Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43
44 == 2.1 Installation ==
45
46
47 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
48
49
50 [[image:1656041948552-849.png]]
51
52
53 (% style="color:blue" %)** Wiring:**
54
55 ~1. WSC1-L and sensors all powered by solar power via MPPT
56
57 2. WSC1-L and sensors connect to each other via RS485/Modbus.
58
59 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
60
61
62 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
63
64
65 [[image:1656042136605-251.png]]
66
67
68 (% style="color:red" %)**Notice 1:**
69
70 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
71 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
72 * Weather sensors won't work if solar panel and storage battery fails.
73
74 (% style="color:red" %)**Notice 2:**
75
76 Due to shipment and importation limitation, user is better to purchase below parts locally:
77
78 * Solar Panel
79 * Storage Battery
80 * MPPT Solar Recharger
81 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
82 * Cabinet.
83
84 == 2.2 How it works? ==
85
86
87 (((
88 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
89 )))
90
91
92 (((
93 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
94 )))
95
96 [[image:1656042192857-709.png]]
97
98
99 (% style="color:red" %)**Notice:**
100
101 1. WSC1-L will auto scan available weather sensors when power on or reboot.
102 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
103
104 == 2.3 Example to use for LoRaWAN network ==
105
106
107 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
108
109
110 [[image:1656042612899-422.png]]
111
112
113
114 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
115
116
117 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
118
119 Each WSC1-L is shipped with a sticker with the default device EUI as below:
120
121 [[image:image-20220624115043-1.jpeg]]
122
123
124 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
125
126 **Add APP EUI in the application.**
127
128 [[image:1656042662694-311.png]]
129
130 [[image:1656042673910-429.png]]
131
132
133
134
135 **Choose Manually to add WSC1-L**
136
137 [[image:1656042695755-103.png]]
138
139
140
141 **Add APP KEY and DEV EUI**
142
143 [[image:1656042723199-746.png]]
144
145
146
147 (((
148 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
149 )))
150
151
152 [[image:1656042745346-283.png]]
153
154
155
156 == 2.4 Uplink Payload ==
157
158
159 Uplink payloads include two types: Valid Sensor Value and other status / control command.
160
161 * Valid Sensor Value: Use FPORT=2
162 * Other control command: Use FPORT other than 2.
163
164 === 2.4.1 Uplink FPORT~=5, Device Status ===
165
166
167 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
168
169
170 (((
171 User can also use downlink command**(0x2301)** to ask WSC1-L to resend this uplink
172 )))
173
174 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
175 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
176 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
177
178 [[image:1656043061044-343.png]]
179
180
181 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
182
183
184
185 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
186
187
188 For WSC1-L, this value is 0x0D.
189
190
191
192 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
193
194
195 0x0100, Means: v1.0.0 version.
196
197
198
199 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
200
201
202 *0x01: EU868
203
204 *0x02: US915
205
206 *0x03: IN865
207
208 *0x04: AU915
209
210 *0x05: KZ865
211
212 *0x06: RU864
213
214 *0x07: AS923
215
216 *0x08: AS923-1
217
218 *0x09: AS923-2
219
220 *0x0a: AS923-3
221
222
223
224 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
225
226
227 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
228
229
230
231 ==== (% style="color:#037691" %)**BAT:**(%%) ====
232
233
234 (((
235 shows the battery voltage for WSC1-L MCU.
236 )))
237
238 (((
239 Ex1: 0x0BD6/1000 = 3.03 V
240 )))
241
242
243
244 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
245
246
247 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
248 |Byte3|Byte2|Byte1
249
250 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
251
252 [[image:image-20220624134713-1.png]]
253
254
255 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
256
257 External sensors detected by WSC1-L include :
258
259 custom sensor A1,
260
261 PAR sensor (WSS-07),
262
263 Total Solar Radiation sensor (WSS-06),
264
265 CO2/PM2.5/PM10 (WSS-03),
266
267 Wind Speed/Direction (WSS-02)
268
269
270 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
271
272 (% style="color:#037691" %)**Downlink:0x26 01**
273
274 [[image:1656049673488-415.png]]
275
276
277
278 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
279
280
281 (((
282 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
283 )))
284
285 (((
286 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
287 )))
288
289
290 (((
291 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
292 )))
293
294
295 (% style="color:#4472c4" %)** Uplink Payload**:
296
297 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
298 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
299
300 (% style="color:#4472c4" %)** Sensor Segment Define**:
301
302 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
303 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
304
305 (% style="color:#4472c4" %)**Sensor Type Table:**
306
307 [[image:image-20220706154434-1.png]]
308
309
310 (((
311 Below is an example payload:  [[image:image-20220624140615-3.png]]
312 )))
313
314 (((
315
316 )))
317
318 (((
319 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
320 )))
321
322 * (((
323 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
324 )))
325
326 (((
327 Uplink 1:  [[image:image-20220624140735-4.png]]
328 )))
329
330 (((
331
332 )))
333
334 (((
335 Uplink 2:  [[image:image-20220624140842-5.png]]
336 )))
337
338 (((
339
340 )))
341
342 * (((
343 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
344 )))
345
346 (((
347 Uplink 1:  [[image:image-20220624141025-6.png]]
348 )))
349
350 (((
351
352 )))
353
354 Uplink 2:  [[image:image-20220624141100-7.png]]
355
356
357
358 === 2.4.3 Decoder in TTN V3 ===
359
360
361 (((
362 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
363 )))
364
365 (((
366
367 )))
368
369 (((
370 Download decoder for suitable platform from:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>https://github.com/dragino/dragino-end-node-decoder]]
371 )))
372
373 (((
374
375 )))
376
377 (((
378 and put as below:
379
380
381 )))
382
383 [[image:1656051152438-578.png]]
384
385
386
387 == 2.5 Show data on Application Server ==
388
389
390 (((
391 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
392 )))
393
394 (((
395
396 )))
397
398 (((
399 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
400 )))
401
402 (((
403 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
404 )))
405
406 [[image:1656051197172-131.png]]
407
408
409
410 **Add TagoIO:**
411
412 [[image:1656051223585-631.png]]
413
414
415
416 **Authorization:**
417
418 [[image:1656051248318-368.png]]
419
420
421
422 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
423
424
425 [[image:1656051277767-168.png]]
426
427
428
429 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
430
431
432 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
433
434 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
435 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
436
437 There are two kinds of commands to configure WSC1-L, they are:
438
439 * (% style="color:#4472c4" %)**General Commands**.
440
441 These commands are to configure:
442
443 * General system settings like: uplink interval.
444 * LoRaWAN protocol & radio related command.
445
446 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
447
448 (% style="color:red" %)**Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware. **
449
450
451 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
452
453 These commands only valid for WSC1-L, as below:
454
455
456
457 == 3.1 Set Transmit Interval Time ==
458
459
460 Feature: Change LoRaWAN End Node Transmit Interval.
461
462 (% style="color:#037691" %)**AT Command: AT+TDC**
463
464 [[image:image-20220624142619-8.png]]
465
466
467 (% style="color:#037691" %)**Downlink Command: 0x01**
468
469 Format: Command Code (0x01) followed by 3 bytes time value.
470
471 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
472
473 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
474 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
475
476 == 3.2 Set Emergency Mode ==
477
478
479 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
480
481 (% style="color:#037691" %)**AT Command:**
482
483 [[image:image-20220624142956-9.png]]
484
485
486 (% style="color:#037691" %)**Downlink Command:**
487
488 * 0xE101     Same as: AT+ALARMMOD=1
489 * 0xE100     Same as: AT+ALARMMOD=0
490
491 == 3.3 Add or Delete RS485 Sensor ==
492
493
494 (((
495 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
496 )))
497
498 (((
499 (% style="color:#037691" %)**AT Command: **
500 )))
501
502 (((
503 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
504 )))
505
506 * (((
507 Type_Code range:  A1 ~~ A4
508 )))
509 * (((
510 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
511 )))
512 * (((
513 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
514 )))
515 * (((
516 Read_Length:  RS485 response frame length supposed to receive. Max can receive
517 )))
518 * (((
519 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
520 )))
521 * (((
522 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
523 )))
524 * (((
525 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
526 )))
527
528 (((
529 **Example:**
530 )))
531
532 (((
533 User need to change external sensor use the type code as address code.
534 )))
535
536 (((
537 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
538 )))
539
540 [[image:image-20220624143553-10.png]]
541
542
543 The response frame of the sensor is as follows:
544
545 [[image:image-20220624143618-11.png]]
546
547
548
549 **Then the following parameters should be:**
550
551 * Address_Code range: A1
552 * Query_Length: 8
553 * Query_Command: A103000000019CAA
554 * Read_Length: 8
555 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
556 * has_CRC: 1
557 * timeout: 1500 (Fill in the test according to the actual situation)
558
559 **So the input command is:**
560
561 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
562
563
564 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
565
566 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
567 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
568 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
569
570 **Related commands:**
571
572 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
573
574 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
575
576
577 (% style="color:#037691" %)**Downlink Command:  **
578
579 **delete custom sensor A1:**
580
581 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
582
583 **Remove all custom sensors**
584
585 * 0xE5FF  
586
587 == 3.4 RS485 Test Command ==
588
589
590 (% style="color:#037691" %)**AT Command:**
591
592 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
593 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
594 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
595 (((
596 Send command to 485 sensor
597 )))
598
599 (((
600 Range : no more than 10 bytes
601 )))
602 )))|(% style="width:85px" %)OK
603
604 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
605
606 AT+RSWRITE=0103000001840A
607
608
609 (% style="color:#037691" %)**Downlink Command:**
610
611 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
612
613 == 3.5 RS485 response timeout ==
614
615
616 Feature: Set or get extended time to receive 485 sensor data.
617
618 (% style="color:#037691" %)**AT Command:**
619
620 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
621 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
622 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
623 (((
624 Set response timeout to:
625 )))
626
627 (((
628 Range : 0~~10000
629 )))
630 )))|(% style="width:85px" %)OK
631
632 (% style="color:#037691" %)**Downlink Command:**
633
634 Format: Command Code (0xE0) followed by 3 bytes time value.
635
636 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
637
638 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
639 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
640
641 == 3.6 Set Sensor Type ==
642
643
644 (((
645 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
646 )))
647
648 (((
649 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
650 )))
651
652 [[image:image-20220624144904-12.png]]
653
654
655 (% style="color:#037691" %)**AT Command:**
656
657 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
658 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
659 |(% style="width:157px" %)AT+STYPE=802212|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
660
661 Eg: The setting command **AT+STYPE=802212** means:
662
663 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
664 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
665 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
666 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
667 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
668 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
669 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
670
671 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
672
673
674 (% style="color:#037691" %)**Downlink Command:**
675
676 * 0xE400802212     Same as: AT+STYPE=802212
677
678 (% style="color:red" %)**Note:**
679
680 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
681
682
683
684 = 4. Power consumption and battery =
685
686
687 == 4.1 Total Power Consumption ==
688
689
690 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
691
692
693
694 == 4.2 Reduce power consumption ==
695
696
697 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
698
699
700
701 == 4.3 Battery ==
702
703
704 (((
705 All sensors are only power by external power source. If external power source is off. All sensor won't work.
706 )))
707
708 (((
709 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
710 )))
711
712
713
714 = 5. Main Process Unit WSC1-L =
715
716
717 == 5.1 Features ==
718
719
720 * Wall Attachable.
721 * LoRaWAN v1.0.3 Class A protocol.
722 * RS485 / Modbus protocol
723 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
724 * AT Commands to change parameters
725 * Remote configure parameters via LoRaWAN Downlink
726 * Firmware upgradable via program port
727 * Powered by external 12v battery
728 * Back up rechargeable 1000mAh battery
729 * IP Rating: IP65
730 * Support default sensors or 3rd party RS485 sensors
731
732 == 5.2 Power Consumption ==
733
734
735 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
736
737
738
739 == 5.3 Storage & Operation Temperature ==
740
741
742 -20°C to +60°C
743
744
745
746 == 5.4 Pin Mapping ==
747
748
749 [[image:1656054149793-239.png]]
750
751
752
753 == 5.5 Mechanical ==
754
755
756 Refer LSn50v2 enclosure drawing in:  [[https:~~/~~/www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0>>https://www.dropbox.com/sh/0ir0l9jjmk6p95e/AADwWXorcKuNpPR5em7VgrEja?dl=0]]
757
758
759
760 == 5.6 Connect to RS485 Sensors ==
761
762
763 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
764
765
766 [[image:1656054389031-379.png]]
767
768
769 Hardware Design for the Converter Board please see:
770
771 [[https:~~/~~/www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0>>https://www.dropbox.com/sh/bqyvsvitb70qtgf/AABLpD7_yxsQ_drVMxHIEI7wa?dl=0]]
772
773
774
775 = 6. Weather Sensors =
776
777
778 == 6.1 Rain Gauge ~-~- WSS-01 ==
779
780
781 (((
782 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
783 )))
784
785 (((
786 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
787 )))
788
789 (((
790 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
791 )))
792
793 (((
794 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
795 )))
796
797 (((
798 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
799 )))
800
801
802
803 === 6.1.1 Feature ===
804
805
806 * RS485 Rain Gauge
807 * Small dimension, easy to install
808 * Vents under funnel, avoid leaf or other things to avoid rain flow.
809 * ABS enclosure.
810 * Horizontal adjustable.
811
812 === 6.1.2 Specification ===
813
814
815 * Resolution: 0.2mm
816 * Accuracy: ±3%
817 * Range: 0 ~~ 100mm
818 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
819 * Input Power: DC 5~~24v
820 * Interface: RS485
821 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
822 * Working Humidity: <100% (no dewing)
823 * Power Consumption: 4mA @ 12v.
824
825 === 6.1.3 Dimension ===
826
827
828 [[image:1656054957406-980.png]]
829
830
831
832 === 6.1.4 Pin Mapping ===
833
834
835 [[image:1656054972828-692.png]]
836
837
838
839 === 6.1.5 Installation Notice ===
840
841
842 (((
843 Do not power on while connect the cables. Double check the wiring before power on.
844 )))
845
846 (((
847 Installation Photo as reference:
848 )))
849
850
851 (((
852 (% style="color:#4472c4" %)** Install on Ground:**
853 )))
854
855 (((
856 WSS-01 Rain Gauge include screws so can install in ground directly .
857 )))
858
859
860 (((
861 (% style="color:#4472c4" %)** Install on pole:**
862 )))
863
864 (((
865 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
866 )))
867
868 [[image:image-20220624152218-1.png||height="526" width="276"]]
869
870 WS-K2: Bracket Kit for Pole installation
871
872
873 WSSC-K2 dimension document, please see:
874
875 [[https:~~/~~/www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0>>https://www.dropbox.com/sh/7wa2elfm2q8xq4l/AAB7ZB_gSVGrhmJEgU2LyTQNa?dl=0]]
876
877
878
879 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
880
881
882 [[image:1656055444035-179.png]]
883
884
885 (((
886 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
887 )))
888
889 (((
890 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
891 )))
892
893 (((
894 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
895 )))
896
897
898
899 === 6.2.1 Feature ===
900
901
902 * RS485 wind speed / direction sensor
903 * PC enclosure, resist corrosion
904
905 === 6.2.2 Specification ===
906
907
908 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
909 * Wind direction range: 0 ~~ 360°
910 * Start wind speed: ≤0.3m/s
911 * Accuracy: ±(0.3+0.03V)m/s , ±1°
912 * Input Power: DC 5~~24v
913 * Interface: RS485
914 * Working Temperature: -30℃~70℃
915 * Working Humidity: <100% (no dewing)
916 * Power Consumption: 13mA ~~ 12v.
917 * Cable Length: 2 meters
918
919 === 6.2.3 Dimension ===
920
921
922 [[image:image-20220624152813-2.png]]
923
924
925
926 === 6.2.4 Pin Mapping ===
927
928
929 [[image:1656056281231-994.png]]
930
931
932
933 === 6.2.5  Angle Mapping ===
934
935
936 [[image:1656056303845-585.png]]
937
938
939
940 === 6.2.6  Installation Notice ===
941
942
943 (((
944 Do not power on while connect the cables. Double check the wiring before power on.
945 )))
946
947 (((
948 The sensor must be installed with below direction, towards North.
949
950
951 )))
952
953 [[image:image-20220624153901-3.png]]
954
955
956
957 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
958
959
960 (((
961 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
962 )))
963
964 (((
965 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
966 )))
967
968 (((
969 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
970 )))
971
972
973
974 === 6.3.1 Feature ===
975
976
977 * RS485 CO2, PM2.5, PM10 sensor
978 * NDIR to measure CO2 with Internal Temperature Compensation
979 * Laser Beam Scattering to PM2.5 and PM10
980
981 === 6.3.2 Specification ===
982
983
984 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
985 * CO2 resolution: 1ppm
986 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
987 * PM2.5/PM10 resolution: 1μg/m3
988 * Input Power: DC 7 ~~ 24v
989 * Preheat time: 3min
990 * Interface: RS485
991 * Working Temperature:
992 ** CO2: 0℃~50℃;
993 ** PM2.5/PM10: -30 ~~ 50℃
994 * Working Humidity:
995 ** PM2.5/PM10: 15~80%RH (no dewing)
996 ** CO2: 0~95%RH
997 * Power Consumption: 50mA@ 12v.
998
999 === 6.3.3 Dimension ===
1000
1001
1002 [[image:1656056708366-230.png]]
1003
1004
1005
1006 === 6.3.4 Pin Mapping ===
1007
1008
1009 [[image:1656056722648-743.png]]
1010
1011
1012
1013 === 6.3.5 Installation Notice ===
1014
1015
1016 Do not power on while connect the cables. Double check the wiring before power on.
1017
1018
1019 [[image:1656056751153-304.png]]
1020
1021 [[image:1656056766224-773.png]]
1022
1023
1024
1025 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
1026
1027
1028 (((
1029 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
1030 )))
1031
1032 (((
1033 WSS-04 has auto heating feature, this ensures measurement more reliable.
1034 )))
1035
1036 (((
1037 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
1038 )))
1039
1040
1041
1042 === 6.4.1 Feature ===
1043
1044
1045 * RS485 Rain/Snow detect sensor
1046 * Surface heating to dry
1047 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
1048
1049 === 6.4.2 Specification ===
1050
1051
1052 * Detect if there is rain or snow
1053 * Input Power: DC 12 ~~ 24v
1054 * Interface: RS485
1055 * Working Temperature: -30℃~70℃
1056 * Working Humidity: 10~90%RH
1057 * Power Consumption:
1058 ** No heating: 12mA @ 12v,
1059 ** heating: 94ma @ 12v.
1060
1061 === 6.4.3 Dimension ===
1062
1063
1064 [[image:1656056844782-155.png]]
1065
1066
1067
1068 === 6.4.4 Pin Mapping ===
1069
1070
1071 [[image:1656056855590-754.png]]
1072
1073
1074
1075 === 6.4.5 Installation Notice ===
1076
1077
1078 Do not power on while connect the cables. Double check the wiring before power on.
1079
1080
1081 (((
1082 Install with 15°degree.
1083 )))
1084
1085 [[image:1656056873783-780.png]]
1086
1087
1088 [[image:1656056883736-804.png]]
1089
1090
1091
1092 === 6.4.6 Heating ===
1093
1094
1095 (((
1096 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1097 )))
1098
1099
1100
1101 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1102
1103
1104 (((
1105 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1106 )))
1107
1108 (((
1109 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1110 )))
1111
1112
1113
1114 === 6.5.1 Feature ===
1115
1116
1117 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1118
1119 === 6.5.2 Specification ===
1120
1121
1122 * Input Power: DC 12 ~~ 24v
1123 * Interface: RS485
1124 * Temperature Sensor Spec:
1125 ** Range: -30 ~~ 70℃
1126 ** resolution 0.1℃
1127 ** Accuracy: ±0.5℃
1128 * Humidity Sensor Spec:
1129 ** Range: 0 ~~ 100% RH
1130 ** resolution 0.1 %RH
1131 ** Accuracy: 3% RH
1132 * Pressure Sensor Spec:
1133 ** Range: 10~1100hPa
1134 ** Resolution: 0.1hPa
1135 ** Accuracy: ±0.1hPa
1136 * Illuminate sensor:
1137 ** Range: 0~2/20/200kLux
1138 ** Resolution: 10 Lux
1139 ** Accuracy: ±3%FS
1140 * Working Temperature: -30℃~70℃
1141 * Working Humidity: 10~90%RH
1142 * Power Consumption: 4mA @ 12v
1143
1144 === 6.5.3 Dimension ===
1145
1146
1147 [[image:1656057170639-522.png]]
1148
1149
1150
1151 === 6.5.4 Pin Mapping ===
1152
1153
1154 [[image:1656057181899-910.png]]
1155
1156
1157
1158 === 6.5.5 Installation Notice ===
1159
1160
1161 Do not power on while connect the cables. Double check the wiring before power on.
1162
1163 [[image:1656057199955-514.png]]
1164
1165
1166 [[image:1656057212438-475.png]]
1167
1168
1169
1170 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1171
1172
1173 (((
1174 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1175 )))
1176
1177 (((
1178 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1179 )))
1180
1181 (((
1182 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1183 )))
1184
1185
1186
1187 === 6.6.1 Feature ===
1188
1189
1190 * RS485 Total Solar Radiation sensor
1191 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1192 * Measure Reflected Radiation if sense area towards ground.
1193
1194 === 6.6.2 Specification ===
1195
1196
1197 * Input Power: DC 5 ~~ 24v
1198 * Interface: RS485
1199 * Detect spectrum: 0.3~3μm(300~3000nm)
1200 * Measure strength range: 0~2000W/m2
1201 * Resolution: 0.1W/m2
1202 * Accuracy: ±3%
1203 * Yearly Stability: ≤±2%
1204 * Cosine response: ≤7% (@ Sun angle 10°)
1205 * Temperature Effect: ±2%(-10℃~40℃)
1206 * Working Temperature: -40℃~70℃
1207 * Working Humidity: 10~90%RH
1208 * Power Consumption: 4mA @ 12v
1209
1210 === 6.6.3 Dimension ===
1211
1212
1213 [[image:1656057348695-898.png]]
1214
1215
1216
1217 === 6.6.4 Pin Mapping ===
1218
1219
1220 [[image:1656057359343-744.png]]
1221
1222
1223
1224 === 6.6.5 Installation Notice ===
1225
1226
1227 Do not power on while connect the cables. Double check the wiring before power on.
1228
1229
1230 [[image:1656057369259-804.png]]
1231
1232
1233 [[image:1656057377943-564.png]]
1234
1235
1236
1237 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1238
1239
1240 (((
1241 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1242 )))
1243
1244 (((
1245 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1246 )))
1247
1248 (((
1249 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1250 )))
1251
1252
1253
1254 === 6.7.1 Feature ===
1255
1256
1257 (((
1258 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1259 )))
1260
1261 (((
1262 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1263 )))
1264
1265
1266
1267 === 6.7.2 Specification ===
1268
1269
1270 * Input Power: DC 5 ~~ 24v
1271 * Interface: RS485
1272 * Response Spectrum: 400~700nm
1273 * Measure range: 0~2500μmol/m2•s
1274 * Resolution: 1μmol/m2•s
1275 * Accuracy: ±2%
1276 * Yearly Stability: ≤±2%
1277 * Working Temperature: -30℃~75℃
1278 * Working Humidity: 10~90%RH
1279 * Power Consumption: 3mA @ 12v
1280
1281 === 6.7.3 Dimension ===
1282
1283
1284 [[image:1656057538793-888.png]]
1285
1286
1287
1288 === 6.7.4 Pin Mapping ===
1289
1290
1291 [[image:1656057548116-203.png]]
1292
1293
1294
1295 === 6.7.5 Installation Notice ===
1296
1297
1298 Do not power on while connect the cables. Double check the wiring before power on.
1299
1300
1301 [[image:1656057557191-895.png]]
1302
1303
1304 [[image:1656057565783-251.png]]
1305
1306
1307
1308 = 7. FAQ =
1309
1310
1311 == 7.1 What else do I need to purchase to build Weather Station? ==
1312
1313
1314 Below is the installation photo and structure:
1315
1316
1317 [[image:1656057598349-319.png]]
1318
1319
1320 [[image:1656057608049-693.png]]
1321
1322
1323
1324 == 7.2 How to upgrade firmware for WSC1-L? ==
1325
1326
1327 (((
1328 Firmware Location & Change log:
1329
1330 [[https:~~/~~/www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0>>https://www.dropbox.com/sh/fuorz31grv8i3r1/AABmjFDU4FADNP6sq7fsmBwVa?dl=0]]
1331 )))
1332
1333 (((
1334
1335 )))
1336
1337 (((
1338 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1339 )))
1340
1341
1342
1343 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1344
1345
1346 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1347
1348
1349
1350 == 7.4 Can I add my weather sensors? ==
1351
1352
1353 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1354
1355
1356
1357 = 8. Trouble Shooting =
1358
1359
1360 == 8.1 AT Command input doesn't work ==
1361
1362
1363 (((
1364 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1365 )))
1366
1367
1368
1369 = 9. Order Info =
1370
1371
1372 == 9.1 Main Process Unit ==
1373
1374
1375 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1376
1377 (% style="color:blue" %)**XX**(%%): The default frequency band
1378
1379 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1380 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1381 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1382 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1383 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1384 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1385 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1386 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1387
1388 == 9.2 Sensors ==
1389
1390
1391 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1392 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1393 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1394 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1395 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1396 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1397 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1398 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1399 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1400 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1401
1402 = 10. Support =
1403
1404
1405 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1406 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1407
1408 = 11. Appendix I: Field Installation Photo =
1409
1410
1411 [[image:1656058346362-132.png||height="685" width="732"]]
1412
1413 (% style="color:blue" %)**Storage Battery: 12v,12AH li battery**
1414
1415
1416
1417 (% style="color:blue" %)**Wind Speed/Direction**
1418
1419 [[image:1656058373174-421.png||height="356" width="731"]]
1420
1421
1422
1423 (% style="color:blue" %)**Total Solar Radiation sensor**
1424
1425 [[image:1656058397364-282.png||height="453" width="732"]]
1426
1427
1428
1429 (% style="color:blue" %)**PAR Sensor**
1430
1431 [[image:1656058416171-615.png]]
1432
1433
1434
1435 (% style="color:blue" %)**CO2/PM2.5/PM10 3 in 1 sensor**
1436
1437 [[image:1656058441194-827.png||height="672" width="523"]]
1438
1439
1440
1441 (% style="color:blue" %)**Rain / Snow Detect**
1442
1443 [[image:1656058451456-166.png]]
1444
1445
1446
1447 (% style="color:blue" %)**Rain Gauge**
1448
1449 [[image:1656058463455-569.png||height="499" width="550"]]
1450
1451
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0