Version 93.2 by Xiaoling on 2022/11/23 17:12

Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45
46 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
47
48
49 [[image:1656041948552-849.png]]
50
51
52 (% style="color:blue" %)** Wiring:**
53
54 ~1. WSC1-L and sensors all powered by solar power via MPPT
55
56 2. WSC1-L and sensors connect to each other via RS485/Modbus.
57
58 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
59
60
61 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
62
63
64 [[image:1656042136605-251.png]]
65
66
67 (% style="color:red" %)**Notice 1:**
68
69 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
70 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
71 * Weather sensors won't work if solar panel and storage battery fails.
72
73 (% style="color:red" %)**Notice 2:**
74
75 Due to shipment and importation limitation, user is better to purchase below parts locally:
76
77 * Solar Panel
78 * Storage Battery
79 * MPPT Solar Recharger
80 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
81 * Cabinet.
82
83
84
85 == 2.2 How it works? ==
86
87
88 (((
89 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
90 )))
91
92
93 (((
94 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
95 )))
96
97 [[image:1656042192857-709.png]]
98
99
100 (% style="color:red" %)**Notice:**
101
102 1. WSC1-L will auto scan available weather sensors when power on or reboot.
103 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
104
105
106
107 == 2.3 Example to use for LoRaWAN network ==
108
109
110 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
111
112
113 [[image:1656042612899-422.png]]
114
115
116
117 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
118
119
120 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
121
122 Each WSC1-L is shipped with a sticker with the default device EUI as below:
123
124 [[image:image-20220624115043-1.jpeg]]
125
126
127 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
128
129 **Add APP EUI in the application.**
130
131 [[image:1656042662694-311.png]]
132
133 [[image:1656042673910-429.png]]
134
135
136
137
138 **Choose Manually to add WSC1-L**
139
140 [[image:1656042695755-103.png]]
141
142
143
144 **Add APP KEY and DEV EUI**
145
146 [[image:1656042723199-746.png]]
147
148
149
150 (((
151 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
152 )))
153
154
155 [[image:1656042745346-283.png]]
156
157
158 == 2.4 Uplink Payload ==
159
160
161 Uplink payloads include two types: Valid Sensor Value and other status / control command.
162
163 * Valid Sensor Value: Use FPORT=2
164 * Other control command: Use FPORT other than 2.
165
166
167
168 === 2.4.1 Uplink FPORT~=5, Device Status ===
169
170
171 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
172
173
174 (((
175 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
176 )))
177
178 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
179 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
180 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
181
182 [[image:1656043061044-343.png]]
183
184
185 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
186
187
188 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
189
190
191 For WSC1-L, this value is 0x0D.
192
193
194 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
195
196
197 0x0100, Means: v1.0.0 version.
198
199
200 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
201
202
203 *0x01: EU868
204
205 *0x02: US915
206
207 *0x03: IN865
208
209 *0x04: AU915
210
211 *0x05: KZ865
212
213 *0x06: RU864
214
215 *0x07: AS923
216
217 *0x08: AS923-1
218
219 *0x09: AS923-2
220
221 *0x0a: AS923-3
222
223
224 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
225
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230 ==== (% style="color:#037691" %)**BAT:**(%%) ====
231
232
233 (((
234 shows the battery voltage for WSC1-L MCU.
235 )))
236
237 (((
238 Ex1: 0x0BD6/1000 = 3.03 V
239 )))
240
241
242 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
243
244
245 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
246 |Byte3|Byte2|Byte1
247
248 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
249
250 [[image:image-20220624134713-1.png]]
251
252
253 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
254
255 External sensors detected by WSC1-L include :
256
257 custom sensor A1,
258
259 PAR sensor (WSS-07),
260
261 Total Solar Radiation sensor (WSS-06),
262
263 CO2/PM2.5/PM10 (WSS-03),
264
265 Wind Speed/Direction (WSS-02)
266
267
268 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
269
270 (% style="color:#037691" %)**Downlink:0x26 01**
271
272 [[image:1656049673488-415.png]]
273
274
275 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
276
277
278 (((
279 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
280 )))
281
282 (((
283 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
284 )))
285
286
287 (((
288 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
289 )))
290
291
292 (% style="color:#4472c4" %)** Uplink Payload**:
293
294 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
295 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
296
297 (% style="color:#4472c4" %)** Sensor Segment Define**:
298
299 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
300 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
301
302 (% style="color:#4472c4" %)**Sensor Type Table:**
303
304 [[image:image-20220706154434-1.png]]
305
306
307 (((
308 Below is an example payload:  [[image:image-20220624140615-3.png]]
309 )))
310
311 (((
312
313 )))
314
315 (((
316 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
317 )))
318
319 * (((
320 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
321 )))
322
323 (((
324 Uplink 1:  [[image:image-20220624140735-4.png]]
325 )))
326
327 (((
328
329 )))
330
331 (((
332 Uplink 2:  [[image:image-20220624140842-5.png]]
333 )))
334
335 (((
336
337 )))
338
339 * (((
340 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
341 )))
342
343 (((
344 Uplink 1:  [[image:image-20220624141025-6.png]]
345 )))
346
347 (((
348
349 )))
350
351 Uplink 2:  [[image:image-20220624141100-7.png]]
352
353
354 === 2.4.3 Decoder in TTN V3 ===
355
356
357 (((
358 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
359 )))
360
361 (((
362 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
363 )))
364
365 (((
366
367 )))
368
369 (((
370 and put as below:
371
372
373 )))
374
375 [[image:1656051152438-578.png]]
376
377
378 == 2.5 Show data on Application Server ==
379
380
381 (((
382 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
383 )))
384
385 (((
386
387 )))
388
389 (((
390 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
391 )))
392
393 (((
394 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
395 )))
396
397 [[image:1656051197172-131.png]]
398
399
400
401 **Add TagoIO:**
402
403 [[image:1656051223585-631.png]]
404
405
406
407 **Authorization:**
408
409 [[image:1656051248318-368.png]]
410
411
412
413 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
414
415
416 [[image:1656051277767-168.png]]
417
418
419 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
420
421
422 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
423
424 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
425 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
426
427 There are two kinds of commands to configure WSC1-L, they are:
428
429 * (% style="color:#4472c4" %)**General Commands**.
430
431 These commands are to configure:
432
433 * General system settings like: uplink interval.
434 * LoRaWAN protocol & radio related command.
435
436 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
437
438 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
439
440
441 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
442
443 These commands only valid for WSC1-L, as below:
444
445
446 == 3.1 Set Transmit Interval Time ==
447
448
449 Feature: Change LoRaWAN End Node Transmit Interval.
450
451 (% style="color:#037691" %)**AT Command: AT+TDC**
452
453 [[image:image-20220624142619-8.png]]
454
455
456 (% style="color:#037691" %)**Downlink Command: 0x01**
457
458 Format: Command Code (0x01) followed by 3 bytes time value.
459
460 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
461
462 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
463 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
464
465
466
467 == 3.2 Set Emergency Mode ==
468
469
470 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
471
472 (% style="color:#037691" %)**AT Command:**
473
474 [[image:image-20220624142956-9.png]]
475
476
477 (% style="color:#037691" %)**Downlink Command:**
478
479 * 0xE101     Same as: AT+ALARMMOD=1
480 * 0xE100     Same as: AT+ALARMMOD=0
481
482
483
484 == 3.3 Add or Delete RS485 Sensor ==
485
486
487 (((
488 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
489 )))
490
491 (((
492 (% style="color:#037691" %)**AT Command: **
493 )))
494
495 (((
496 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
497 )))
498
499 * (((
500 Type_Code range:  A1 ~~ A4
501 )))
502 * (((
503 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
504 )))
505 * (((
506 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
507 )))
508 * (((
509 Read_Length:  RS485 response frame length supposed to receive. Max can receive
510 )))
511 * (((
512 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
513 )))
514 * (((
515 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
516 )))
517 * (((
518 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
519 )))
520
521 (((
522 **Example:**
523 )))
524
525 (((
526 User need to change external sensor use the type code as address code.
527 )))
528
529 (((
530 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
531 )))
532
533 [[image:image-20220624143553-10.png]]
534
535
536 The response frame of the sensor is as follows:
537
538 [[image:image-20220624143618-11.png]]
539
540
541 **Then the following parameters should be:**
542
543 * Address_Code range: A1
544 * Query_Length: 8
545 * Query_Command: A103000000019CAA
546 * Read_Length: 8
547 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
548 * has_CRC: 1
549 * timeout: 1500 (Fill in the test according to the actual situation)
550
551 **So the input command is:**
552
553 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
554
555
556 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
557
558 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
559 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
560 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
561
562 **Related commands:**
563
564 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
565
566 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
567
568
569 (% style="color:#037691" %)**Downlink Command:  **
570
571 **delete custom sensor A1:**
572
573 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
574
575 **Remove all custom sensors**
576
577 * 0xE5FF  
578
579
580
581 == 3.4 RS485 Test Command ==
582
583
584 (% style="color:#037691" %)**AT Command:**
585
586 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
587 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
588 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
589 (((
590 Send command to 485 sensor
591 )))
592
593 (((
594 Range : no more than 10 bytes
595 )))
596 )))|(% style="width:85px" %)OK
597
598 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
599
600 AT+RSWRITE=0103000001840A
601
602
603 (% style="color:#037691" %)**Downlink Command:**
604
605 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
606
607
608
609 == 3.5 RS485 response timeout ==
610
611
612 Feature: Set or get extended time to receive 485 sensor data.
613
614 (% style="color:#037691" %)**AT Command:**
615
616 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
617 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
618 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
619 (((
620 Set response timeout to:
621 )))
622
623 (((
624 Range : 0~~10000
625 )))
626 )))|(% style="width:85px" %)OK
627
628 (% style="color:#037691" %)**Downlink Command:**
629
630 Format: Command Code (0xE0) followed by 3 bytes time value.
631
632 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
633
634 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
635 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
636
637
638
639 == 3.6 Set Sensor Type ==
640
641
642 (((
643 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
644 )))
645
646 (((
647 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
648 )))
649
650 [[image:image-20220624144904-12.png]]
651
652
653 (% style="color:#037691" %)**AT Command:**
654
655 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
656 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
657 |(% style="width:157px" %)AT+STYPE=802212|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
658
659 Eg: The setting command **AT+STYPE=802212** means:
660
661 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
662 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
663 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
664 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
665 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
666 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
667 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
668
669 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
670
671
672 (% style="color:#037691" %)**Downlink Command:**
673
674 * 0xE400802212     Same as: AT+STYPE=802212
675
676 (% style="color:red" %)**Note:**
677
678 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
679
680
681 = 4. Power consumption and battery =
682
683 == 4.1 Total Power Consumption ==
684
685
686 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
687
688
689 == 4.2 Reduce power consumption ==
690
691
692 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
693
694
695 == 4.3 Battery ==
696
697
698 (((
699 All sensors are only power by external power source. If external power source is off. All sensor won't work.
700 )))
701
702 (((
703 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
704 )))
705
706
707 = 5. Main Process Unit WSC1-L =
708
709 == 5.1 Features ==
710
711
712 * Wall Attachable.
713 * LoRaWAN v1.0.3 Class A protocol.
714 * RS485 / Modbus protocol
715 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
716 * AT Commands to change parameters
717 * Remote configure parameters via LoRaWAN Downlink
718 * Firmware upgradable via program port
719 * Powered by external 12v battery
720 * Back up rechargeable 1000mAh battery
721 * IP Rating: IP65
722 * Support default sensors or 3rd party RS485 sensors
723
724
725
726 == 5.2 Power Consumption ==
727
728
729 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
730
731
732 == 5.3 Storage & Operation Temperature ==
733
734
735 -20°C to +60°C
736
737
738 == 5.4 Pin Mapping ==
739
740
741 [[image:1656054149793-239.png]]
742
743
744 == 5.5 Mechanical ==
745
746
747 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
748
749
750 == 5.6 Connect to RS485 Sensors ==
751
752
753 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
754
755
756 [[image:1656054389031-379.png]]
757
758
759 Hardware Design for the Converter Board please see:
760
761 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
762
763
764 = 6. Weather Sensors =
765
766 == 6.1 Rain Gauge ~-~- WSS-01 ==
767
768
769 (((
770 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
771 )))
772
773 (((
774 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
775 )))
776
777 (((
778 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
779 )))
780
781 (((
782 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
783 )))
784
785 (((
786 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
787 )))
788
789
790 === 6.1.1 Feature ===
791
792
793 * RS485 Rain Gauge
794 * Small dimension, easy to install
795 * Vents under funnel, avoid leaf or other things to avoid rain flow.
796 * ABS enclosure.
797 * Horizontal adjustable.
798
799
800
801 === 6.1.2 Specification ===
802
803
804 * Resolution: 0.2mm
805 * Accuracy: ±3%
806 * Range: 0 ~~ 100mm
807 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
808 * Input Power: DC 5~~24v
809 * Interface: RS485
810 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
811 * Working Humidity: <100% (no dewing)
812 * Power Consumption: 4mA @ 12v.
813
814
815
816 === 6.1.3 Dimension ===
817
818
819 [[image:1656054957406-980.png]]
820
821
822 === 6.1.4 Pin Mapping ===
823
824
825 [[image:1656054972828-692.png]]
826
827
828 === 6.1.5 Installation Notice ===
829
830
831 (((
832 Do not power on while connect the cables. Double check the wiring before power on.
833 )))
834
835 (((
836 Installation Photo as reference:
837 )))
838
839
840 (((
841 (% style="color:#4472c4" %)** Install on Ground:**
842 )))
843
844 (((
845 WSS-01 Rain Gauge include screws so can install in ground directly .
846 )))
847
848
849 (((
850 (% style="color:#4472c4" %)** Install on pole:**
851 )))
852
853 (((
854 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
855 )))
856
857 [[image:image-20220624152218-1.png||height="526" width="276"]]
858
859 WS-K2: Bracket Kit for Pole installation
860
861
862 WSSC-K2 dimension document, please see:
863
864 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
865
866
867 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
868
869
870 [[image:1656055444035-179.png]]
871
872
873 (((
874 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
875 )))
876
877 (((
878 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
879 )))
880
881 (((
882 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
883 )))
884
885
886
887 === 6.2.1 Feature ===
888
889
890 * RS485 wind speed / direction sensor
891 * PC enclosure, resist corrosion
892
893
894
895 === 6.2.2 Specification ===
896
897
898 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
899 * Wind direction range: 0 ~~ 360°
900 * Start wind speed: ≤0.3m/s
901 * Accuracy: ±(0.3+0.03V)m/s , ±1°
902 * Input Power: DC 5~~24v
903 * Interface: RS485
904 * Working Temperature: -30℃~70℃
905 * Working Humidity: <100% (no dewing)
906 * Power Consumption: 13mA ~~ 12v.
907 * Cable Length: 2 meters
908
909
910
911 === 6.2.3 Dimension ===
912
913
914 [[image:image-20220624152813-2.png]]
915
916
917 === 6.2.4 Pin Mapping ===
918
919
920 [[image:1656056281231-994.png]]
921
922
923 === 6.2.5  Angle Mapping ===
924
925
926 [[image:1656056303845-585.png]]
927
928
929
930 === 6.2.6  Installation Notice ===
931
932
933 (((
934 Do not power on while connect the cables. Double check the wiring before power on.
935 )))
936
937 (((
938 The sensor must be installed with below direction, towards North.
939
940
941 )))
942
943 [[image:image-20220624153901-3.png]]
944
945
946 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
947
948
949 (((
950 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
951 )))
952
953 (((
954 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
955 )))
956
957 (((
958 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
959 )))
960
961
962 === 6.3.1 Feature ===
963
964
965 * RS485 CO2, PM2.5, PM10 sensor
966 * NDIR to measure CO2 with Internal Temperature Compensation
967 * Laser Beam Scattering to PM2.5 and PM10
968
969
970
971 === 6.3.2 Specification ===
972
973
974 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
975 * CO2 resolution: 1ppm
976 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
977 * PM2.5/PM10 resolution: 1μg/m3
978 * Input Power: DC 7 ~~ 24v
979 * Preheat time: 3min
980 * Interface: RS485
981 * Working Temperature:
982 ** CO2: 0℃~50℃;
983 ** PM2.5/PM10: -30 ~~ 50℃
984 * Working Humidity:
985 ** PM2.5/PM10: 15~80%RH (no dewing)
986 ** CO2: 0~95%RH
987 * Power Consumption: 50mA@ 12v.
988
989
990
991 === 6.3.3 Dimension ===
992
993
994 [[image:1656056708366-230.png]]
995
996
997
998 === 6.3.4 Pin Mapping ===
999
1000
1001 [[image:1656056722648-743.png]]
1002
1003
1004 === 6.3.5 Installation Notice ===
1005
1006
1007 Do not power on while connect the cables. Double check the wiring before power on.
1008
1009
1010 [[image:1656056751153-304.png]]
1011
1012
1013 [[image:1656056766224-773.png]]
1014
1015
1016 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1017
1018
1019 (((
1020 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1021 )))
1022
1023 (((
1024 WSS-04 has auto heating feature, this ensures measurement more reliable.
1025 )))
1026
1027 (((
1028 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1029 )))
1030
1031
1032 === 6.4.1 Feature ===
1033
1034
1035 * RS485 Rain/Snow detect sensor
1036 * Surface heating to dry
1037 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1038
1039
1040
1041 === 6.4.2 Specification ===
1042
1043
1044 * Detect if there is rain or snow
1045 * Input Power: DC 12 ~~ 24v
1046 * Interface: RS485
1047 * Working Temperature: -30℃~70℃
1048 * Working Humidity: 10~90%RH
1049 * Power Consumption:
1050 ** No heating: 12mA @ 12v,
1051 ** heating: 94ma @ 12v.
1052
1053
1054
1055 === 6.4.3 Dimension ===
1056
1057
1058 [[image:1656056844782-155.png]]
1059
1060
1061 === 6.4.4 Pin Mapping ===
1062
1063
1064 [[image:1656056855590-754.png]]
1065
1066
1067 === 6.4.5 Installation Notice ===
1068
1069
1070 Do not power on while connect the cables. Double check the wiring before power on.
1071
1072
1073 (((
1074 Install with 15°degree.
1075 )))
1076
1077 [[image:1656056873783-780.png]]
1078
1079
1080 [[image:1656056883736-804.png]]
1081
1082
1083 === 6.4.6 Heating ===
1084
1085
1086 (((
1087 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1088 )))
1089
1090
1091 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1092
1093
1094 (((
1095 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1096 )))
1097
1098 (((
1099 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1100 )))
1101
1102
1103 === 6.5.1 Feature ===
1104
1105
1106 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1107
1108
1109
1110 === 6.5.2 Specification ===
1111
1112
1113 * Input Power: DC 12 ~~ 24v
1114 * Interface: RS485
1115 * Temperature Sensor Spec:
1116 ** Range: -30 ~~ 70℃
1117 ** resolution 0.1℃
1118 ** Accuracy: ±0.5℃
1119 * Humidity Sensor Spec:
1120 ** Range: 0 ~~ 100% RH
1121 ** resolution 0.1 %RH
1122 ** Accuracy: 3% RH
1123 * Pressure Sensor Spec:
1124 ** Range: 10~1100hPa
1125 ** Resolution: 0.1hPa
1126 ** Accuracy: ±0.1hPa
1127 * Illuminate sensor:
1128 ** Range: 0~2/20/200kLux
1129 ** Resolution: 10 Lux
1130 ** Accuracy: ±3%FS
1131 * Working Temperature: -30℃~70℃
1132 * Working Humidity: 10~90%RH
1133 * Power Consumption: 4mA @ 12v
1134
1135
1136
1137 === 6.5.3 Dimension ===
1138
1139
1140 [[image:1656057170639-522.png]]
1141
1142
1143 === 6.5.4 Pin Mapping ===
1144
1145
1146 [[image:1656057181899-910.png]]
1147
1148
1149 === 6.5.5 Installation Notice ===
1150
1151
1152 Do not power on while connect the cables. Double check the wiring before power on.
1153
1154 [[image:1656057199955-514.png]]
1155
1156
1157 [[image:1656057212438-475.png]]
1158
1159
1160 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1161
1162
1163 (((
1164 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1165 )))
1166
1167 (((
1168 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1169 )))
1170
1171 (((
1172 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1173 )))
1174
1175
1176 === 6.6.1 Feature ===
1177
1178
1179 * RS485 Total Solar Radiation sensor
1180 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1181 * Measure Reflected Radiation if sense area towards ground.
1182
1183
1184
1185 === 6.6.2 Specification ===
1186
1187
1188 * Input Power: DC 5 ~~ 24v
1189 * Interface: RS485
1190 * Detect spectrum: 0.3~3μm(300~3000nm)
1191 * Measure strength range: 0~2000W/m2
1192 * Resolution: 0.1W/m2
1193 * Accuracy: ±3%
1194 * Yearly Stability: ≤±2%
1195 * Cosine response: ≤7% (@ Sun angle 10°)
1196 * Temperature Effect: ±2%(-10℃~40℃)
1197 * Working Temperature: -40℃~70℃
1198 * Working Humidity: 10~90%RH
1199 * Power Consumption: 4mA @ 12v
1200
1201
1202
1203 === 6.6.3 Dimension ===
1204
1205
1206 [[image:1656057348695-898.png]]
1207
1208
1209 === 6.6.4 Pin Mapping ===
1210
1211
1212 [[image:1656057359343-744.png]]
1213
1214
1215 === 6.6.5 Installation Notice ===
1216
1217
1218 Do not power on while connect the cables. Double check the wiring before power on.
1219
1220
1221 [[image:1656057369259-804.png]]
1222
1223
1224 [[image:1656057377943-564.png]]
1225
1226
1227 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1228
1229
1230 (((
1231 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1232 )))
1233
1234 (((
1235 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1236 )))
1237
1238 (((
1239 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1240 )))
1241
1242
1243 === 6.7.1 Feature ===
1244
1245
1246 (((
1247 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1248 )))
1249
1250 (((
1251 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1252 )))
1253
1254
1255 === 6.7.2 Specification ===
1256
1257
1258 * Input Power: DC 5 ~~ 24v
1259 * Interface: RS485
1260 * Response Spectrum: 400~700nm
1261 * Measure range: 0~2500μmol/m2•s
1262 * Resolution: 1μmol/m2•s
1263 * Accuracy: ±2%
1264 * Yearly Stability: ≤±2%
1265 * Working Temperature: -30℃~75℃
1266 * Working Humidity: 10~90%RH
1267 * Power Consumption: 3mA @ 12v
1268
1269
1270
1271 === 6.7.3 Dimension ===
1272
1273
1274 [[image:1656057538793-888.png]]
1275
1276
1277 === 6.7.4 Pin Mapping ===
1278
1279
1280 [[image:1656057548116-203.png]]
1281
1282
1283 === 6.7.5 Installation Notice ===
1284
1285
1286 Do not power on while connect the cables. Double check the wiring before power on.
1287
1288
1289 [[image:1656057557191-895.png]]
1290
1291
1292 [[image:1656057565783-251.png]]
1293
1294
1295 = 7. FAQ =
1296
1297 == 7.1 What else do I need to purchase to build Weather Station? ==
1298
1299
1300 Below is the installation photo and structure:
1301
1302
1303 [[image:1656057598349-319.png]]
1304
1305
1306 [[image:1656057608049-693.png]]
1307
1308
1309 == 7.2 How to upgrade firmware for WSC1-L? ==
1310
1311
1312 (((
1313 Firmware Location & Change log:
1314
1315 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1316 )))
1317
1318 (((
1319
1320 )))
1321
1322 (((
1323 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1324 )))
1325
1326
1327 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1328
1329
1330 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1331
1332
1333 == 7.4 Can I add my weather sensors? ==
1334
1335
1336 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1337
1338
1339 = 8. Trouble Shooting =
1340
1341 == 8.1 AT Command input doesn't work ==
1342
1343
1344 (((
1345 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1346 )))
1347
1348
1349 = 9. Order Info =
1350
1351 == 9.1 Main Process Unit ==
1352
1353
1354 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1355
1356 (% style="color:blue" %)**XX**(%%): The default frequency band
1357
1358 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1359 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1360 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1361 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1362 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1363 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1364 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1365 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1366
1367
1368
1369 == 9.2 Sensors ==
1370
1371
1372 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1373 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1374 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1375 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1376 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1377 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1378 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1379 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1380 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1381 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1382
1383
1384
1385 = 10. Support =
1386
1387
1388 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1389 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1390
1391
1392
1393 = 11. Appendix I: Field Installation Photo =
1394
1395
1396 [[image:1656058346362-132.png||height="685" width="732"]]
1397
1398 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1399
1400
1401
1402 (% style="color:blue" %)**Wind Speed/Direction**
1403
1404 [[image:1656058373174-421.png||height="356" width="731"]]
1405
1406
1407
1408 (% style="color:blue" %)**Total Solar Radiation sensor**
1409
1410 [[image:1656058397364-282.png||height="453" width="732"]]
1411
1412
1413
1414 (% style="color:blue" %)**PAR Sensor**
1415
1416 [[image:1656058416171-615.png]]
1417
1418
1419
1420 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1421
1422 [[image:1656058441194-827.png||height="672" width="523"]]
1423
1424
1425
1426 (% style="color:blue" %)**Rain / Snow Detect**
1427
1428 [[image:1656058451456-166.png]]
1429
1430
1431
1432 (% style="color:blue" %)**Rain Gauge**
1433
1434 [[image:1656058463455-569.png||height="499" width="550"]]
1435
1436