Show last authors
1 (% style="text-align:center" %)
2 [[image:1656035424980-692.png||height="533" width="386"]]
3
4
5
6 **Table of Contents:**
7
8 {{toc/}}
9
10
11
12
13
14
15
16
17
18 = 1. Introduction =
19
20 == 1.1 Overview ==
21
22
23 (((
24 Dragino LoRaWAN weather station series products are designed for measuring atmospheric conditions to provide information for weather forecasts and to study the (% style="color:#4472c4" %)**weather and climate**(%%). They consist of a (% style="color:#4472c4" %)**main process device (WSC1-L) and various sensors**.
25 )))
26
27 (((
28 The sensors include various type such as: (% style="color:#4472c4" %)**Rain Gauge**, **Temperature/Humidity/Pressure sensor**, **Wind Speed/direction sensor**, **Illumination sensor**, **CO2 sensor**, **Rain/Snow sensor**,** PM2.5/10 sensor**, **PAR(Photosynthetically Available Radiation) sensor, Total Solar Radiation sensor**(%%) and so on.
29 )))
30
31 (((
32 Main process device WSC1-L is an outdoor LoRaWAN RS485 end node. It is powered by external (% style="color:#4472c4" %)**12v solar power**(%%) and have a (% style="color:#4472c4" %)**built-in li-on backup battery**(%%). WSC1-L reads value from various sensors and upload these sensor data to IoT server via LoRaWAN wireless protocol.
33 )))
34
35 (((
36 WSC1-L is full compatible with(% style="color:#4472c4" %)** LoRaWAN Class C protocol**(%%), it can work with standard LoRaWAN gateway.
37 )))
38
39
40
41 = 2. How to use =
42
43 == 2.1 Installation ==
44
45 Below is an installation example for the weather station. Field installation example can be found at [[Appendix I: Field Installation Photo.>>||anchor="H11.AppendixI:FieldInstallationPhoto"]] 
46
47 [[image:1656041948552-849.png]]
48
49
50 (% style="color:blue" %)** Wiring:**
51
52 ~1. WSC1-L and sensors all powered by solar power via MPPT
53
54 2. WSC1-L and sensors connect to each other via RS485/Modbus.
55
56 3. WSC1-L read value from each sensor and send uplink via LoRaWAN
57
58
59 WSC1-L is shipped with a RS485 converter board, for the easy connection to different sensors and WSC1-L. Below is a connection photo:
60
61 [[image:1656042136605-251.png]]
62
63
64 (% style="color:red" %)**Notice 1:**
65
66 * All weather sensors and WSC1-L are powered by MPPT solar recharge controller. MPPT is connected to solar panel and storage battery.
67 * WSC1-L has an extra 1000mAh back up battery. So it can work even solar panel and storage battery Fails.
68 * Weather sensors won’t work if solar panel and storage battery fails.
69
70 (% style="color:red" %)**Notice 2:**
71
72 Due to shipment and importation limitation, user is better to purchase below parts locally:
73
74 * Solar Panel
75 * Storage Battery
76 * MPPT Solar Recharger
77 * Mounting Kit includes pole and mast assembly. Each weather sensor has it's own mounting assembly, user can check the sensor section in this manual.
78 * Cabinet.
79
80 == 2.2 How it works? ==
81
82 (((
83 Each WSC1-L is shipped with a worldwide unique set of OTAA keys. To use WSC1-L in a LoRaWAN network, user needs to input the OTAA keys in LoRaWAN network server. After finish installation as above. Create WSC1-L in your LoRaWAN server and Power on WSC1-L , it can join the LoRaWAN network and start to transmit sensor data. The default period for each uplink is 20 minutes.
84 )))
85
86
87 (((
88 Open WSC1-L and put the yellow jumper as below position to power on WSC1-L.
89 )))
90
91 [[image:1656042192857-709.png]]
92
93
94 (% style="color:red" %)**Notice:**
95
96 1. WSC1-L will auto scan available weather sensors when power on or reboot.
97 1. User can send a [[downlink command>>||anchor="H3.ConfigureWSC1-LviaATCommandorLoRaWANDownlink"]] to WSC1-L to do a re-scan on the available sensors.
98
99
100
101 == 2.3 Example to use for LoRaWAN network ==
102
103 This section shows an example for how to join the TTN V3 LoRaWAN IoT server. Usages with other LoRaWAN IoT servers are of similar procedure.
104
105
106 [[image:1656042612899-422.png]]
107
108
109
110 Assume the DLOS8 is already set to connect to [[TTN V3 network >>url:https://eu1.cloud.thethings.network/]]. We need to add the WSC1-L device in TTN V3:
111
112
113 (% style="color:blue" %)**Step 1**(%%): Create a device in TTN V3 with the OTAA keys from WSC1-L.
114
115 Each WSC1-L is shipped with a sticker with the default device EUI as below:
116
117 [[image:image-20220624115043-1.jpeg]]
118
119
120 User can enter these keys in the LoRaWAN Server portal. Below is TTN V3 screen shot:
121
122 **Add APP EUI in the application.**
123
124 [[image:1656042662694-311.png]]
125
126 [[image:1656042673910-429.png]]
127
128
129
130
131 **Choose Manually to add WSC1-L**
132
133 [[image:1656042695755-103.png]]
134
135
136
137 **Add APP KEY and DEV EUI**
138
139 [[image:1656042723199-746.png]]
140
141
142
143 (((
144 (% style="color:blue" %)**Step 2**(%%): Power on WSC1-L, it will start to join TTN server. After join success, it will start to upload sensor data to TTN V3 and user can see in the panel.
145 )))
146
147
148 [[image:1656042745346-283.png]]
149
150
151
152 == 2.4 Uplink Payload ==
153
154 Uplink payloads include two types: Valid Sensor Value and other status / control command.
155
156 * Valid Sensor Value: Use FPORT=2
157 * Other control command: Use FPORT other than 2.
158
159 === 2.4.1 Uplink FPORT~=5, Device Status ===
160
161 Uplink the device configures with FPORT=5. Once WSC1-L Joined the network, it will uplink this message to the server. After first uplink, WSC1-L will uplink Device Status every 12 hours
162
163
164 (((
165 User can also use downlink command(0x2301) to ask WSC1-L to resend this uplink
166 )))
167
168 (% border="1" cellspacing="8" style="background-color:#ffffcc; color:green; width:500px" %)
169 |=(% style="width: 70px;" %)**Size (bytes)**|=(% style="width: 60px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 60px;" %)**1**|=(% style="width: 50px;" %)**2**|=(% style="width: 100px;" %)**3**
170 |(% style="width:99px" %)**Value**|(% style="width:112px" %)[[Sensor Model>>||anchor="HSensorModel:"]]|(% style="width:135px" %)[[Firmware Version>>||anchor="HFirmwareVersion:"]]|(% style="width:126px" %)[[Frequency Band>>||anchor="HFrequencyBand:"]]|(% style="width:85px" %)[[Sub-band>>||anchor="HSub-Band:"]]|(% style="width:46px" %)[[BAT>>||anchor="HBAT:"]]|(% style="width:166px" %)[[Weather Sensor Types>>||anchor="HWeatherSensorTypes:"]]
171
172 [[image:1656043061044-343.png]]
173
174
175 Example Payload (FPort=5):  [[image:image-20220624101005-1.png]]
176
177
178
179 ==== (% style="color:#037691" %)**Sensor Model:**(%%) ====
180
181 For WSC1-L, this value is 0x0D.
182
183
184
185 ==== (% style="color:#037691" %)**Firmware Version:**(%%) ====
186
187 0x0100, Means: v1.0.0 version.
188
189
190
191 ==== (% style="color:#037691" %)**Frequency Band:**(%%) ====
192
193 *0x01: EU868
194
195 *0x02: US915
196
197 *0x03: IN865
198
199 *0x04: AU915
200
201 *0x05: KZ865
202
203 *0x06: RU864
204
205 *0x07: AS923
206
207 *0x08: AS923-1
208
209 *0x09: AS923-2
210
211 *0x0a: AS923-3
212
213
214
215 ==== (% style="color:#037691" %)**Sub-Band:**(%%) ====
216
217 value 0x00 ~~ 0x08(only for CN470, AU915,US915. Others are0x00)
218
219
220
221 ==== (% style="color:#037691" %)**BAT:**(%%) ====
222
223 (((
224 shows the battery voltage for WSC1-L MCU.
225 )))
226
227 (((
228 Ex1: 0x0BD6/1000 = 3.03 V
229 )))
230
231
232
233 ==== (% style="color:#037691" %)**Weather Sensor Types:**(%%) ====
234
235 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:100px" %)
236 |Byte3|Byte2|Byte1
237
238 Bit = 1 means this sensor is connected, Bit=0 means this sensor is not connected
239
240 [[image:image-20220624134713-1.png]]
241
242
243 Eg: 0x1000FE = 1 0000 0000 0000 1111 1110(b)
244
245 External sensors detected by WSC1-L include :
246
247 custom sensor A1,
248
249 PAR sensor (WSS-07),
250
251 Total Solar Radiation sensor (WSS-06),
252
253 CO2/PM2.5/PM10 (WSS-03),
254
255 Wind Speed/Direction (WSS-02)
256
257
258 User can also use downlink command(0x26 01) to ask WSC1-L to resend this uplink :
259
260 (% style="color:#037691" %)**Downlink:0x26 01**
261
262 [[image:1656049673488-415.png]]
263
264
265
266 === 2.4.2 Uplink FPORT~=2, Real time sensor value ===
267
268 (((
269 WSC1-L will send this uplink after Device Config uplink once join LoRaWAN network successfully. And it will periodically send this uplink. Default interval is 20 minutes and [[can be changed>>||anchor="H3.1SetTransmitIntervalTime"]].
270 )))
271
272 (((
273 Uplink uses FPORT=2 and every 20 minutes send one uplink by default.
274 )))
275
276
277 (((
278 The upload length is dynamic, depends on what type of weather sensors are connected. The uplink payload is combined with sensor segments. As below:
279 )))
280
281
282 (% style="color:#4472c4" %)** Uplink Payload**:
283
284 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:464px" %)
285 |(% style="width:140px" %)Sensor Segment 1|(% style="width:139px" %)Sensor Segment 2|(% style="width:42px" %)……|(% style="width:140px" %)Sensor Segment n
286
287 (% style="color:#4472c4" %)** Sensor Segment Define**:
288
289 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:330px" %)
290 |(% style="width:89px" %)Type Code|(% style="width:114px" %)Length (Bytes)|(% style="width:124px" %)Measured Value
291
292 (% style="color:#4472c4" %)**Sensor Type Table:**
293
294 [[image:image-20220706154434-1.png]]
295
296
297 (((
298 Below is an example payload:  [[image:image-20220624140615-3.png]]
299 )))
300
301 (((
302
303 )))
304
305 (((
306 When sending this payload to LoRaWAN server. WSC1-L will send this in one uplink or several uplinks according to LoRaWAN spec requirement. For example, total length of Payload is 54 bytes.
307 )))
308
309 * (((
310 When WSC1-L sending in US915 frequency DR0 data rate. Because this data rate has limitation of 11 bytes payload for each uplink. The payload will be split into below packets and uplink.
311 )))
312
313 (((
314 Uplink 1:  [[image:image-20220624140735-4.png]]
315 )))
316
317 (((
318
319 )))
320
321 (((
322 Uplink 2:  [[image:image-20220624140842-5.png]]
323 )))
324
325 (((
326
327 )))
328
329 * (((
330 When WSC1-L sending in EU868 frequency DR0 data rate. The payload will be split into below packets and uplink:
331 )))
332
333 (((
334 Uplink 1:  [[image:image-20220624141025-6.png]]
335 )))
336
337 (((
338
339 )))
340
341 Uplink 2:  [[image:image-20220624141100-7.png]]
342
343
344
345 === 2.4.3 Decoder in TTN V3 ===
346
347 (((
348 In LoRaWAN platform, user only see HEX payload by default, user needs to use payload formatters to decode the payload to see human-readable value.
349 )))
350
351 (((
352
353 )))
354
355 (((
356 Download decoder for suitable platform from:
357 )))
358
359 (((
360 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/WSC1-L/]]
361 )))
362
363 (((
364 and put as below:
365 )))
366
367 [[image:1656051152438-578.png]]
368
369
370
371 == 2.5 Show data on Application Server ==
372
373 (((
374 Application platform provides a human friendly interface to show the sensor data, once we have sensor data in TTN V3, we can use Datacake to connect to TTN V3 and see the data in Datacake. Below are the steps:
375 )))
376
377 (((
378
379 )))
380
381 (((
382 (% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the LoRaWAN network.
383 )))
384
385 (((
386 (% style="color:blue" %)**Step 2**(%%): Configure your Application to forward data to Datacake you will need to add integration. Go to TTN V3 Console ~-~-> Applications ~-~-> Integrations ~-~-> Add Integrations.
387 )))
388
389 [[image:1656051197172-131.png]]
390
391
392 **Add TagoIO:**
393
394 [[image:1656051223585-631.png]]
395
396
397 **Authorization:**
398
399 [[image:1656051248318-368.png]]
400
401
402 In TagoIO console ([[https:~~/~~/admin.tago.io~~/~~/>>url:https://datacake.co/]]) , add WSC1-L:
403
404 [[image:1656051277767-168.png]]
405
406
407
408 = 3. Configure WSC1-L via AT Command or LoRaWAN Downlink =
409
410 Use can configure WSC1-L via AT Command or LoRaWAN Downlink.
411
412 * AT Command Connection: See [[FAQ>>||anchor="H7.FAQ"]].
413 * LoRaWAN Downlink instruction for different platforms:  [[Use Note for Server>>doc:Main.WebHome]](IoT LoRaWAN Server)
414
415 There are two kinds of commands to configure WSC1-L, they are:
416
417 * (% style="color:#4472c4" %)**General Commands**.
418
419 These commands are to configure:
420
421 * General system settings like: uplink interval.
422 * LoRaWAN protocol & radio related command.
423
424 They are same for all Dragino Device which support DLWS-005 LoRaWAN Stack((% style="color:red" %)Note~*~*)(%%). These commands can be found on the wiki:  [[End Device Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
425
426 (% style="color:red" %)Note~*~*: Please check early user manual if you don’t have v1.8.0 firmware.
427
428
429 * (% style="color:#4472c4" %)**Commands special design for WSC1-L**
430
431 These commands only valid for WSC1-L, as below:
432
433
434
435 == 3.1 Set Transmit Interval Time ==
436
437 Feature: Change LoRaWAN End Node Transmit Interval.
438
439 (% style="color:#037691" %)**AT Command: AT+TDC**
440
441 [[image:image-20220624142619-8.png]]
442
443
444 (% style="color:#037691" %)**Downlink Command: 0x01**
445
446 Format: Command Code (0x01) followed by 3 bytes time value.
447
448 If the downlink payload=0100003C, it means set the END Node’s Transmit Interval to 0x00003C=60(S), while type code is 01.
449
450 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds
451 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds
452
453 == 3.2 Set Emergency Mode ==
454
455 Feature: In emergency mode, WSC1-L will uplink data every 1 minute.
456
457 (% style="color:#037691" %)**AT Command:**
458
459 [[image:image-20220624142956-9.png]]
460
461
462 (% style="color:#037691" %)**Downlink Command:**
463
464 * 0xE101     Same as: AT+ALARMMOD=1
465 * 0xE100     Same as: AT+ALARMMOD=0
466
467 == 3.3 Add or Delete RS485 Sensor ==
468
469 (((
470 Feature: User can add or delete 3^^rd^^ party sensor as long they are RS485/Modbus interface,baud rate support 9600.Maximum can add 4 sensors.
471 )))
472
473 (((
474 (% style="color:#037691" %)**AT Command: **
475 )))
476
477 (((
478 (% style="color:blue" %)**AT+DYSENSOR=Type_Code, Query_Length, Query_Command , Read_Length , Valid_Data ,has_CRC,timeout**
479 )))
480
481 * (((
482 Type_Code range:  A1 ~~ A4
483 )))
484 * (((
485 Query_Length:  RS485 Query frame length, Value cannot be greater than 10
486 )))
487 * (((
488 Query_Command:  RS485 Query frame data to be sent to sensor, cannot be larger than 10 bytes
489 )))
490 * (((
491 Read_Length:  RS485 response frame length supposed to receive. Max can receive
492 )))
493 * (((
494 Valid_Data:  valid data from RS485 Response, Valid Data will be added to Payload and upload via LoRaWAN.
495 )))
496 * (((
497 has_CRC:  RS485 Response crc check  (0: no verification required 1: verification required). If CRC=1 and CRC error, valid data will be set to 0.
498 )))
499 * (((
500 timeout:  RS485 receive timeout (uint:ms). Device will close receive window after timeout
501 )))
502
503 (((
504 **Example:**
505 )))
506
507 (((
508 User need to change external sensor use the type code as address code.
509 )))
510
511 (((
512 With a 485 sensor, after correctly changing the address code to A1, the RS485 query frame is shown in the following table:
513 )))
514
515 [[image:image-20220624143553-10.png]]
516
517
518 The response frame of the sensor is as follows:
519
520 [[image:image-20220624143618-11.png]]
521
522
523
524 **Then the following parameters should be:**
525
526 * Address_Code range: A1
527 * Query_Length: 8
528 * Query_Command: A103000000019CAA
529 * Read_Length: 8
530 * Valid_Data: 24 (Indicates that the data length is 2 bytes, starting from the 4th byte)
531 * has_CRC: 1
532 * timeout: 1500 (Fill in the test according to the actual situation)
533
534 **So the input command is:**
535
536 AT+DYSENSOR=A1,8,A103000000019CAA,8,24,1,1500
537
538
539 In every sampling. WSC1-L will auto append the sensor segment as per this structure and uplink.
540
541 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:351px" %)
542 |=(% style="width: 94px;" %)Type Code|=(% style="width: 121px;" %)Length (Bytes)|=(% style="width: 132px;" %)Measured Value
543 |(% style="width:94px" %)A1|(% style="width:121px" %)2|(% style="width:132px" %)0x000A
544
545 **Related commands:**
546
547 AT+DYSENSOR=A1,0  ~-~->  Delete 3^^rd^^ party sensor A1.
548
549 AT+DYSENSOR  ~-~->  List All 3^^rd^^ Party Sensor. Like below:
550
551
552 (% style="color:#037691" %)**Downlink Command:  **
553
554 **delete custom sensor A1:**
555
556 * 0xE5A1     Same as: AT+DYSENSOR=A1,0
557
558 **Remove all custom sensors**
559
560 * 0xE5FF  
561
562 == 3.4 RS485 Test Command ==
563
564 (% style="color:#037691" %)**AT Command:**
565
566 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:474px" %)
567 |=(% style="width: 159px;" %)**Command Example**|=(% style="width: 227px;" %)**Function**|=(% style="width: 85px;" %)**Response**
568 |(% style="width:159px" %)AT+RSWRITE=xxxxxx|(% style="width:227px" %)(((
569 (((
570 Send command to 485 sensor
571 )))
572
573 (((
574 Range : no more than 10 bytes
575 )))
576 )))|(% style="width:85px" %)OK
577
578 Eg: Send command **01 03 00 00 00 01 84 0A** to 485 sensor
579
580 AT+RSWRITE=0103000001840A
581
582
583 (% style="color:#037691" %)**Downlink Command:**
584
585 * 0xE20103000001840A     Same as: AT+RSWRITE=0103000001840A
586
587 == 3.5 RS485 response timeout ==
588
589 Feature: Set or get extended time to receive 485 sensor data.
590
591 (% style="color:#037691" %)**AT Command:**
592
593 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:433px" %)
594 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 188px;" %)**Function**|=(% style="width: 85px;" %)**Response**
595 |(% style="width:157px" %)AT+DTR=1000|(% style="width:188px" %)(((
596 (((
597 Set response timeout to:
598 )))
599
600 (((
601 Range : 0~~10000
602 )))
603 )))|(% style="width:85px" %)OK
604
605 (% style="color:#037691" %)**Downlink Command:**
606
607 Format: Command Code (0xE0) followed by 3 bytes time value.
608
609 If the downlink payload=E0000005, it means set the END Node’s Transmit Interval to 0x000005=5(S), while type code is E0.
610
611 * Example 1: Downlink Payload: E0000005 ~/~/ Set Transmit Interval (DTR) = 5 seconds
612 * Example 2: Downlink Payload: E000000A ~/~/ Set Transmit Interval (DTR) = 10 seconds
613
614 == 3.6 Set Sensor Type ==
615
616 (((
617 Feature: Set sensor in used. If there are 6 sensors, user can set to only send 5 sensors values.
618 )))
619
620 (((
621 See [[definition>>||anchor="HWeatherSensorTypes:"]] for the sensor type.
622 )))
623
624 [[image:image-20220624144904-12.png]]
625
626
627 (% style="color:#037691" %)**AT Command:**
628
629 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:377px" %)
630 |=(% style="width: 157px;" %)**Command Example**|=(% style="width: 130px;" %)**Function**|=(% style="width: 87px;" %)**Response**
631 |(% style="width:157px" %)AT+STYPE=80221|(% style="width:130px" %)Set sensor types|(% style="width:87px" %)OK
632
633 Eg: The setting command **AT+STYPE=802212** means:
634
635 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:495px" %)
636 |(% rowspan="2" style="width:57px" %)Byte3|(% style="width:57px" %)Bit23|(% style="width:59px" %)Bit22|(% style="width:56px" %)Bit21|(% style="width:51px" %)Bit20|(% style="width:54px" %)Bit19|(% style="width:54px" %)Bit18|(% style="width:52px" %)Bit17|(% style="width:52px" %)Bit16
637 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)1|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)0
638 |(% rowspan="2" style="width:57px" %)Byte2|(% style="width:57px" %)Bit15|(% style="width:59px" %)Bit14|(% style="width:56px" %)Bit13|(% style="width:51px" %)Bit12|(% style="width:54px" %)Bit11|(% style="width:54px" %)Bit10|(% style="width:52px" %)Bit9|(% style="width:52px" %)Bit8
639 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)0|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)1|(% style="width:52px" %)0
640 |(% rowspan="2" style="width:57px" %)Byte1|(% style="width:57px" %)Bit7|(% style="width:59px" %)Bit6|(% style="width:56px" %)Bit5|(% style="width:51px" %)Bit4|(% style="width:54px" %)Bit3|(% style="width:54px" %)Bit2|(% style="width:52px" %)Bit1|(% style="width:52px" %)Bit0
641 |(% style="width:57px" %)0|(% style="width:59px" %)0|(% style="width:56px" %)1|(% style="width:51px" %)0|(% style="width:54px" %)0|(% style="width:54px" %)0|(% style="width:52px" %)0|(% style="width:52px" %)1
642
643 So wsc1-L will upload the following data: Custom Sensor A1, Rain Gauge,CO2,BAT.
644
645
646 (% style="color:#037691" %)**Downlink Command:**
647
648 * 0xE400802212     Same as: AT+STYPE=80221
649
650 (% style="color:red" %)**Note:**
651
652 ~1. The sensor type will not be saved to flash, and the value will be updated every time the sensor is restarted or rescanned.
653
654
655
656 = 4. Power consumption and battery =
657
658 == 4.1 Total Power Consumption ==
659
660 Dragino Weather Station serial products include the main process unit ( WSC1-L ) and various sensors. The total power consumption equal total power of all above units. The power consumption for main process unit WSC1-L is 18ma @ 12v. and the power consumption of each sensor can be found on the Sensors chapter.
661
662
663 == 4.2 Reduce power consumption ==
664
665 The main process unit WSC1-L is set to LoRaWAN Class C by default. If user want to reduce the power consumption of this unit, user can set it to run in Class A. In Class A mode, WSC1-L will not be to get real-time downlink command from IoT Server.
666
667
668 == 4.3 Battery ==
669
670 (((
671 All sensors are only power by external power source. If external power source is off. All sensor won't work.
672 )))
673
674 (((
675 Main Process Unit WSC1-L is powered by both external power source and internal 1000mAh rechargeable battery. If external power source is off, WSC1-L still runs and can send periodically uplinks, but the sensors value will become invalid.  External power source can recharge the 1000mAh rechargeable battery.
676 )))
677
678
679 = 5. Main Process Unit WSC1-L =
680
681 == 5.1 Features ==
682
683 * Wall Attachable.
684 * LoRaWAN v1.0.3 Class A protocol.
685 * RS485 / Modbus protocol
686 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915
687 * AT Commands to change parameters
688 * Remote configure parameters via LoRaWAN Downlink
689 * Firmware upgradable via program port
690 * Powered by external 12v battery
691 * Back up rechargeable 1000mAh battery
692 * IP Rating: IP65
693 * Support default sensors or 3rd party RS485 sensors
694
695 == 5.2 Power Consumption ==
696
697 WSC1-L (without external sensor): Idle: 4mA, Transmit: max 40mA
698
699
700 == 5.3 Storage & Operation Temperature ==
701
702 -20°C to +60°C
703
704
705 == 5.4 Pin Mapping ==
706
707 [[image:1656054149793-239.png]]
708
709
710 == 5.5 Mechanical ==
711
712 Refer LSn50v2 enclosure drawing in: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/>>url:https://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/Mechanical_Drawing/]]
713
714
715 == 5.6 Connect to RS485 Sensors ==
716
717 WSC1-L includes a RS485 converter PCB. Which help it easy to connect multiply RS485 sensors. Below is the photo for reference.
718
719
720 [[image:1656054389031-379.png]]
721
722
723 Hardware Design for the Converter Board please see:
724
725 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/RS485_Converter_Board/]]
726
727
728 = 6. Weather Sensors =
729
730 == 6.1 Rain Gauge ~-~- WSS-01 ==
731
732
733 (((
734 WSS-01 RS485 Rain Gauge is used in meteorology and hydrology to gather and measure the amount of liquid precipitation (mainly rainfall) over an area.
735 )))
736
737 (((
738 WSS-01 uses a tipping bucket to detect rainfall. The tipping bucket use 3D streamline shape to make sure it works smoothly and is easy to clean.
739 )))
740
741 (((
742 WSS-01 is designed to support the Dragino Weather station solution. Users only need to connect WSS-01 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the rainfall to the IoT Server via wireless LoRaWAN protocol
743 )))
744
745 (((
746 The tipping bucket of WSS-01 is adjusted to the best angle. When installation, user only needs to screw up and adjust the bottom horizontally.
747 )))
748
749 (((
750 WSS-01 package includes screw which can be installed to ground. If user want to install WSS-01 on pole, they can purchase WS-K2 bracket kit.
751 )))
752
753
754 === 6.1.1 Feature ===
755
756 * RS485 Rain Gauge
757 * Small dimension, easy to install
758 * Vents under funnel, avoid leaf or other things to avoid rain flow.
759 * ABS enclosure.
760 * Horizontal adjustable.
761
762 === 6.1.2 Specification ===
763
764 * Resolution: 0.2mm
765 * Accuracy: ±3%
766 * Range: 0 ~~ 100mm
767 * Rainfall strength: 0mm~4mm/min (max 8mm/min)
768 * Input Power: DC 5~~24v
769 * Interface: RS485
770 * Working Temperature: 0℃~70℃ ( incorrect below 0 degree, because water become ICE)
771 * Working Humidity: <100% (no dewing)
772 * Power Consumption: 4mA @ 12v.
773
774 === 6.1.3 Dimension ===
775
776 [[image:1656054957406-980.png]]
777
778
779 === 6.1.4 Pin Mapping ===
780
781 [[image:1656054972828-692.png]]
782
783
784 === 6.1.5 Installation Notice ===
785
786 (((
787 Do not power on while connect the cables. Double check the wiring before power on.
788 )))
789
790 (((
791 Installation Photo as reference:
792 )))
793
794
795 (((
796 (% style="color:#4472c4" %)** Install on Ground:**
797 )))
798
799 (((
800 WSS-01 Rain Gauge include screws so can install in ground directly .
801 )))
802
803
804 (((
805 (% style="color:#4472c4" %)** Install on pole:**
806 )))
807
808 (((
809 If user want to install on pole, they can purchase the (% style="color:#4472c4" %)** WS-K2 :  Bracket Kit for Pole installation**(%%), and install as below:
810 )))
811
812 [[image:image-20220624152218-1.png||height="526" width="276"]]
813
814 WS-K2: Bracket Kit for Pole installation
815
816
817 WSSC-K2 dimension document, please see:
818
819 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Weather_Station/]]
820
821
822 == 6.2 Wind Speed/Direction ~-~- WSS-02 ==
823
824 [[image:1656055444035-179.png]]
825
826 (((
827 WSS-02 is a RS485 wind speed and wind direction monitor designed for weather station solution.
828 )))
829
830 (((
831 WSS-02 shell is made of polycarbonate composite material, which has good anti-corrosion and anti-corrosion characteristics, and ensure the long-term use of the sensor without rust. At the same time, it cooperates with the internal smooth bearing system to ensure the stability of information collection
832 )))
833
834 (((
835 Users only need to connect WSS-02 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the wind speed and direction to the IoT Server via wireless LoRaWAN protocol.
836 )))
837
838
839 === 6.2.1 Feature ===
840
841 * RS485 wind speed / direction sensor
842 * PC enclosure, resist corrosion
843
844 === 6.2.2 Specification ===
845
846 * Wind speed range: 0 ~~ 30m/s, (always show 30m/s for higher speed)
847 * Wind direction range: 0 ~~ 360°
848 * Start wind speed: ≤0.3m/s
849 * Accuracy: ±(0.3+0.03V)m/s , ±1°
850 * Input Power: DC 5~~24v
851 * Interface: RS485
852 * Working Temperature: -30℃~70℃
853 * Working Humidity: <100% (no dewing)
854 * Power Consumption: 13mA ~~ 12v.
855 * Cable Length: 2 meters
856
857 === 6.2.3 Dimension ===
858
859 [[image:image-20220624152813-2.png]]
860
861
862 === 6.2.4 Pin Mapping ===
863
864 [[image:1656056281231-994.png]]
865
866
867 === 6.2.5  Angle Mapping ===
868
869 [[image:1656056303845-585.png]]
870
871
872 === 6.2.6  Installation Notice ===
873
874 (((
875 Do not power on while connect the cables. Double check the wiring before power on.
876 )))
877
878 (((
879 The sensor must be installed with below direction, towards North.
880 )))
881
882 [[image:image-20220624153901-3.png]]
883
884
885 == 6.3 CO2/PM2.5/PM10 ~-~- WSS-03 ==
886
887
888 (((
889 WSS-03 is a RS485 Air Quality sensor. It can monitor CO2, PM2.5 and PM10 at the same time.
890 )))
891
892 (((
893 WSS-03 uses weather proof shield which can make sure the sensors are well protected against UV & radiation.
894 )))
895
896 (((
897 WSS-03 is designed to support the Dragino Weather station solution. Users only need to connect WSS-03 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the environment CO2, PM2.5 and PM10 to the IoT Server via wireless LoRaWAN protocol.
898 )))
899
900
901 === 6.3.1 Feature ===
902
903 * RS485 CO2, PM2.5, PM10 sensor
904 * NDIR to measure CO2 with Internal Temperature Compensation
905 * Laser Beam Scattering to PM2.5 and PM10
906
907 === 6.3.2 Specification ===
908
909 * CO2 Range: 0~5000ppm, accuracy: ±3%F•S(25℃)
910 * CO2 resolution: 1ppm
911 * PM2.5/PM10 Range: 0~1000μg/m3 , accuracy ±3%F•S(25℃)
912 * PM2.5/PM10 resolution: 1μg/m3
913 * Input Power: DC 7 ~~ 24v
914 * Preheat time: 3min
915 * Interface: RS485
916 * Working Temperature:
917 ** CO2: 0℃~50℃;
918 ** PM2.5/PM10: -30 ~~ 50℃
919 * Working Humidity:
920 ** PM2.5/PM10: 15~80%RH (no dewing)
921 ** CO2: 0~95%RH
922 * Power Consumption: 50mA@ 12v.
923
924 === 6.3.3 Dimension ===
925
926 [[image:1656056708366-230.png]]
927
928
929 === 6.3.4 Pin Mapping ===
930
931 [[image:1656056722648-743.png]]
932
933
934 === 6.3.5 Installation Notice ===
935
936 Do not power on while connect the cables. Double check the wiring before power on.
937
938 [[image:1656056751153-304.png]]
939
940 [[image:1656056766224-773.png]]
941
942
943 == 6.4 Rain/Snow Detect ~-~- WSS-04 ==
944
945
946 (((
947 WSS-04 is a RS485 rain / snow detect sensor. It can monitor Rain or Snow event.
948 )))
949
950 (((
951 WSS-04 has auto heating feature, this ensures measurement more reliable.
952 )))
953
954 (((
955 WSS-04 is designed to support the Dragino Weather station solution. Users only need to connect WSS-04 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload the SNOW/Rain Event to the IoT Server via wireless LoRaWAN protocol.
956 )))
957
958
959
960 === 6.4.1 Feature ===
961
962 * RS485 Rain/Snow detect sensor
963 * Surface heating to dry
964 * grid electrode uses Electroless Nickel/Immersion Gold design for resist corrosion
965
966 === 6.4.2 Specification ===
967
968 * Detect if there is rain or snow
969 * Input Power: DC 12 ~~ 24v
970 * Interface: RS485
971 * Working Temperature: -30℃~70℃
972 * Working Humidity: 10~90%RH
973 * Power Consumption:
974 ** No heating: 12mA @ 12v,
975 ** heating: 94ma @ 12v.
976
977 === 6.4.3 Dimension ===
978
979 [[image:1656056844782-155.png]]
980
981
982 === 6.4.4 Pin Mapping ===
983
984 [[image:1656056855590-754.png]]
985
986
987 === 6.4.5 Installation Notice ===
988
989 Do not power on while connect the cables. Double check the wiring before power on.
990
991
992 (((
993 Install with 15°degree.
994 )))
995
996 [[image:1656056873783-780.png]]
997
998
999 [[image:1656056883736-804.png]]
1000
1001
1002 === 6.4.6 Heating ===
1003
1004 (((
1005 WSS-04 supports auto-heat feature. When the temperature is below the heat start temperature 15℃, WSS-04 starts to heat and stop at stop temperature (default is 25℃).
1006 )))
1007
1008
1009 == 6.5 Temperature, Humidity, Illuminance, Pressure ~-~- WSS-05 ==
1010
1011
1012 (((
1013 WSS-05 is a 4 in 1 RS485 sensor which can monitor Temperature, Humidity, Illuminance and Pressure at the same time.
1014 )))
1015
1016 (((
1017 WSS-05 is designed to support the Dragino Weather station solution. Users only need to connect WSS-05 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload environment Temperature, Humidity, Illuminance, Pressure to the IoT Server via wireless LoRaWAN protocol.
1018 )))
1019
1020
1021 === 6.5.1 Feature ===
1022
1023 * RS485 Temperature, Humidity, Illuminance, Pressure sensor
1024
1025 === 6.5.2 Specification ===
1026
1027 * Input Power: DC 12 ~~ 24v
1028 * Interface: RS485
1029 * Temperature Sensor Spec:
1030 ** Range: -30 ~~ 70℃
1031 ** resolution 0.1℃
1032 ** Accuracy: ±0.5℃
1033 * Humidity Sensor Spec:
1034 ** Range: 0 ~~ 100% RH
1035 ** resolution 0.1 %RH
1036 ** Accuracy: 3% RH
1037 * Pressure Sensor Spec:
1038 ** Range: 10~1100hPa
1039 ** Resolution: 0.1hPa
1040 ** Accuracy: ±0.1hPa
1041 * Illuminate sensor:
1042 ** Range: 0~2/20/200kLux
1043 ** Resolution: 10 Lux
1044 ** Accuracy: ±3%FS
1045 * Working Temperature: -30℃~70℃
1046 * Working Humidity: 10~90%RH
1047 * Power Consumption: 4mA @ 12v
1048
1049 === 6.5.3 Dimension ===
1050
1051 [[image:1656057170639-522.png]]
1052
1053
1054 === 6.5.4 Pin Mapping ===
1055
1056 [[image:1656057181899-910.png]]
1057
1058
1059 === 6.5.5 Installation Notice ===
1060
1061 Do not power on while connect the cables. Double check the wiring before power on.
1062
1063 [[image:1656057199955-514.png]]
1064
1065
1066 [[image:1656057212438-475.png]]
1067
1068
1069 == 6.6 Total Solar Radiation sensor ~-~- WSS-06 ==
1070
1071
1072 (((
1073 WSS-06 is Total Radiation Sensor can be used to measure the total solar radiation in the spectral range of 0.3 to 3 μm (300 to 3000 nm). If the sensor face is down, the reflected radiation can be measured, and the shading ring can also be used to measure the scattered radiation.
1074 )))
1075
1076 (((
1077 The core device of the radiation sensor is a high-precision photosensitive element, which has good stability and high precision; at the same time, a precision-machined PTTE radiation cover is installed outside the sensing element, which effectively prevents environmental factors from affecting its performance
1078 )))
1079
1080 (((
1081 WSS-06 is designed to support the Dragino Weather station solution.  Users only need to connect WSS-06 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Total Solar Radiation to the IoT Server via wireless LoRaWAN protocol.
1082 )))
1083
1084
1085
1086 === 6.6.1 Feature ===
1087
1088 * RS485 Total Solar Radiation sensor
1089 * Measure Total Radiation between 0.3~3μm(300~3000nm)
1090 * Measure Reflected Radiation if sense area towards ground.
1091
1092 === 6.6.2 Specification ===
1093
1094 * Input Power: DC 5 ~~ 24v
1095 * Interface: RS485
1096 * Detect spectrum: 0.3~3μm(300~3000nm)
1097 * Measure strength range: 0~2000W/m2
1098 * Resolution: 0.1W/m2
1099 * Accuracy: ±3%
1100 * Yearly Stability: ≤±2%
1101 * Cosine response: ≤7% (@ Sun angle 10°)
1102 * Temperature Effect: ±2%(-10℃~40℃)
1103 * Working Temperature: -40℃~70℃
1104 * Working Humidity: 10~90%RH
1105 * Power Consumption: 4mA @ 12v
1106
1107 === 6.6.3 Dimension ===
1108
1109 [[image:1656057348695-898.png]]
1110
1111
1112 === 6.6.4 Pin Mapping ===
1113
1114 [[image:1656057359343-744.png]]
1115
1116
1117 === 6.6.5 Installation Notice ===
1118
1119 Do not power on while connect the cables. Double check the wiring before power on.
1120
1121 [[image:1656057369259-804.png]]
1122
1123
1124 [[image:1656057377943-564.png]]
1125
1126
1127 == 6.7 PAR (Photosynthetically Available Radiation) ~-~- WSS-07 ==
1128
1129
1130 (((
1131 WSS-07 photosynthetically active radiation sensor is mainly used to measure the photosynthetically active radiation of natural light in the wavelength range of 400-700nm.
1132 )))
1133
1134 (((
1135 WSS-07 use precision optical detectors and has an optical filter of 400-700nm, when natural light is irradiated, a voltage signal proportional to the intensity of the incident radiation is generated, and its luminous flux density is proportional to the cosine of the direct angle of the incident light.
1136 )))
1137
1138 (((
1139 WSS-07 is designed to support the Dragino Weather station solution. Users only need to connect WSS-07 RS485 interface to WSC1-L. The weather station main processor WSC1-L can detect and upload Photosynthetically Available Radiation to the IoT Server via wireless LoRaWAN protocol.
1140 )))
1141
1142
1143 === 6.7.1 Feature ===
1144
1145 (((
1146 PAR (Photosynthetically Available Radiation) sensor measure 400 ~~ 700nm wavelength nature light's Photosynthetically Available Radiation.
1147 )))
1148
1149 (((
1150 When nature light shine on the sense area, it will generate a signal base on the incidence radiation strength.
1151 )))
1152
1153
1154 === 6.7.2 Specification ===
1155
1156 * Input Power: DC 5 ~~ 24v
1157 * Interface: RS485
1158 * Response Spectrum: 400~700nm
1159 * Measure range: 0~2500μmol/m2•s
1160 * Resolution: 1μmol/m2•s
1161 * Accuracy: ±2%
1162 * Yearly Stability: ≤±2%
1163 * Working Temperature: -30℃~75℃
1164 * Working Humidity: 10~90%RH
1165 * Power Consumption: 3mA @ 12v
1166
1167 === 6.7.3 Dimension ===
1168
1169 [[image:1656057538793-888.png]]
1170
1171
1172 === 6.7.4 Pin Mapping ===
1173
1174 [[image:1656057548116-203.png]]
1175
1176
1177 === 6.7.5 Installation Notice ===
1178
1179 Do not power on while connect the cables. Double check the wiring before power on.
1180
1181
1182 [[image:1656057557191-895.png]]
1183
1184
1185 [[image:1656057565783-251.png]]
1186
1187
1188 = 7. FAQ =
1189
1190 == 7.1 What else do I need to purchase to build Weather Station? ==
1191
1192 Below is the installation photo and structure:
1193
1194 [[image:1656057598349-319.png]]
1195
1196
1197 [[image:1656057608049-693.png]]
1198
1199
1200
1201 == 7.2 How to upgrade firmware for WSC1-L? ==
1202
1203 (((
1204 Firmware Location & Change log:
1205 )))
1206
1207 (((
1208 [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/WSC1-L/]]
1209 )))
1210
1211
1212 (((
1213 Firmware Upgrade instruction:  [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome||anchor="H2.HardwareUpgradeMethodSupportList"]]
1214 )))
1215
1216
1217 == 7.3 How to change the LoRa Frequency Bands/Region? ==
1218
1219 User can follow the introduction for how to [[upgrade image>>||anchor="H7.2HowtoupgradefirmwareforWSC1-L3F"]]. When download the images, choose the required image file for download.
1220
1221
1222 == 7.4 Can I add my weather sensors? ==
1223
1224 Yes, connect the sensor to RS485 bus and see instruction:  [[add sensors.>>||anchor="H3.3AddorDeleteRS485Sensor"]]
1225
1226
1227 = 8. Trouble Shooting =
1228
1229 == 8.1 AT Command input doesn't work ==
1230
1231 (((
1232 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1233 )))
1234
1235
1236 = 9. Order Info =
1237
1238 == 9.1 Main Process Unit ==
1239
1240 Part Number: (% style="color:blue" %)**WSC1-L-XX**
1241
1242 (% style="color:blue" %)**XX**(%%): The default frequency band
1243
1244 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1245 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1246 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1247 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1248 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1249 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1250 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1251 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1252
1253 == 9.2 Sensors ==
1254
1255 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:500px" %)
1256 |=(% style="width: 300px;" %)**Sensor Model**|=(% style="width: 200px;" %)**Part Number**
1257 |(% style="width:462px" %)**Rain Gauge**|(% style="width:120px" %)WSS-01
1258 |(% style="width:462px" %)**Rain Gauge installation Bracket for Pole**|(% style="width:120px" %)WS-K2
1259 |(% style="width:462px" %)**Wind Speed Direction 2 in 1 Sensor**|(% style="width:120px" %)WSS-02
1260 |(% style="width:462px" %)**CO2/PM2.5/PM10 3 in 1 Sensor**|(% style="width:120px" %)WSS-03
1261 |(% style="width:462px" %)**Rain/Snow Detect Sensor**|(% style="width:120px" %)WSS-04
1262 |(% style="width:462px" %)**Temperature, Humidity, illuminance and Pressure 4 in 1 sensor**|(% style="width:120px" %)WSS-05
1263 |(% style="width:462px" %)**Total Solar Radiation Sensor**|(% style="width:120px" %)WSS-06
1264 |(% style="width:462px" %)**PAR (Photosynthetically Available Radiation)**|(% style="width:120px" %)WSS-07
1265
1266 = 10. Support =
1267
1268 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1269 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
1270
1271 = 11. Appendix I: Field Installation Photo =
1272
1273
1274 [[image:1656058346362-132.png||height="685" width="732"]]
1275
1276 **Storage Battery**: 12v,12AH li battery
1277
1278
1279
1280 **Wind Speed/Direction**
1281
1282 [[image:1656058373174-421.png||height="356" width="731"]]
1283
1284
1285
1286 **Total Solar Radiation sensor**
1287
1288 [[image:1656058397364-282.png||height="453" width="732"]]
1289
1290
1291
1292 **PAR Sensor**
1293
1294 [[image:1656058416171-615.png]]
1295
1296
1297
1298 **CO2/PM2.5/PM10 3 in 1 sensor**
1299
1300 [[image:1656058441194-827.png||height="672" width="523"]]
1301
1302
1303
1304 **Rain / Snow Detect**
1305
1306 [[image:1656058451456-166.png]]
1307
1308
1309
1310 **Rain Gauge**
1311
1312 [[image:1656058463455-569.png||height="499" width="550"]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0