
1202
1203
1204 [[image:1656057359343-744.png]]
1205
1206
1207 === 6.6.5 Installation Notice ===
1208
1209
1210 Do not power on while connect the cables. Double check the wiring before power on.
1211
1212
1213 [[image:1656057369259-804.png]]
1214
1215
1216 [[image:1656057377943-564.png]]
1217
1218
1219 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1220
1221
1222 (((
1223 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1224 )))
1225
1226 (((
1227 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1228 )))
1229
1230 (((
1231 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1232 )))
1233
1234
1235 === 6.7.1 Feature ===
1236
1237
1238 (((
1239 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1240 )))
1241
1242 (((
1243 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1244 )))
1245
1246
1247 === 6.7.2 Specification ===
1248
1249
1250 * Input Power: DC 5 ~~ 24v
1251 * Interface: RS485
1252 * Response Spectrum: 400~700nm
1253 * Measure range: 0~2500μmol/m2•s
1254 * Resolution: 1μmol/m2•s
1255 * Accuracy: ±2%
1256 * Yearly Stability: ≤±2%
1257 * Working Temperature: -30℃~75℃
1258 * Working Humidity: 10~90%RH
1259 * Power Consumption: 3mA @ 12v
1260
1261
1262
1263 === 6.7.3 Dimension ===
1264
1265
1266 [[image:1656057538793-888.png]]
1267
1268
1269 === 6.7.4 Pin Mapping ===
1270
1271
1272 [[image:1656057548116-203.png]]
1273
1274
1275 === 6.7.5 Installation Notice ===
1276
1277
1278 Do not power on while connect the cables. Double check the wiring before power on.
1279
1280
1281 [[image:1656057557191-895.png]]
1282
1283
1284 [[image:1656057565783-251.png]]
1285
1286
1287 = 7. FAQ =
1288
1289 == 7.1 What else do I need to purchase to build Weather Station? ==
1290
1291
1292 Below is the installation photo and structure:
1293
1294
1295 [[image:1656057598349-319.png]]
1296
1297
1298 [[image:1656057608049-693.png]]
1299
1300
1301 == 7.2 How to upgrade firmware for WSC1-L? ==
1302
1303
1304 (((
1305 Firmware Location & Change log:
1306
1307 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1308 )))
1309
1310 (((
1311
1312 )))
1313
1314 (((
1315 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1316 )))
1317
1318
1319 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1320
1321
1322 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1323
1324
1325 == 7.4 Can I add my weather sensors? ==
1326
1327
1328 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1329
1330
1331 = 8. Trouble Shooting =
1332
1333 == 8.1 AT Command input doesn't work ==
1334
1335
1336 (((
1337 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1338 )))
1339
1340
1341 = 9. Order Info =
1342
1343 == 9.1 Main Process Unit ==
1344
1345
1346 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1347
1348 (% style="color:blue" %)**XX**(%%): The default frequency band
1349
1350 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1351 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1352 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1353 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1354 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1355 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1356 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1357 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1358
1359
1360
1361 == 9.2 Sensors ==
1362
1363
1364 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1365 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1366 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1367 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1368 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1369 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1370 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1371 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1372 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1373 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1374
1375
1376
1377 = 10. Support =
1378
1379
1380 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1381 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]].
1382
1383
1384
1385 = 11. Appendix I: Field Installation Photo =
1386
1387
1388 [[image:1656058346362-132.png||height="685" width="732"]]
1389
1390 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1391
1392
1393
1394 (% style="color:blue" %)**Wind Speed/Direction**
1395
1396 [[image:1656058373174-421.png||height="356" width="731"]]
1397
1398
1399
1400 (% style="color:blue" %)**Total Solar Radiation sensor**
1401
1402 [[image:1656058397364-282.png||height="453" width="732"]]
1403
1404
1405
1406 (% style="color:blue" %)**PAR Sensor**
1407
1408 [[image:1656058416171-615.png]]
1409
1410
1411
1412 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1413
1414 [[image:1656058441194-827.png||height="672" width="523"]]
1415
1416
1417
1418 (% style="color:blue" %)**Rain / Snow Detect**
1419
1420 [[image:1656058451456-166.png]]
1421
1422
1423
1424 (% style="color:blue" %)**Rain Gauge**
1425
1426 [[image:1656058463455-569.png||height="499" width="550"]]
1427
1428
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0