Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 (((
88 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
89 )))
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
98
99
100
101 == 2.3 Example to use for LoRaWAN network ==
102
103 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
104
105
106 [[image:1656042612899-422.png]]
107
108
109
110 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
111
112
113 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
114
115 Each WSC1-L is shipped with a sticker with the default device EUI as below:
116
117 [[image:image-20220624115043-1.jpeg]]
118
119
120 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
121
122 **Add APP EUI in the application.**
123
124 [[image:1656042662694-311.png]]
125
126 [[image:1656042673910-429.png]]
127
128
129
130
131 **Choose Manually to add WSC1-L**
132
133 [[image:1656042695755-103.png]]
134
135
136
137 **Add APP KEY and DEV EUI**
138
139 [[image:1656042723199-746.png]]
140
141
142
143 (((
144 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
145 )))
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159
160
161
162 === 2.4.1 Uplink FPORT~=5, Device Status ===
163
164 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
165
166
167 (((
168 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
169 )))
170
171 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
172 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
173 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
174
175 [[image:1656043061044-343.png]]
176
177
178 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
179
180
181
182 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
183
184 For WSC1-L, this value is 0x0D.
185
186
187
188 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
189
190 0x0100, Means: v1.0.0 version.
191
192
193
194 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
195
196 *0x01: EU868
197
198 *0x02: US915
199
200 *0x03: IN865
201
202 *0x04: AU915
203
204 *0x05: KZ865
205
206 *0x06: RU864
207
208 *0x07: AS923
209
210 *0x08: AS923-1
211
212 *0x09: AS923-2
213
214 *0x0a: AS923-3
215
216
217
218 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
219
220 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
221
222
223
224 ==== (% style="color:#037691" %)**BAT:**(%%) ====
225
226 (((
227 shows the battery voltage for WSC1-L MCU.
228 )))
229
230 (((
231 Ex1: 0x0BD6/1000 = 3.03 V
232 )))
233
234
235
236 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
237
238 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
239 |Byte3|Byte2|Byte1
240
241 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
242
243 [[image:image-20220624134713-1.png]]
244
245
246 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
247
248 External sensors detected by WSC1-L include :
249
250 custom sensor A1,
251
252 PAR sensor (WSS-07),
253
254 Total Solar Radiation sensor (WSS-06),
255
256 CO2/PM2.5/PM10 (WSS-03),
257
258 Wind Speed/Direction (WSS-02)
259
260
261 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
262
263 (% style="color:#037691" %)**Downlink:0x26 01**
264
265 [[image:1656049673488-415.png]]
266
267
268
269 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
270
271 (((
272 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
273 )))
274
275 (((
276 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
277 )))
278
279
280 (((
281 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
282 )))
283
284
285 (% style="color:#4472c4" %)** Uplink Payload**:
286
287 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
288 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
289
290 (% style="color:#4472c4" %)** Sensor Segment Define**:
291
292 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
293 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
294
295 (% style="color:#4472c4" %)**Sensor Type Table:**
296
297 [[image:image-20220706154434-1.png]]
298
299
300 (((
301 Below is an example payload:  [[image:image-20220624140615-3.png]]
302 )))
303
304 (((
305
306 )))
307
308 (((
309 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
310 )))
311
312 * (((
313 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
314 )))
315
316 (((
317 Uplink 1:  [[image:image-20220624140735-4.png]]
318 )))
319
320 (((
321
322 )))
323
324 (((
325 Uplink 2:  [[image:image-20220624140842-5.png]]
326 )))
327
328 (((
329
330 )))
331
332 * (((
333 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
334 )))
335
336 (((
337 Uplink 1:  [[image:image-20220624141025-6.png]]
338 )))
339
340 (((
341
342 )))
343
344 Uplink 2:  [[image:image-20220624141100-7.png]]
345
346
347
348 === 2.4.3 Decoder in TTN V3 ===
349
350 (((
351 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
352 )))
353
354 (((
355
356 )))
357
358 (((
359 Download decoder for suitable platform from:
360 )))
361
362 (((
363 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
364 )))
365
366 (((
367 and put as below:
368 )))
369
370 [[image:1656051152438-578.png]]
371
372
373
374 == 2.5 Show data on Application Server ==
375
376 (((
377 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
378 )))
379
380 (((
381
382 )))
383
384 (((
385 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
386 )))
387
388 (((
389 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
390 )))
391
392 [[image:1656051197172-131.png]]
393
394
395 **Add TagoIO:**
396
397 [[image:1656051223585-631.png]]
398
399
400 **Authorization:**
401
402 [[image:1656051248318-368.png]]
403
404
405 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
406
407 [[image:1656051277767-168.png]]
408
409
410
411 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
412
413 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
414
415 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
416 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
417
418 There are two kinds of commands to configure WSC1-L, they are:
419
420 * (% style="color:#4472c4" %)**General Commands**.
421
422 These commands are to configure:
423
424 * General system settings like: uplink interval.
425 * LoRaWAN protocol & radio related command.
426
427 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
428
429 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
430
431
432 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
433
434 These commands only valid for WSC1-L, as below:
435
436
437
438 == 3.1 Set Transmit Interval Time ==
439
440 Feature: Change LoRaWAN End Node Transmit Interval.
441
442 (% style="color:#037691" %)**AT Command: AT+TDC**
443
444 [[image:image-20220624142619-8.png]]
445
446
447 (% style="color:#037691" %)**Downlink Command: 0x01**
448
449 Format: Command Code (0x01) followed by 3 bytes time value.
450
451 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
452
453 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
454 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
455
456
457
458
459 == 3.2 Set Emergency Mode ==
460
461 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
462
463 (% style="color:#037691" %)**AT Command:**
464
465 [[image:image-20220624142956-9.png]]
466
467
468 (% style="color:#037691" %)**Downlink Command:**
469
470 * 0xE101     Same as: AT+ALARMMOD=1
471 * 0xE100     Same as: AT+ALARMMOD=0
472
473
474
475
476 == 3.3 Add or Delete RS485 Sensor ==
477
478 (((
479 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
480 )))
481
482 (((
483 (% style="color:#037691" %)**AT Command: **
484 )))
485
486 (((
487 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
488 )))
489
490 * (((
491 Type_Code range:  A1 ~~ A4
492 )))
493 * (((
494 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
495 )))
496 * (((
497 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
498 )))
499 * (((
500 Read_Length:  RS485 response frame length supposed to receive. Max can receive
501 )))
502 * (((
503 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
504 )))
505 * (((
506 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
507 )))
508 * (((
509 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
510 )))
511
512 (((
513 **Example:**
514 )))
515
516 (((
517 User need to change external sensor use the type code as address code.
518 )))
519
520 (((
521 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
522 )))
523
524 [[image:image-20220624143553-10.png]]
525
526
527 The response frame of the sensor is as follows:
528
529 [[image:image-20220624143618-11.png]]
530
531
532
533 **Then the following parameters should be:**
534
535 * Address_Code range: A1
536 * Query_Length: 8
537 * Query_Command: A103000000019CAA
538 * Read_Length: 8
539 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
540 * has_CRC: 1
541 * timeout: 1500 (Fill in the test according to the actual situation)
542
543 **So the input command is:**
544
545 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
546
547
548 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
549
550 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
551 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
552 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
553
554 **Related commands:**
555
556 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
557
558 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
559
560
561 (% style="color:#037691" %)**Downlink Command:  **
562
563 **delete custom sensor A1:**
564
565 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
566
567 **Remove all custom sensors**
568
569 * 0xE5FF  
570
571
572
573
574 == 3.4 RS485 Test Command ==
575
576 (% style="color:#037691" %)**AT Command:**
577
578 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
579 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
580 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
581 (((
582 Send command to 485 sensor
583 )))
584
585 (((
586 Range : no more than 10 bytes
587 )))
588 )))|(% style="width:85px" %)OK
589
590 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
591
592 AT+RSWRITE=0103000001840A
593
594
595 (% style="color:#037691" %)**Downlink Command:**
596
597 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
598
599
600
601
602 == 3.5 RS485 response timeout ==
603
604 Feature: Set or get extended time to receive 485 sensor data.
605
606 (% style="color:#037691" %)**AT Command:**
607
608 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
609 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
610 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
611 (((
612 Set response timeout to:
613 )))
614
615 (((
616 Range : 0~~10000
617 )))
618 )))|(% style="width:85px" %)OK
619
620 (% style="color:#037691" %)**Downlink Command:**
621
622 Format: Command Code (0xE0) followed by 3 bytes time value.
623
624 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
625
626 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
627 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
628
629
630
631
632 == 3.6 Set Sensor Type ==
633
634 (((
635 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
636 )))
637
638 (((
639 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
640 )))
641
642 [[image:image-20220624144904-12.png]]
643
644
645 (% style="color:#037691" %)**AT Command:**
646
647 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
648 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
649 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
650
651 Eg: The setting command **AT+STYPE=802212** means:
652
653 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
654 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
655 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
656 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
657 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
658 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
659 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
660
661 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
662
663
664 (% style="color:#037691" %)**Downlink Command:**
665
666 * 0xE400802212     Same as: AT+STYPE=80221
667
668 (% style="color:red" %)**Note:**
669
670 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
671
672
673
674 = 4. Power consumption and battery =
675
676 == 4.1 Total Power Consumption ==
677
678 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
679
680
681 == 4.2 Reduce power consumption ==
682
683 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
684
685
686 == 4.3 Battery ==
687
688 (((
689 All sensors are only power by external power source. If external power source is off. All sensor won't work.
690 )))
691
692 (((
693 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
694 )))
695
696
697 = 5. Main Process Unit WSC1-L =
698
699 == 5.1 Features ==
700
701 * Wall Attachable.
702 * LoRaWAN v1.0.3 Class A protocol.
703 * RS485 / Modbus protocol
704 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
705 * AT Commands to change parameters
706 * Remote configure parameters via LoRaWAN Downlink
707 * Firmware upgradable via program port
708 * Powered by external 12v battery
709 * Back up rechargeable 1000mAh battery
710 * IP Rating: IP65
711 * Support default sensors or 3rd party RS485 sensors
712
713
714
715
716 == 5.2 Power Consumption ==
717
718 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
719
720
721 == 5.3 Storage & Operation Temperature ==
722
723 -20°C to +60°C
724
725
726 == 5.4 Pin Mapping ==
727
728 [[image:1656054149793-239.png]]
729
730
731 == 5.5 Mechanical ==
732
733 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
734
735
736 == 5.6 Connect to RS485 Sensors ==
737
738 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
739
740
741 [[image:1656054389031-379.png]]
742
743
744 Hardware Design for the Converter Board please see:
745
746 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
747
748
749 = 6. Weather Sensors =
750
751 == 6.1 Rain Gauge ~-~- WSS-01 ==
752
753
754 (((
755 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
756 )))
757
758 (((
759 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
760 )))
761
762 (((
763 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
764 )))
765
766 (((
767 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
768 )))
769
770 (((
771 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
772 )))
773
774
775 === 6.1.1 Feature ===
776
777 * RS485 Rain Gauge
778 * Small dimension, easy to install
779 * Vents under funnel, avoid leaf or other things to avoid rain flow.
780 * ABS enclosure.
781 * Horizontal adjustable.
782
783
784
785
786 === 6.1.2 Specification ===
787
788 * Resolution: 0.2mm
789 * Accuracy: ±3%
790 * Range: 0 ~~ 100mm
791 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
792 * Input Power: DC 5~~24v
793 * Interface: RS485
794 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
795 * Working Humidity: <100% (no dewing)
796 * Power Consumption: 4mA @ 12v.
797
798
799
800
801 === 6.1.3 Dimension ===
802
803 [[image:1656054957406-980.png]]
804
805
806 === 6.1.4 Pin Mapping ===
807
808 [[image:1656054972828-692.png]]
809
810
811 === 6.1.5 Installation Notice ===
812
813 (((
814 Do not power on while connect the cables. Double check the wiring before power on.
815 )))
816
817 (((
818 Installation Photo as reference:
819 )))
820
821
822 (((
823 (% style="color:#4472c4" %)** Install on Ground:**
824 )))
825
826 (((
827 WSS-01 Rain Gauge include screws so can install in ground directly .
828 )))
829
830
831 (((
832 (% style="color:#4472c4" %)** Install on pole:**
833 )))
834
835 (((
836 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
837 )))
838
839 [[image:image-20220624152218-1.png||height="526" width="276"]]
840
841 WS-K2: Bracket Kit for Pole installation
842
843
844 WSSC-K2 dimension document, please see:
845
846 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
847
848
849 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
850
851 [[image:1656055444035-179.png]]
852
853 (((
854 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
855 )))
856
857 (((
858 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
859 )))
860
861 (((
862 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
863 )))
864
865
866 === 6.2.1 Feature ===
867
868 * RS485 wind speed / direction sensor
869 * PC enclosure, resist corrosion
870
871
872
873
874 === 6.2.2 Specification ===
875
876 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
877 * Wind direction range: 0 ~~ 360°
878 * Start wind speed: ≤0.3m/s
879 * Accuracy: ±(0.3+0.03V)m/s , ±1°
880 * Input Power: DC 5~~24v
881 * Interface: RS485
882 * Working Temperature: -30℃~70℃
883 * Working Humidity: <100% (no dewing)
884 * Power Consumption: 13mA ~~ 12v.
885 * Cable Length: 2 meters
886
887
888
889
890 === 6.2.3 Dimension ===
891
892 [[image:image-20220624152813-2.png]]
893
894
895 === 6.2.4 Pin Mapping ===
896
897 [[image:1656056281231-994.png]]
898
899
900 === 6.2.5  Angle Mapping ===
901
902 [[image:1656056303845-585.png]]
903
904
905 === 6.2.6  Installation Notice ===
906
907 (((
908 Do not power on while connect the cables. Double check the wiring before power on.
909 )))
910
911 (((
912 The sensor must be installed with below direction, towards North.
913 )))
914
915 [[image:image-20220624153901-3.png]]
916
917
918 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
919
920
921 (((
922 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
923 )))
924
925 (((
926 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
927 )))
928
929 (((
930 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
931 )))
932
933
934 === 6.3.1 Feature ===
935
936 * RS485 CO2, PM2.5, PM10 sensor
937 * NDIR to measure CO2 with Internal Temperature Compensation
938 * Laser Beam Scattering to PM2.5 and PM10
939
940 === 6.3.2 Specification ===
941
942 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
943 * CO2 resolution: 1ppm
944 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
945 * PM2.5/PM10 resolution: 1μg/m3
946 * Input Power: DC 7 ~~ 24v
947 * Preheat time: 3min
948 * Interface: RS485
949 * Working Temperature:
950 ** CO2: 0℃~50℃;
951 ** PM2.5/PM10: -30 ~~ 50℃
952 * Working Humidity:
953 ** PM2.5/PM10: 15~80%RH (no dewing)
954 ** CO2: 0~95%RH
955 * Power Consumption: 50mA@ 12v.
956
957 === 6.3.3 Dimension ===
958
959 [[image:1656056708366-230.png]]
960
961
962 === 6.3.4 Pin Mapping ===
963
964 [[image:1656056722648-743.png]]
965
966
967 === 6.3.5 Installation Notice ===
968
969 Do not power on while connect the cables. Double check the wiring before power on.
970
971 [[image:1656056751153-304.png]]
972
973 [[image:1656056766224-773.png]]
974
975
976 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
977
978
979 (((
980 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
981 )))
982
983 (((
984 WSS-04 has auto heating feature, this ensures measurement more reliable.
985 )))
986
987 (((
988 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
989 )))
990
991
992
993 === 6.4.1 Feature ===
994
995 * RS485 Rain/Snow detect sensor
996 * Surface heating to dry
997 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
998
999 === 6.4.2 Specification ===
1000
1001 * Detect if there is rain or snow
1002 * Input Power: DC 12 ~~ 24v
1003 * Interface: RS485
1004 * Working Temperature: -30℃~70℃
1005 * Working Humidity: 10~90%RH
1006 * Power Consumption:
1007 ** No heating: 12mA @ 12v,
1008 ** heating: 94ma @ 12v.
1009
1010 === 6.4.3 Dimension ===
1011
1012 [[image:1656056844782-155.png]]
1013
1014
1015 === 6.4.4 Pin Mapping ===
1016
1017 [[image:1656056855590-754.png]]
1018
1019
1020 === 6.4.5 Installation Notice ===
1021
1022 Do not power on while connect the cables. Double check the wiring before power on.
1023
1024
1025 (((
1026 Install with 15°degree.
1027 )))
1028
1029 [[image:1656056873783-780.png]]
1030
1031
1032 [[image:1656056883736-804.png]]
1033
1034
1035 === 6.4.6 Heating ===
1036
1037 (((
1038 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1039 )))
1040
1041
1042 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1043
1044
1045 (((
1046 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1047 )))
1048
1049 (((
1050 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1051 )))
1052
1053
1054 === 6.5.1 Feature ===
1055
1056 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1057
1058 === 6.5.2 Specification ===
1059
1060 * Input Power: DC 12 ~~ 24v
1061 * Interface: RS485
1062 * Temperature Sensor Spec:
1063 ** Range: -30 ~~ 70℃
1064 ** resolution 0.1℃
1065 ** Accuracy: ±0.5℃
1066 * Humidity Sensor Spec:
1067 ** Range: 0 ~~ 100% RH
1068 ** resolution 0.1 %RH
1069 ** Accuracy: 3% RH
1070 * Pressure Sensor Spec:
1071 ** Range: 10~1100hPa
1072 ** Resolution: 0.1hPa
1073 ** Accuracy: ±0.1hPa
1074 * Illuminate sensor:
1075 ** Range: 0~2/20/200kLux
1076 ** Resolution: 10 Lux
1077 ** Accuracy: ±3%FS
1078 * Working Temperature: -30℃~70℃
1079 * Working Humidity: 10~90%RH
1080 * Power Consumption: 4mA @ 12v
1081
1082 === 6.5.3 Dimension ===
1083
1084 [[image:1656057170639-522.png]]
1085
1086
1087 === 6.5.4 Pin Mapping ===
1088
1089 [[image:1656057181899-910.png]]
1090
1091
1092 === 6.5.5 Installation Notice ===
1093
1094 Do not power on while connect the cables. Double check the wiring before power on.
1095
1096 [[image:1656057199955-514.png]]
1097
1098
1099 [[image:1656057212438-475.png]]
1100
1101
1102 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1103
1104
1105 (((
1106 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1107 )))
1108
1109 (((
1110 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1111 )))
1112
1113 (((
1114 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1115 )))
1116
1117
1118
1119 === 6.6.1 Feature ===
1120
1121 * RS485 Total Solar Radiation sensor
1122 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1123 * Measure Reflected Radiation if sense area towards ground.
1124
1125 === 6.6.2 Specification ===
1126
1127 * Input Power: DC 5 ~~ 24v
1128 * Interface: RS485
1129 * Detect spectrum: 0.3~3μm(300~3000nm)
1130 * Measure strength range: 0~2000W/m2
1131 * Resolution: 0.1W/m2
1132 * Accuracy: ±3%
1133 * Yearly Stability: ≤±2%
1134 * Cosine response: ≤7% (@ Sun angle 10°)
1135 * Temperature Effect: ±2%(-10℃~40℃)
1136 * Working Temperature: -40℃~70℃
1137 * Working Humidity: 10~90%RH
1138 * Power Consumption: 4mA @ 12v
1139
1140 === 6.6.3 Dimension ===
1141
1142 [[image:1656057348695-898.png]]
1143
1144
1145 === 6.6.4 Pin Mapping ===
1146
1147 [[image:1656057359343-744.png]]
1148
1149
1150 === 6.6.5 Installation Notice ===
1151
1152 Do not power on while connect the cables. Double check the wiring before power on.
1153
1154 [[image:1656057369259-804.png]]
1155
1156
1157 [[image:1656057377943-564.png]]
1158
1159
1160 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1161
1162
1163 (((
1164 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1165 )))
1166
1167 (((
1168 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1169 )))
1170
1171 (((
1172 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1173 )))
1174
1175
1176 === 6.7.1 Feature ===
1177
1178 (((
1179 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1180 )))
1181
1182 (((
1183 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1184 )))
1185
1186
1187 === 6.7.2 Specification ===
1188
1189 * Input Power: DC 5 ~~ 24v
1190 * Interface: RS485
1191 * Response Spectrum: 400~700nm
1192 * Measure range: 0~2500μmol/m2•s
1193 * Resolution: 1μmol/m2•s
1194 * Accuracy: ±2%
1195 * Yearly Stability: ≤±2%
1196 * Working Temperature: -30℃~75℃
1197 * Working Humidity: 10~90%RH
1198 * Power Consumption: 3mA @ 12v
1199
1200 === 6.7.3 Dimension ===
1201
1202 [[image:1656057538793-888.png]]
1203
1204
1205 === 6.7.4 Pin Mapping ===
1206
1207 [[image:1656057548116-203.png]]
1208
1209
1210 === 6.7.5 Installation Notice ===
1211
1212 Do not power on while connect the cables. Double check the wiring before power on.
1213
1214
1215 [[image:1656057557191-895.png]]
1216
1217
1218 [[image:1656057565783-251.png]]
1219
1220
1221 = 7. FAQ =
1222
1223 == 7.1 What else do I need to purchase to build Weather Station? ==
1224
1225 Below is the installation photo and structure:
1226
1227 [[image:1656057598349-319.png]]
1228
1229
1230 [[image:1656057608049-693.png]]
1231
1232
1233
1234 == 7.2 How to upgrade firmware for WSC1-L? ==
1235
1236 (((
1237 Firmware Location & Change log:
1238 )))
1239
1240 (((
1241 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1242 )))
1243
1244
1245 (((
1246 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1247 )))
1248
1249
1250 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1251
1252 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1253
1254
1255 == 7.4 Can I add my weather sensors? ==
1256
1257 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1258
1259
1260 = 8. Trouble Shooting =
1261
1262 == 8.1 AT Command input doesn't work ==
1263
1264 (((
1265 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1266 )))
1267
1268
1269 = 9. Order Info =
1270
1271 == 9.1 Main Process Unit ==
1272
1273 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1274
1275 (% style="color:blue" %)**XX**(%%): The default frequency band
1276
1277 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1278 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1279 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1280 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1281 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1282 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1283 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1284 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1285
1286 == 9.2 Sensors ==
1287
1288 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1289 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1290 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1291 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1292 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1293 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1294 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1295 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1296 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1297 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1298
1299 = 10. Support =
1300
1301 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1302 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1303
1304 = 11. Appendix I: Field Installation Photo =
1305
1306
1307 [[image:1656058346362-132.png||height="685" width="732"]]
1308
1309 **Storage Battery**: 12v,12AH li battery
1310
1311
1312
1313 **Wind Speed/Direction**
1314
1315 [[image:1656058373174-421.png||height="356" width="731"]]
1316
1317
1318
1319 **Total Solar Radiation sensor**
1320
1321 [[image:1656058397364-282.png||height="453" width="732"]]
1322
1323
1324
1325 **PAR Sensor**
1326
1327 [[image:1656058416171-615.png]]
1328
1329
1330
1331 **CO2/PM2.5/PM10 3 in 1 sensor**
1332
1333 [[image:1656058441194-827.png||height="672" width="523"]]
1334
1335
1336
1337 **Rain / Snow Detect**
1338
1339 [[image:1656058451456-166.png]]
1340
1341
1342
1343 **Rain Gauge**
1344
1345 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0