Version 94.1 by Bei Jinggeng on 2022/11/23 17:16

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45
46 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
47
48
49 [[image:1656041948552-849.png]]
50
51
52 (% style="color:blue" %)** Wiring:**
53
54 ~1. WSC1-L and sensors all powered by solar power via MPPT
55
56 2. WSC1-L and sensors connect to each other via RS485/Modbus.
57
58 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
59
60
61 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
62
63
64 [[image:1656042136605-251.png]]
65
66
67 (% style="color:red" %)**Notice 1:**
68
69 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
70 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
71 * Weather sensors won't work if solar panel and storage battery fails.
72
73 (% style="color:red" %)**Notice 2:**
74
75 Due to shipment and importation limitation, user is better to purchase below parts locally:
76
77 * Solar Panel
78 * Storage Battery
79 * MPPT Solar Recharger
80 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
81 * Cabinet.
82
83
84 == 2.2 How it works? ==
85
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104
105 == 2.3 Example to use for LoRaWAN network ==
106
107
108 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
109
110
111 [[image:1656042612899-422.png]]
112
113
114
115 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
116
117
118 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
119
120 Each WSC1-L is shipped with a sticker with the default device EUI as below:
121
122 [[image:image-20220624115043-1.jpeg]]
123
124
125 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
126
127 **Add APP EUI in the application.**
128
129 [[image:1656042662694-311.png]]
130
131 [[image:1656042673910-429.png]]
132
133
134
135
136 **Choose Manually to add WSC1-L**
137
138 [[image:1656042695755-103.png]]
139
140
141
142 **Add APP KEY and DEV EUI**
143
144 [[image:1656042723199-746.png]]
145
146
147
148 (((
149 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
150 )))
151
152
153 [[image:1656042745346-283.png]]
154
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164
165 === 2.4.1 Uplink FPORT~=5, Device Status ===
166
167
168 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
169
170
171 (((
172 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
173 )))
174
175 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
176 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
177 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
178
179 [[image:1656043061044-343.png]]
180
181
182 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
183
184
185 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
186
187
188 For WSC1-L, this value is 0x0D.
189
190
191 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
192
193
194 0x0100, Means: v1.0.0 version.
195
196
197 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
198
199
200 *0x01: EU868
201
202 *0x02: US915
203
204 *0x03: IN865
205
206 *0x04: AU915
207
208 *0x05: KZ865
209
210 *0x06: RU864
211
212 *0x07: AS923
213
214 *0x08: AS923-1
215
216 *0x09: AS923-2
217
218 *0x0a: AS923-3
219
220
221 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
222
223
224 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
225
226
227 ==== (% style="color:#037691" %)**BAT:**(%%) ====
228
229
230 (((
231 shows the battery voltage for WSC1-L MCU.
232 )))
233
234 (((
235 Ex1: 0x0BD6/1000 = 3.03 V
236 )))
237
238
239 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
240
241
242 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
243 |Byte3|Byte2|Byte1
244
245 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
246
247 [[image:image-20220624134713-1.png]]
248
249
250 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
251
252 External sensors detected by WSC1-L include :
253
254 custom sensor A1,
255
256 PAR sensor (WSS-07),
257
258 Total Solar Radiation sensor (WSS-06),
259
260 CO2/PM2.5/PM10 (WSS-03),
261
262 Wind Speed/Direction (WSS-02)
263
264
265 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
266
267 (% style="color:#037691" %)**Downlink:0x26 01**
268
269 [[image:1656049673488-415.png]]
270
271
272 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
273
274
275 (((
276 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
277 )))
278
279 (((
280 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
281 )))
282
283
284 (((
285 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
286 )))
287
288
289 (% style="color:#4472c4" %)** Uplink Payload**:
290
291 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
292 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
293
294 (% style="color:#4472c4" %)** Sensor Segment Define**:
295
296 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
297 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
298
299 (% style="color:#4472c4" %)**Sensor Type Table:**
300
301 [[image:image-20220706154434-1.png]]
302
303
304 (((
305 Below is an example payload:  [[image:image-20220624140615-3.png]]
306 )))
307
308 (((
309
310 )))
311
312 (((
313 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
314 )))
315
316 * (((
317 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
318 )))
319
320 (((
321 Uplink 1:  [[image:image-20220624140735-4.png]]
322 )))
323
324 (((
325
326 )))
327
328 (((
329 Uplink 2:  [[image:image-20220624140842-5.png]]
330 )))
331
332 (((
333
334 )))
335
336 * (((
337 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
338 )))
339
340 (((
341 Uplink 1:  [[image:image-20220624141025-6.png]]
342 )))
343
344 (((
345
346 )))
347
348 Uplink 2:  [[image:image-20220624141100-7.png]]
349
350
351 === 2.4.3 Decoder in TTN V3 ===
352
353
354 (((
355 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
356 )))
357
358 (((
359 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
360 )))
361
362 (((
363
364 )))
365
366 (((
367 and put as below:
368
369
370 )))
371
372 [[image:1656051152438-578.png]]
373
374
375 == 2.5 Show data on Application Server ==
376
377
378 (((
379 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
380 )))
381
382 (((
383
384 )))
385
386 (((
387 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
388 )))
389
390 (((
391 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
392 )))
393
394 [[image:1656051197172-131.png]]
395
396
397
398 **Add TagoIO:**
399
400 [[image:1656051223585-631.png]]
401
402
403
404 **Authorization:**
405
406 [[image:1656051248318-368.png]]
407
408
409
410 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
411
412
413 [[image:1656051277767-168.png]]
414
415
416 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
417
418
419 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
420
421 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
422 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
423
424 There are two kinds of commands to configure WSC1-L, they are:
425
426 * (% style="color:#4472c4" %)**General Commands**.
427
428 These commands are to configure:
429
430 * General system settings like: uplink interval.
431 * LoRaWAN protocol & radio related command.
432
433 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
434
435 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
436
437
438 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
439
440 These commands only valid for WSC1-L, as below:
441
442
443 == 3.1 Set Transmit Interval Time ==
444
445
446 Feature: Change LoRaWAN End Node Transmit Interval.
447
448 (% style="color:#037691" %)**AT Command: AT+TDC**
449
450 [[image:image-20220624142619-8.png]]
451
452
453 (% style="color:#037691" %)**Downlink Command: 0x01**
454
455 Format: Command Code (0x01) followed by 3 bytes time value.
456
457 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
458
459 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
460 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
461
462
463 == 3.2 Set Emergency Mode ==
464
465
466 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
467
468 (% style="color:#037691" %)**AT Command:**
469
470 [[image:image-20220624142956-9.png]]
471
472
473 (% style="color:#037691" %)**Downlink Command:**
474
475 * 0xE101     Same as: AT+ALARMMOD=1
476 * 0xE100     Same as: AT+ALARMMOD=0
477
478
479 == 3.3 Add or Delete RS485 Sensor ==
480
481
482 (((
483 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
484 )))
485
486 (((
487 (% style="color:#037691" %)**AT Command: **
488 )))
489
490 (((
491 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
492 )))
493
494 * (((
495 Type_Code range:  A1 ~~ A4
496 )))
497 * (((
498 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
499 )))
500 * (((
501 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
502 )))
503 * (((
504 Read_Length:  RS485 response frame length supposed to receive. Max can receive
505 )))
506 * (((
507 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
508 )))
509 * (((
510 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
511 )))
512 * (((
513 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
514 )))
515
516 (((
517 **Example:**
518 )))
519
520 (((
521 User need to change external sensor use the type code as address code.
522 )))
523
524 (((
525 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
526 )))
527
528 [[image:image-20220624143553-10.png]]
529
530
531 The response frame of the sensor is as follows:
532
533 [[image:image-20220624143618-11.png]]
534
535
536 **Then the following parameters should be:**
537
538 * Address_Code range: A1
539 * Query_Length: 8
540 * Query_Command: A103000000019CAA
541 * Read_Length: 8
542 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
543 * has_CRC: 1
544 * timeout: 1500 (Fill in the test according to the actual situation)
545
546 **So the input command is:**
547
548 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
549
550
551 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
552
553 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
554 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
555 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
556
557 **Related commands:**
558
559 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
560
561 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
562
563
564 (% style="color:#037691" %)**Downlink Command:  **
565
566 **delete custom sensor A1:**
567
568 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
569
570 **Remove all custom sensors**
571
572 * 0xE5FF  
573
574
575 == 3.4 RS485 Test Command ==
576
577
578 (% style="color:#037691" %)**AT Command:**
579
580 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
581 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
582 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
583 (((
584 Send command to 485 sensor
585 )))
586
587 (((
588 Range : no more than 10 bytes
589 )))
590 )))|(% style="width:85px" %)OK
591
592 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
593
594 AT+RSWRITE=0103000001840A
595
596
597 (% style="color:#037691" %)**Downlink Command:**
598
599 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
600
601
602 == 3.5 RS485 response timeout ==
603
604
605 Feature: Set or get extended time to receive 485 sensor data.
606
607 (% style="color:#037691" %)**AT Command:**
608
609 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
610 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
611 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
612 (((
613 Set response timeout to:
614 )))
615
616 (((
617 Range : 0~~10000
618 )))
619 )))|(% style="width:85px" %)OK
620
621 (% style="color:#037691" %)**Downlink Command:**
622
623 Format: Command Code (0xE0) followed by 3 bytes time value.
624
625 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
626
627 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
628 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
629
630
631 == 3.6 Set Sensor Type ==
632
633
634 (((
635 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
636 )))
637
638 (((
639 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
640 )))
641
642 [[image:image-20220624144904-12.png]]
643
644
645 (% style="color:#037691" %)**AT Command:**
646
647 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
648 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
649 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
650
651 Eg: The setting command **AT+STYPE=80221** means:
652
653 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
654 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
655 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
656 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
657 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
658 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
659 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
660
661 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
662
663
664 (% style="color:#037691" %)**Downlink Command:**
665
666 * 0xE400080221  Same as: AT+STYPE=80221
667
668 (% style="color:red" %)**Note:**
669
670 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
671
672
673 = 4. Power consumption and battery =
674
675 == 4.1 Total Power Consumption ==
676
677
678 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
679
680
681 == 4.2 Reduce power consumption ==
682
683
684 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
685
686
687 == 4.3 Battery ==
688
689
690 (((
691 All sensors are only power by external power source. If external power source is off. All sensor won't work.
692 )))
693
694 (((
695 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
696 )))
697
698
699 = 5. Main Process Unit WSC1-L =
700
701 == 5.1 Features ==
702
703
704 * Wall Attachable.
705 * LoRaWAN v1.0.3 Class A protocol.
706 * RS485 / Modbus protocol
707 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
708 * AT Commands to change parameters
709 * Remote configure parameters via LoRaWAN Downlink
710 * Firmware upgradable via program port
711 * Powered by external 12v battery
712 * Back up rechargeable 1000mAh battery
713 * IP Rating: IP65
714 * Support default sensors or 3rd party RS485 sensors
715
716
717 == 5.2 Power Consumption ==
718
719
720 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
721
722
723 == 5.3 Storage & Operation Temperature ==
724
725
726 -20°C to +60°C
727
728
729 == 5.4 Pin Mapping ==
730
731
732 [[image:1656054149793-239.png]]
733
734
735 == 5.5 Mechanical ==
736
737
738 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
739
740
741 == 5.6 Connect to RS485 Sensors ==
742
743
744 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
745
746
747 [[image:1656054389031-379.png]]
748
749
750 Hardware Design for the Converter Board please see:
751
752 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
753
754
755 = 6. Weather Sensors =
756
757 == 6.1 Rain Gauge ~-~- WSS-01 ==
758
759
760 (((
761 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
762 )))
763
764 (((
765 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
766 )))
767
768 (((
769 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
770 )))
771
772 (((
773 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
774 )))
775
776 (((
777 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
778 )))
779
780
781 === 6.1.1 Feature ===
782
783
784 * RS485 Rain Gauge
785 * Small dimension, easy to install
786 * Vents under funnel, avoid leaf or other things to avoid rain flow.
787 * ABS enclosure.
788 * Horizontal adjustable.
789
790
791 === 6.1.2 Specification ===
792
793
794 * Resolution: 0.2mm
795 * Accuracy: ±3%
796 * Range: 0 ~~ 100mm
797 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
798 * Input Power: DC 5~~24v
799 * Interface: RS485
800 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
801 * Working Humidity: <100% (no dewing)
802 * Power Consumption: 4mA @ 12v.
803
804
805 === 6.1.3 Dimension ===
806
807
808 [[image:1656054957406-980.png]]
809
810
811 === 6.1.4 Pin Mapping ===
812
813
814 [[image:1656054972828-692.png]]
815
816
817 === 6.1.5 Installation Notice ===
818
819
820 (((
821 Do not power on while connect the cables. Double check the wiring before power on.
822 )))
823
824 (((
825 Installation Photo as reference:
826 )))
827
828
829 (((
830 (% style="color:#4472c4" %)** Install on Ground:**
831 )))
832
833 (((
834 WSS-01 Rain Gauge include screws so can install in ground directly .
835 )))
836
837
838 (((
839 (% style="color:#4472c4" %)** Install on pole:**
840 )))
841
842 (((
843 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
844 )))
845
846 [[image:image-20220624152218-1.png||height="526" width="276"]]
847
848 WS-K2: Bracket Kit for Pole installation
849
850
851 WSSC-K2 dimension document, please see:
852
853 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
854
855
856 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
857
858
859 [[image:1656055444035-179.png]]
860
861
862 (((
863 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
864 )))
865
866 (((
867 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
868 )))
869
870 (((
871 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
872 )))
873
874
875
876 === 6.2.1 Feature ===
877
878
879 * RS485 wind speed / direction sensor
880 * PC enclosure, resist corrosion
881
882
883 === 6.2.2 Specification ===
884
885
886 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
887 * Wind direction range: 0 ~~ 360°
888 * Start wind speed: ≤0.3m/s
889 * Accuracy: ±(0.3+0.03V)m/s , ±1°
890 * Input Power: DC 5~~24v
891 * Interface: RS485
892 * Working Temperature: -30℃~70℃
893 * Working Humidity: <100% (no dewing)
894 * Power Consumption: 13mA ~~ 12v.
895 * Cable Length: 2 meters
896
897
898 === 6.2.3 Dimension ===
899
900
901 [[image:image-20220624152813-2.png]]
902
903
904 === 6.2.4 Pin Mapping ===
905
906
907 [[image:1656056281231-994.png]]
908
909
910 === 6.2.5  Angle Mapping ===
911
912
913 [[image:1656056303845-585.png]]
914
915
916
917 === 6.2.6  Installation Notice ===
918
919
920 (((
921 Do not power on while connect the cables. Double check the wiring before power on.
922 )))
923
924 (((
925 The sensor must be installed with below direction, towards North.
926
927
928 )))
929
930 [[image:image-20220624153901-3.png]]
931
932
933 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
934
935
936 (((
937 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
938 )))
939
940 (((
941 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
942 )))
943
944 (((
945 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
946 )))
947
948
949 === 6.3.1 Feature ===
950
951
952 * RS485 CO2, PM2.5, PM10 sensor
953 * NDIR to measure CO2 with Internal Temperature Compensation
954 * Laser Beam Scattering to PM2.5 and PM10
955
956
957 === 6.3.2 Specification ===
958
959
960 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
961 * CO2 resolution: 1ppm
962 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
963 * PM2.5/PM10 resolution: 1μg/m3
964 * Input Power: DC 7 ~~ 24v
965 * Preheat time: 3min
966 * Interface: RS485
967 * Working Temperature:
968 ** CO2: 0℃~50℃;
969 ** PM2.5/PM10: -30 ~~ 50℃
970 * Working Humidity:
971 ** PM2.5/PM10: 15~80%RH (no dewing)
972 ** CO2: 0~95%RH
973 * Power Consumption: 50mA@ 12v.
974
975
976 === 6.3.3 Dimension ===
977
978
979 [[image:1656056708366-230.png]]
980
981
982
983 === 6.3.4 Pin Mapping ===
984
985
986 [[image:1656056722648-743.png]]
987
988
989 === 6.3.5 Installation Notice ===
990
991
992 Do not power on while connect the cables. Double check the wiring before power on.
993
994
995 [[image:1656056751153-304.png]]
996
997
998 [[image:1656056766224-773.png]]
999
1000
1001 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1002
1003
1004 (((
1005 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1006 )))
1007
1008 (((
1009 WSS-04 has auto heating feature, this ensures measurement more reliable.
1010 )))
1011
1012 (((
1013 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1014 )))
1015
1016
1017 === 6.4.1 Feature ===
1018
1019
1020 * RS485 Rain/Snow detect sensor
1021 * Surface heating to dry
1022 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1023
1024
1025 === 6.4.2 Specification ===
1026
1027
1028 * Detect if there is rain or snow
1029 * Input Power: DC 12 ~~ 24v
1030 * Interface: RS485
1031 * Working Temperature: -30℃~70℃
1032 * Working Humidity: 10~90%RH
1033 * Power Consumption:
1034 ** No heating: 12mA @ 12v,
1035 ** heating: 94ma @ 12v.
1036
1037
1038 === 6.4.3 Dimension ===
1039
1040
1041 [[image:1656056844782-155.png]]
1042
1043
1044 === 6.4.4 Pin Mapping ===
1045
1046
1047 [[image:1656056855590-754.png]]
1048
1049
1050 === 6.4.5 Installation Notice ===
1051
1052
1053 Do not power on while connect the cables. Double check the wiring before power on.
1054
1055
1056 (((
1057 Install with 15°degree.
1058 )))
1059
1060 [[image:1656056873783-780.png]]
1061
1062
1063 [[image:1656056883736-804.png]]
1064
1065
1066 === 6.4.6 Heating ===
1067
1068
1069 (((
1070 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1071 )))
1072
1073
1074 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1075
1076
1077 (((
1078 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1079 )))
1080
1081 (((
1082 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1083 )))
1084
1085
1086 === 6.5.1 Feature ===
1087
1088
1089 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1090
1091
1092 === 6.5.2 Specification ===
1093
1094
1095 * Input Power: DC 12 ~~ 24v
1096 * Interface: RS485
1097 * Temperature Sensor Spec:
1098 ** Range: -30 ~~ 70℃
1099 ** resolution 0.1℃
1100 ** Accuracy: ±0.5℃
1101 * Humidity Sensor Spec:
1102 ** Range: 0 ~~ 100% RH
1103 ** resolution 0.1 %RH
1104 ** Accuracy: 3% RH
1105 * Pressure Sensor Spec:
1106 ** Range: 10~1100hPa
1107 ** Resolution: 0.1hPa
1108 ** Accuracy: ±0.1hPa
1109 * Illuminate sensor:
1110 ** Range: 0~2/20/200kLux
1111 ** Resolution: 10 Lux
1112 ** Accuracy: ±3%FS
1113 * Working Temperature: -30℃~70℃
1114 * Working Humidity: 10~90%RH
1115 * Power Consumption: 4mA @ 12v
1116
1117
1118 === 6.5.3 Dimension ===
1119
1120
1121 [[image:1656057170639-522.png]]
1122
1123
1124 === 6.5.4 Pin Mapping ===
1125
1126
1127 [[image:1656057181899-910.png]]
1128
1129
1130 === 6.5.5 Installation Notice ===
1131
1132
1133 Do not power on while connect the cables. Double check the wiring before power on.
1134
1135 [[image:1656057199955-514.png]]
1136
1137
1138 [[image:1656057212438-475.png]]
1139
1140
1141 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1142
1143
1144 (((
1145 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1146 )))
1147
1148 (((
1149 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1150 )))
1151
1152 (((
1153 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1154 )))
1155
1156
1157 === 6.6.1 Feature ===
1158
1159
1160 * RS485 Total Solar Radiation sensor
1161 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1162 * Measure Reflected Radiation if sense area towards ground.
1163
1164
1165 === 6.6.2 Specification ===
1166
1167
1168 * Input Power: DC 5 ~~ 24v
1169 * Interface: RS485
1170 * Detect spectrum: 0.3~3μm(300~3000nm)
1171 * Measure strength range: 0~2000W/m2
1172 * Resolution: 0.1W/m2
1173 * Accuracy: ±3%
1174 * Yearly Stability: ≤±2%
1175 * Cosine response: ≤7% (@ Sun angle 10°)
1176 * Temperature Effect: ±2%(-10℃~40℃)
1177 * Working Temperature: -40℃~70℃
1178 * Working Humidity: 10~90%RH
1179 * Power Consumption: 4mA @ 12v
1180
1181
1182 === 6.6.3 Dimension ===
1183
1184
1185 [[image:1656057348695-898.png]]
1186
1187
1188 === 6.6.4 Pin Mapping ===
1189
1190
1191 [[image:1656057359343-744.png]]
1192
1193
1194 === 6.6.5 Installation Notice ===
1195
1196
1197 Do not power on while connect the cables. Double check the wiring before power on.
1198
1199
1200 [[image:1656057369259-804.png]]
1201
1202
1203 [[image:1656057377943-564.png]]
1204
1205
1206 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1207
1208
1209 (((
1210 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1211 )))
1212
1213 (((
1214 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1215 )))
1216
1217 (((
1218 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1219 )))
1220
1221
1222 === 6.7.1 Feature ===
1223
1224
1225 (((
1226 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1227 )))
1228
1229 (((
1230 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1231 )))
1232
1233
1234 === 6.7.2 Specification ===
1235
1236
1237 * Input Power: DC 5 ~~ 24v
1238 * Interface: RS485
1239 * Response Spectrum: 400~700nm
1240 * Measure range: 0~2500μmol/m2•s
1241 * Resolution: 1μmol/m2•s
1242 * Accuracy: ±2%
1243 * Yearly Stability: ≤±2%
1244 * Working Temperature: -30℃~75℃
1245 * Working Humidity: 10~90%RH
1246 * Power Consumption: 3mA @ 12v
1247
1248
1249 === 6.7.3 Dimension ===
1250
1251
1252 [[image:1656057538793-888.png]]
1253
1254
1255 === 6.7.4 Pin Mapping ===
1256
1257
1258 [[image:1656057548116-203.png]]
1259
1260
1261 === 6.7.5 Installation Notice ===
1262
1263
1264 Do not power on while connect the cables. Double check the wiring before power on.
1265
1266
1267 [[image:1656057557191-895.png]]
1268
1269
1270 [[image:1656057565783-251.png]]
1271
1272
1273 = 7. FAQ =
1274
1275 == 7.1 What else do I need to purchase to build Weather Station? ==
1276
1277
1278 Below is the installation photo and structure:
1279
1280
1281 [[image:1656057598349-319.png]]
1282
1283
1284 [[image:1656057608049-693.png]]
1285
1286
1287 == 7.2 How to upgrade firmware for WSC1-L? ==
1288
1289
1290 (((
1291 Firmware Location & Change log:
1292
1293 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1294 )))
1295
1296 (((
1297
1298 )))
1299
1300 (((
1301 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1302 )))
1303
1304
1305 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1306
1307
1308 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1309
1310
1311 == 7.4 Can I add my weather sensors? ==
1312
1313
1314 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1315
1316
1317 = 8. Trouble Shooting =
1318
1319 == 8.1 AT Command input doesn't work ==
1320
1321
1322 (((
1323 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1324 )))
1325
1326
1327 = 9. Order Info =
1328
1329 == 9.1 Main Process Unit ==
1330
1331
1332 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1333
1334 (% style="color:blue" %)**XX**(%%): The default frequency band
1335
1336 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1337 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1338 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1339 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1340 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1341 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1342 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1343 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1344
1345
1346 == 9.2 Sensors ==
1347
1348
1349 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1350 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1351 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1352 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1353 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1354 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1355 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1356 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1357 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1358 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1359
1360
1361 = 10. Support =
1362
1363
1364 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1365 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1366
1367
1368 = 11. Appendix I: Field Installation Photo =
1369
1370
1371 [[image:1656058346362-132.png||height="685" width="732"]]
1372
1373 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1374
1375
1376
1377 (% style="color:blue" %)**Wind Speed/Direction**
1378
1379 [[image:1656058373174-421.png||height="356" width="731"]]
1380
1381
1382
1383 (% style="color:blue" %)**Total Solar Radiation sensor**
1384
1385 [[image:1656058397364-282.png||height="453" width="732"]]
1386
1387
1388
1389 (% style="color:blue" %)**PAR Sensor**
1390
1391 [[image:1656058416171-615.png]]
1392
1393
1394
1395 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1396
1397 [[image:1656058441194-827.png||height="672" width="523"]]
1398
1399
1400
1401 (% style="color:blue" %)**Rain / Snow Detect**
1402
1403 [[image:1656058451456-166.png]]
1404
1405
1406
1407 (% style="color:blue" %)**Rain Gauge**
1408
1409 [[image:1656058463455-569.png||height="499" width="550"]]
1410
1411